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SYMMETRIC PROPERTIES OF ORTHOGONALITY
OF LINEAR OPERATORS ON (Rn, ∥.∥1)

Puja Ghosh1, Kallol Paul23 and Debmalya Sain4

Abstract. In this paper we study the orthogonality in the sense of
Birkhoff-James of bounded linear operators on (Rn, ∥.∥1). We prove that
T ⊥B A ⇒ A ⊥B T for all operators A on (Rn, ∥.∥1) if and only if T
attains norm at only one extreme point, image of which is a left symmetric
point of (Rn, ∥.∥1) and images of other extreme points are zero. We also
prove that A ⊥B T ⇒ T ⊥B A for all operators A on (Rn, ∥.∥1) if and
only if T attains norm at all extreme points and images of the extreme
points are scalar multiples of extreme points.
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1. Introduction

Let (X, ∥.∥) be a normed linear space. For any two elements x, y in X, x is said
to be orthogonal to y in the sense of Birkhoff-James[1, 2, 3], written as x ⊥B y iff
∥x∥ ≤ ∥x+λy∥ for all λ ∈ K(= R or C). In [2, 3] James studied many important
properties related to the notion of orthogonality in the sense of Birkhoff-James.
Orthogonality is related to many important geometric properties of normed
linear spaces, including strict convexity, uniform convexity and smoothness of
the space. We studied the notion of Birkhoff-James orthogonality in [8, 9, 5, 7,
6]. Let B(X) denote the Banach algebra of all bounded linear operators on X.
The notion of Birkhoff-James orthogonality [1] plays a very important role in
the geometry of Banach spaces. For any two elements T,A ∈ B(X), T is said
to be orthogonal to A, written as T ⊥B A, iff

∥T∥ ≤ ∥T + λA∥ ∀λ ∈ R.

James [2] proved that Birkhoff-James orthogonality is symmetric in a normed
linear space X of three or more dimensions if and only if inner product can be

1Department of Mathematics, Jadavur University, Kolkata, India
e-mail: ghosh.puja1988@gmail.com

2Department of Mathematics, Jadavur University, Kolkata, India
e-mail: kalloldada@gmail.com

3Corresponding author
4Department of Mathematics, Indian Institute of Science, Bengaluru, India

e-mail: saindebmalya@gmail.com

mailto:ghosh.puja1988@gmail.com
mailto:kalloldada@gmail.com
mailto:saindebmalya@gmail.com


42 P. Ghosh, K. Paul and D. Sain

defined on X. Since B(X) is not an inner product space, it is interesting to
study the symmetry of orthogonality of operators on X.

In [4] we proved that if H is a real finite dimensional Hilbert space and
T ∈ B(H), then for all A ∈ B(H), A ⊥B T ⇒ T ⊥B A if and only if MT = SH,
where MT = {x ∈ SH : ∥Tx∥ = ∥T∥}. We also proved that T ⊥B A ⇒ A ⊥B T
for all A ∈ B(H) if and only if T is the zero operator. These results are not true
in general if we consider the operators on Banach spaces. In this paper we study
the symmetric properties of orthogonality of linear operators on (Rn, ∥.∥1) in
the sense of Birkhoff-James. In [5] Sain and Paul studied orthogonality of linear
operators on (Rn, ∥.∥∞). We here find a necessary and sufficient condition for
a linear operator T on (Rn, ∥.∥1) to be such that T ⊥B A implies A ⊥B T
for all linear operators A on (Rn, ∥.∥1), we also characterize operators T for
which A ⊥B T implies T ⊥B A for all operators A on (Rn, ∥.∥1). We prove
that T ⊥B A implies A ⊥B T for all operators A on (Rn, ∥.∥1) if and only if
T attains norm at only one extreme point, image of which is a left symmetric
point of (Rn, ∥.∥1) and images of other extreme points are zero. We also prove
that A ⊥B T implies T ⊥B A for all operators A on (Rn, ∥.∥1) if and only if T
attains norm at all extreme points and images of the extreme points are scalar
multiples of extreme points.

