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THE ADJOINT SEMIGROUP OF A Γ-SEMIGROUP

Elton Pasku1

Abstract. Given a Γ-semigroup S and a fixed γ0 ∈ Γ, we construct a
semigroup Σγ0 in such a way that there is a one to one correspondence
between the set of principal one sided ideals (resp. principal quasi-ideals)
of S and their counterparts in Σγ0 . This correspondence allows us to ob-
tain several results for S without having the need to work directly with
it, but working with Σγ0 instead and employing well known results of
semigroup theory. For example, we obtain an analogue of the Green’s
theorem for Γ-semigroups as a corollary of the usual Green’s theorem in
semigroups. Also we prove that, if S is a Γ-semigroup and γ0 ∈ Γ such
that Sγ0 is a completely simple semigroup, then for every γ ∈ Γ, Sγ is
completely simple too.
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1. Introduction and preliminaries

Let S and Γ be two non empty sets. Every map from S × Γ × S to S will
be called a Γ-multiplication in S and is denoted by (·)Γ. The result of this
multiplication for a, b ∈ S and γ ∈ Γ is denoted by aγb. According to Sen
and Saha [5], a Γ-semigroup S is an ordered pair (S, (·)Γ) where S and Γ are
non empty sets and (·)Γ is a Γ-multiplication on S which satisfies the following
property

∀(a, b, c, α, β) ∈ S3 × Γ2, (aαb)βc = aα(bβc).

Here we give a few notions and present some auxiliary results that will be used
throughout the paper. Some of the results regarding Γ-semigroups may be
found in [4] and [5] but for the reader’s convenience we have restated them
below.

Let S be a Γ-semigroup and A,B subset of S. We define the set

AΓB = {aγb|a ∈ A, b ∈ B and γ ∈ Γ}.

For simplicity we write aΓB instead of {a}ΓB and similarly we write AΓb, and
write AγB in place of A{γ}B.

Definition 1.1. [4] Let S be a Γ-semigroup. A non empty subset S1 of S is
said to be a Γ-subsemigroup of S if S1ΓS1 ⊆ S1.
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Definition 1.2. [4] A right [left] ideal of a Γ-semigroup S is a non empty
subset R[L] of S such that RΓS ⊆ R, [SΓL ⊆ L].

The principal right ideal (a)r generated by an element a in a Γ-semigroup
S has been defined by [4] as the smallest right ideal of S containing a, and it
is proved that (a)r = a ∪ aΓS. Dually, the principal left ideal (a)l generated
by an element a exists and is given by (a)l = a ∪ SΓa. By analogy with plain
semigroups, Saha defined in [4] relations R, L and H in a Γ-semigroup S by
setting

(a, b) ∈ R iff (a)r = (b)r,

(a, b) ∈ L iff (a)l = (b)l,

(a, b) ∈ H iff (a)r = (b)r and (a)l = (b)l.

By analogy with the definition of quasi-dieals in plain semigroups [6] we give
the following.

Definition 1.3. A quasi-ideal of a Γ-semigroup S is a non empty subset Q of
S such that QΓS ∩ SΓQ ⊆ Q.

It is easy to see that the principal quasi-ideal (a)q generated by a in a
Γ-semigroup S exists and is given by

(a)q = a ∪ (aΓS ∩ SΓa) = (a)r ∩ (a)l.

We can now define the relation Q in a Γ-semigroup S by setting

(a, b) ∈ Q iff (a)q = (b)q.

Similarly to plain semigroups, one can prove just as easily that relations Q and
H in Γ-semigroups coincide.

Given a Γ-semigroup S it is obvious that to any fixed γ ∈ Γ one can associate
to S a semigroup (Sγ , ◦) where Sγ = S and ◦ is defined by setting x ◦ y = xγy
for every x, y ∈ S. A remarkable result of Sen and Saha in [5] states that if S
is a Γ-semigroup without zero and if Sγ is a group for some γ ∈ Γ, then Sγ is
a group for every γ ∈ Γ. Such a Γ-semigroup is called a Γ-group. The main
puropose of our paper is to generalize Sen’s and Saha’s result by replacing the
group condition for some Sγ with Sγ being a completely simple semigroup.
Recall from [2] that for a simple semigroup S (without a zero element) the
following conditions are equivalent:

(i) S is completely simple, that is, it contains a primitive idempotent;

(ii) S is completely regular, that is, every H-class is a group;

(iii) S satisfies minL and minR;

(iii) S contains at least a minimal left ideal and at least a minimal right ideal.