From now onwards by Rn we will mean the normed linear space Rn equipped
with the ℓ1 norm, which will be denoted by ∥.∥. We also write ei for the element
(0, 0, . . . , 0, 1, 0, . . . , 0) where the i-th coordinate is 1 and all other coordinates
are zero, for any i ∈ {1, 2, . . . , n}.

2. Main results

In a normed linear space X, x ⊥B y may not imply y ⊥B x. Motivated by
this fact we define the notion of left symmetric and right symmetric points.
Left symmetric point. An element x ∈ X is called left symmetric if x ⊥B

y ⇒ y ⊥B x for all y ∈ X. In (R2, ∥.∥1) (1, 1) is a left symmetric point.
Right-symmetric point. An element x ∈ X is called right symmetric if
y ⊥B x ⇒ x ⊥B y for all y ∈ X.

We first prove the following lemma.

Lemma 2.1. Extreme points (or their scalar multiples) of the closed unit ball
are the only right symmetric points of Rn.

Proof. We first show that extreme points are right symmetric. Let
(t1, t2, . . . , tn) ⊥B ei for i ∈ {1, 2, . . . , n}. Then it follows that ti = 0 i.e.
(t1, t2, . . . , ti−1, 0, ti+1, . . . , tn) ⊥B ei. Also ei ⊥B (t1, t2, . . . , ti−1, 0, ti+1, . . . , tn).
So ei is right symmetric.

Let (t1, t2, ..., tn) be a right symmetric point such that |t1|+|t2|+...+|tn| = 1.
Claim: (t1, t2, ..., tn) is an extreme point.
If not, then at least two of t1, t2, ..., tn are non-zero. Without any loss of

generality we can assume that t1, t2 ̸= 0. Also at least one of |t1|, |t2| is less
than or equal to 1

2 . Without any loss of generality we assume that |t1| ≤ 1
2 . We
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show that (1, 0, . . . , 0) ⊥B (t1, t2, . . . , tn). Let |λ| < 1
|t1| . Then ∥(1, 0, . . . , 0) +

λ(t1, t2, . . . , tn)∥ = |1+λt1|+|λt2|+. . .+|λtn| ≥ |1−|λt1||+|λ||t2|+. . .+|λ||tn| =
1−|λt1|+|λ|(|t2|+|t3|+. . .+|tn|) = 1−|λ||t1|+|λ|(1−|t1|) = 1+|λ|(1−2|t1|) ≥
1. So (1, 0, . . . , 0) ⊥B (t1, t2, . . . , tn). But (t1, t2, . . . , tn) ̸⊥B (1, 0, . . . , 0), as
∥(t1, t2, . . . , tn)− t1(1, 0, . . . , 0)∥ < ∥(t1, t2, . . . , tn)∥. Hence the proof.

In the next theorem we characterize the class of operators T which are right
symmetric i.e., A ⊥B T ⇒ T ⊥B A for all linear operators A on Rn.

Theorem 2.2. Suppose T = (tij) is a linear operator on Rn. Then for any
linear operator A on Rn, A ⊥B T ⇒ T ⊥B A if and only if T attains norm
at all extreme points and images of the extreme points are scalar multiples of
extreme points.

Proof. Without any loss of generality we may assume that ∥T∥ = 1. Let
A ⊥B T ⇒ T ⊥B A for all linear operators A on Rn. Claim: T attains norm

at all extreme points.
Suppose ∥T∥ > ∥Te1∥. Define a linear operator A as Ae1 = w0, Aei =

−Tei, i ̸= 1 where w0 = (w1, w2, . . . , wn) is such that ∥w0∥ = 1 and w0 ⊥B

Te1. It is easy to see that A attains norm at e1 and Ae1 ⊥B Te1. So we have
A ⊥B T . Choose 0 < λ < 1− ∥Te1∥. Then

(T + λA) =


t11 + λw1 (1− λ)t12 . . (1− λ)t1n
t21 + λw2 (1− λ)t22 . . (1− λ)t2n

. . . . .