For further readings on semigroups the reader is refereed to the monograph [2].
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2. The adjoint semigroup Σγ0

In this section we will need some notions from reductions systems which
can be found in [1] and [3]. In order to make the paper self contained we will
give below what is necessary to make the proofs involving reduction systems
easy to follow.

An abstract reduction system is a pair (A,→), where the reduction → is
a binary relation on the set A. We write a→b instead of (a, b) ∈ →. In

what follows we denote by
+→ the transitive closure of →, by

∗→ the reflexive
transitive closure of → and by

∗←→ the equivalence relation generated by →.

We call a ∈ A reducible if and only if there is a b ∈ A such that a
+→b, otherwise

we call it irreducible or in the normal form. If it happens that b is unique, then
we denote b by a ↓. We call a and a′ joinable (or resolvable) if and only if there

is c such that a
∗→c

∗←a′, in which case we write a ↓ a′.
A reduction → is called

• Confluent if and only if a
∗←c

∗→b =⇒ a ↓ b.

• Locally-Confluent if and only if a←c→b =⇒ a ↓ b.

• Terminating (or Noetherian) if and only if there is no infinite descending
chain a0→a1→...

• Convergent if and only if it is both confluent and terminating.

The following is known as the Newman’s Lemma.

Lemma 2.1. A Noetherian system is confluent if it is locally confluent.

An important notion is that of a complete reduction system. A reduction
system (A,→) is called complete if and only if every element has a unique nor-
mal form. The following characterization of complete systems, due to Newman
[3], is important because it translates the completeness in terms of confluence
and termination.

Lemma 2.2. A reduction system is complete if and only if it is Noetherian
and confluent.

This lemma is the reason why sometimes complete systems are called con-
vergent. Combining Lemma 2.1 and Lemma 2.2, we get the following charac-
terization.

Lemma 2.3. A reduction system is complete if and only if it is Noetherian
and locally confluent.

To define Σγ0 we first let F be the free semigroup on the disjoint union
S⊔Γ. Its elements are finite strings (x1, ..., xn) where each xi ∈ S⊔Γ. Now we
define Σγ0

as the quotient semigroup of F by the congruence generated from
the set of relations

((γ1, γ2), γ1), ((x, γ, y), xγy), ((x, y), xγ0y)

for all γ1, γ2 and γ ∈ Γ, all x, y ∈ S and with γ0 ∈ Γ a fixed element.
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Lemma 2.4. Every element of Σγ0 can be represented by an irreducible word
which has the form (γ, x, γ′), (γ, x), (x, γ), γ or x where x ∈ S and γ, γ′ ∈ Γ.

Proof. To prove the lemma, we show first that the reduction system arising
from the given presentation is Noetherian and confluent, and therefore any
element of Σγ0 is given by a unique irreducible word from F . Secondly, we
show that the irreducible words have one of the five claimed forms.
If a word w of F has the form (u, γ1, γ2, v) where γ1, γ2 ∈ Γ, and u, v are
possibly empty words of F , then w reduces to w′ = (u, γ1, v). Now if for some
x, y ∈ S and γ ∈ Γ, the word w contains a subword of the form (x, γ, y), which
is to say that w = (u, x, γ, y, v) with u, v being possibly empty words from
F , then it reduces to w′ = (u, xγy, v). Finally, if the word w contains two
adjacent letters from S, meaning that w = (u, x, y, v) where u and v as before
and x, y ∈ S, then it reduces to w′ = (u, xγ0y, v). In this way we obtain a
reduction system made of the following three type of reductions:

(u, γ1, γ2, v) → (u, γ1, v)
(u, x, γ, y, v) → (u, xγy, v)
(u, x, y, v) → (u, xγ0y, v)

which is length reducing and therefore Noetherian. To prove that it is conflu-
ent, from Newman’s lemma, it is sufficient to show that it is locally confluent.
As there are no inclusion ambiguities, we need to check only overlapping ones.
There are only five such pairs:
1- (x, y, γ, z)→ (xγ0y, γ, z) and (x, y, γ, z)→ (x, yγz). Both resolve to (xγ0yγz).
2- (x, γ, y, z)→ (x, γ, yγ0z) and (x, γ, y, z)→ (xγy, z) which resolve to (xγyγ0z).
3- (x, γ, y, γ′, z) → (x, γ, yγ′z) and (x, γ, y, γ′, z) → (xγy, γ′, z) which resolve
to (xγyγ′z).
4- (x, y, z)→ (xγ0y, z) and (x, y, z)→ (x, yγ0z), which resolve to (xγ0yγ0z).
5- (γ1, γ2, γ3)→ (γ1, γ3) and (γ1, γ2, γ3)→ (γ1, γ2) which resolve to (γ1).

To complete the proof, we need to show that the irreducible words repre-
senting elements of Σγ0

have the claimed forms. Any word which has neither
a prefix nor a suffix made entirely of letters from Γ reduces to an element of S
by performing reductions of types one, two and three. Otherwise, if the word
is (η, U, η′) where η, η′ are words from the free monoid with base Γ and U has
neither a prefix nor a suffix made entirely of letters from Γ, then reduce η and
η′ to a single letter form Γ by performing reductions of the first type, and than
reduce as before U to a single letter from S.

Lemma 2.4 shows in particular that the natural epimorphism µ : F → Σγ0

is injective on S and Γ. In what follows we will identify the elements of Σγ0 with
the irreducible words from F they are represented of written without brackets
and commas, and if we want to multiply in Σγ0

two such words, we take their
concatenation and then find its irreducible form. For instance, the product in
Σγ0

of x with γy is x · γy = xγy.
We call Σγ0 the adjoint semigroup of the given Γ-semigroup. The semigroup

Σγ0 satisfies the following universal property.
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Theorem 2.5. Let S and S′ be both Γ-semigroups. For every homomorphism
of Γ-semigroups φ : S → S′ identical on Γ, there is a unique homomorphism
of semigroups ϕ : Σγ0

→ Σ′
γ0

identical on Γ such that ϕµ = µ′φ.

Proof. Let f : F (S ∪Γ)→ F (S′ ∪Γ) be the homomorphism of free semigroups
induced from φ. We prove that φ induces a homomorphism ϕ : Σγ0

→ Σ′
γ0
. To

do this we need to show that every relation that defines Σγ0 lies in the kernel
of µ′f where µ′ : F (S′ ∪Γ)→ Σ′

γ0
is the canonical homomorphism. Indeed, for

the first type of relations ((γ1, γ2), γ1) we have

µ′f(γ1, γ2) = µ′(φ(γ1), φ(γ2))

= φ(γ1)

= γ1

= µ′f(γ1).

For the second type ((x, γ, y), xγy) we have

µ′f(x, γ, y) = µ′(φ(x), γ, φ(y))

= φ(x)γφ(y)

= φ(xγy)

= µ′f(xγy),

and for the last type ((x, y), xγ0y) we have

µ′f(x, y) = µ′(φ(x), φ(y))

= φ(x)γ0φ(y)

= φ(xγ0y)

= µ′f(xγ0y).

Therefore µ′f induces ϕ : Σγ0
→ Σ′

γ0
such that ϕµ = µ′f . Since φ is the

restriction of f in S ∪ Γ, then we derive that ϕµ = µ′φ. The uniqueness of ϕ
with the given property follows easily from the fact any other homomorphism
ϕ̂ : Σγ0

→ Σ′
γ0

satisfying ϕ̂µ = µ′φ coincides with ϕ on the generators of Σγ0

and therefore equals with ϕ.

The next lemma and the subsequent proposition establish a 1-1 correspon-
dence between principal one sided ideals and quasi ideals of S, and their coun-
terparts of Σγ0 . This correspondence will be useful in the proof of Theorem
2.8.

Lemma 2.6. Let x ∈ S by an arbitrary element. The following hold true.

(i) The principal left ideal in Σγ0
generated by x is the set (x)

Σγ0

ℓ = (x)Γℓ ∪
Γ(x)Γℓ where (x)Γℓ = SΓx ∪ {x} is the left ideal in S generated by x and
Γ(x)Γℓ is a short notation for the set {γy : γ ∈ Γ and y ∈ (x)Γℓ }.
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(ii) The principal right ideal in Σγ0 generated by x is the set (x)
Σγ0
r = (x)Γr ∪

(x)ΓrΓ where (x)Γr = xΓS ∪ {x} is the right ideal in S generated by x and
(x)ΓrΓ is the short notation for the set {yγ : γ ∈ Γ and y ∈ (x)Γr }.

Proof. We will make the proof for (i) only since the proof for (ii) is dual to

that of (i). The elements of (x)
Σγ0

ℓ \ {x} are of the following five forms:
1- γy · x with γ ∈ Γ and y ∈ S. But γy · x = γyγ0x which belongs to Γ(x)Γℓ .
2- γyγ′ · x with γ, γ′ ∈ Γ and y ∈ S. Again γyγ′ · x = γ(yγ′x) which belongs
to Γ(x)Γℓ .
3- γ · x with γ ∈ Γ which obviously belongs to Γ(x)Γℓ .
4- y · x which equals to yγ0x and belongs to (x)Γℓ .
5- yγ · x which equals to yγx and as before belongs to (x)Γℓ .

Proposition 2.7. For every x ∈ S, QΣγ0
x = QΓ

x.

Proof. From Lemma 2.6 we see that for every x ∈ S, the quasi ideal in Σγ0

generated by x is the set (x)
Σγ0
q = (x)Γℓ ∩ (x)Γr = (x)Γq , therefore any y ∈ S that

is contained in QΣγ0
x has to be contained in QΓ

x , and conversely. It remains

to prove that QΣγ0
x has no elements of the following four forms: αyβ, αy, yβ

or α where α, β ∈ Γ and y ∈ S. We make the proof for the first type αyβ

because the proofs for the other types of words are similar. If αyβ ∈ QΣγ0
x ,

then (αyβ)
Σγ0
r = (x)

Σγ0
r which is impossible since the left hand side cannot

contain x.

Theorem 2.8. (Green Theorem) Suppose that x, y and xγ0y for a certain
γ0 ∈ Γ belong to the same class HΓ

x . Then, HΓ
x is a subgroup of the semigroup

Sγ0 .

Proof. For the particular γ0 stated in the theorem, we construct the semigroup

Σγ0 for which we know from Proposition 2.7 that HΓ
x and HΣγ0

x coincide. Now

since x, y, xγ0y ∈ HΓ
x , we have that x, y, xγ0y ∈ H

Σγ0
x . But xγ0y = xy in Σγ0

,

hence HΣγ0
x satisfies the Green condition and then the Green’s theorem for

plain semigroups implies that HΣγ0
x is a group. It is now obvious that HΓ

x is a
subgroup of Sγ0 .

3. Completely simple Γ-semigroups

In this section we will define completely simple Γ-semigroups as those Γ-
semigroups without zero such that each Sγ is a completely simple semigroup. It
turns out that it is sufficient to assume that only a particular Sγ0

is a completely
simple semigroup in order that every Sγ is a completely simple semigroup. This
generalizes the well known result of [5] for Γ-groups.

Theorem 3.1. For a given Γ-semigroup S without zero, if for some γ0 ∈ Γ,
Sγ0 is a completely simple semigroup, then Sγ is a completely simple semigroup
for every γ ∈ Γ.
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Proof. As in the previous theorem, we let Σγ0 be the adjoint semigroup con-
structed for γ0. We proceed by first showing that Σ′

γ0
= Σγ0 \Γ is a completely

simple semigroup without zero. To show that it is simple, we note first that
from Lemma 2.4 Σ′

γ0
is a disjoint union of subsemigroups of the form S, γS,

Sγ, γSγ′ for γ, γ′ varying in Γ. If J is an ideal of Σ′
γ0

containing an x ∈ S,
then J ∩S is an ideal of Sγ0

and since Sγ0
is a simple semigroup, then it follows

that J ∩ S = S, hence S ⊆ J . For any s0 ∈ Sγ0
,

S ◦ s0 ◦ S = S,

from simplicity of Sγ0 . For any γ ∈ Γ, we have in Σγ0 the equality

(3.1) γS ◦ s0 ◦ S = γS.

Taking into account that S ⊆ J together with the fact that γS ◦ s0 ⊆ Σ′
γ0

we
derive from (3.1) that γS ⊆ J . In the same way we get Sγ ⊆ J . Further, since
again S ◦ s0 ◦ S = S, then for any γ, γ′ ∈ Γ,

γS ◦ s0 ◦ Sγ′ = γSγ′,

which together with the inclusions γS, Sγ ⊆ J and s0 ∈ S ⊆ J , imply that
γSγ′ ⊆ J .

If J contains some xγ, then, for any y ∈ S, it contains xγy which lies in S,
and than we proceed as before. The same argument applies if J contains some
γx or some γxγ′. So we finally have that J = Σ′

γ0
proving the simplicity of

Σ′
γ0
.
Now we show that Σ′

γ0
contains a primitive idempotent. Let ε0 be a primi-

tive idempotent of Sγ0 . We show that γ0ε0γ0 is a primitive idempotent of Σ′
γ0
.

To do this, one should observe first that any idempotent which is lower than
γ0ε0γ0 in the natural order must have the form γ0εγ0 where ε is an idempotent
in Sγ0

. It is obvious that any idempotent ε of Σ′
γ0

belonging to S cannot be
lower than γ0ε0γ0 since ε · (γ0ε0γ0) ̸= ε. Similar arguments apply if the idem-
potent is from some γS or Sγ. Finally if the idempotent has the form γεγ′,
then

γεγ′ = (γεγ′) · (γ0ε0γ0)
= γ(εγ′ε0)γ0.

The uniqueness of the expression of elements of Σγ0
as words with letters from

S ∪ Γ (Lemma 2.4) implies that γ′ = γ0. In a similar fashion one can prove
that γ = γ0. From the assumption that γ0εγ0 ≤ γ0ε0γ0, we get

γ0εγ0 = (γ0εγ0) · (γ0ε0γ0)
= γ0(εγ0ε0)γ0 = γ0ε0γ0 (since ε0 is primitive,)

which similarly to above implies that ε = ε0. The assertion that Σ′
γ0

does
not have a zero is proved easily. Thus Σ′

γ0
is completely simple and therefore

it is completely regular. The latter means that any element of Σ′
γ0

lies in a
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subgroup of Σ′
γ0
. Let γ ∈ Γ be arbitrary and γx ∈ γS. There is a subgroup

G of Σ′
γ0

such that γx ∈ γS ∩ G. It follows that the unit of G must have the
form γε where ε is an idempotent in Sγ . Indeed, the unit cannot be an element
ε ∈ S since ε · (γx) ̸= γx. Also it cannot be an element αεβ ∈ αSβ since
(γx) · (αεβ) ̸= γx. Similarly one shows that the unit cannot be of the form
εβ ∈ Sβ. Finally if the unit is αε ∈ αS, then

γx = (αε) · (γx) = α(εγx),

which shows that α = γ.
Taking into account that the unit of G is γε we show that any g ∈ G must

have the form γz with z ∈ S, therefore G ⊆ γS. Indeed, elements of the form
x ∈ S, αyβ ∈ αSβ and yβ ∈ Sβ are excluded since

x ̸= (γε) · x, αyβ ̸= (αyβ) · (γε) and yβ ̸= (γε) · (yβ).

The remaining elements are αy ∈ αS. For such elements we have

αy = (γε) · (αy) = γ(εαy),

whence α = γ and so G ⊆ γS as claimed. This shows that any element γx ∈ γS
is contained in a subgroup G of γS, whence γS is completely regular. Using
this it is easy to show that Sγ is completely regular too. For this it is enough
to observe that γS and Sγ are isomorphic under the map

ϕ : γS → Sγ such that γx 7→ x.

To complete the proof, we show that Sγ is a simple semigroup under the as-
sumption that Sγ0 is simple. To this end we show that any ideal I of Sγ is an
ideal of Sγ0

too. Indeed, let x ∈ I and s ∈ Sγ arbitrary elements. Denote by
εγx the unit of the subgroup of Sγ containing x, then

s ◦ x = sγ0x = sγ0(ε
γ
xγx) = (sγ0ε

γ
x)γx ∈ I,

showing that I is a left ideal of Sγ0
. In a similar fashion with above one can

show that I is a right ideal concluding the proof.

We may now redefine a completely simple Γ semigroup as a Γ semigroup
S having the property that there exists γ0 ∈ Γ such that Sγ0

is a completely
simple semigroup.
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