. . . . .
tn1 + λwn (1− λ)tn2 . . (1− λ)tnn


and so we have, ∥T + λA∥ = max{(|t11 + λw1| + |t21 + λw2| + ... + |tn1 +

λwn|), (|1−λ||t12|+ ...+ |1−λ||tn2|), ..., (|1−λ||t1n|+ ...+ |1−λ)|tnn|)}. Now
|t11+λw1|+ |t21+λw2|+ ...+ |tn1+λwn| = ∥Te1+λw0∥ ≤ ∥Te1∥+ |λ|∥w0∥ <
1 = ∥T∥ (By the choice of λ). Also |1−λ||t1j |+ ...+ |1−λ||tnj | = (1−λ)(|t1j |+
...+ |tnj |) < (|t1j |+ ...+ |tnj |) ≤ ∥T∥ for all j ∈ {2, ..., n}. So ∥T +λA∥ < ∥T∥,
which shows that T ̸⊥B A.

Next claim : Image of any extreme point under T is a right symmetric
point.

Suppose Te1 is not right symmetric i.e., there exists a vector w0 such that
w0 ⊥B Te1 but Te1 ̸⊥B w0 and ∥w0∥ > 1. For the two vectors Te1, w0 either
∥Te1 + λw0∥ ≥ 1 for all λ ≥ 0, or ∥Te1 + λw0∥ ≥ 1 for all λ ≤ 0. Without
any loss of generality we can assume that ∥Te1 + λw0∥ ≥ 1 for all λ ≥ 0. As
Te1 ̸⊥B w0, there exists −1 < λ0 < 0 such that ∥Te1 + λ0w0∥ < ∥Te1∥ = 1.
Define a linear operator A as Ae1 = w0, Aei = Tei, i ̸= 1. It is easy to see
that A attains norm at e1 and Ae1 ⊥B Te1. So we have A ⊥B T . Then

(T + λ0A) =


t11 + λ0w1 (1 + λ0)t12 . . (1 + λ0)t1n
t21 + λ0w2 (1 + λ0)t22 . . (1 + λ0)t2n

. . . . .

. . . . .
tn1 + λ0wn (1 + λ0)tn2 . . (1 + λ0)tnn
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and so we have, ∥T + λ0A∥ = max{(|t11 + λ0w1| + |t21 + λ0w2| + ... + |tn1 +
λ0wn|), (|1+λ0||t12|+...+|1+λ0||tn2|), ..., (|1+λ0||t1n|+...+|1+λ0||tnn|)}. Now
|t11+λ0w1|+ |t21+λ0w2|+ ...+ |tn1+λ0wn| = ∥Te1+λ0w0∥ < 1 = ∥T∥ (by the
choice of λ0). Also |1+λ0||t1j |+ ...+ |1+λ0||tnj | = (1+λ0)(|t1j |+ ...+ |tnj |) <
(|t1j | + ... + |tnj |) = ∥T∥ for all j ∈ {2, ..., n}. So ∥T + λ0A∥ < ∥T∥, which
shows that T ̸⊥B A. Hence by Lemma 2.1, the image of any extreme point
under T is an extreme point.

Conversely, suppose that a linear operator T attains norm at all extreme
points and images of the extreme points are scalar multiples of extreme points.
So we can assume that T is of the form : Te1 = c1ei1 , T e2 = c2ei2 , . . . , T en =
cnein where ci = ±1 for all i ∈ {1, 2, ..., n}. Let A = (aij) be a linear operator
such that A ⊥B T .

Case 1.

Let sgn(ck) = sgn(aikk) for all k ∈ {1, 2, ..., n}. We first claim that at least
one of ai11, ai22, ..., ainn is zero. If not, suppose λ = −min{|ai11|, |ai22|, ..., |aikk|}.
Then

(A+ λT ) =


a11 + λt11 a12 + λt12 . . a1n + λt1n
a21 + λt21 a22 + λt22 . . a2n + λt2n

. . . . .

. . . . .
an1 + λtn1 an2 + λtn2 . . ann + λtnn


Also |a1j + λt1j |+ |a2j + λt2j |+ ...+ |anj + λtnj | = |a1j |+ ...+ |aijj + λcj |+
|a(ij+1)j |+ ...+ |anj | < |a1j |+ |a2j |+ ...+ |anj | for all j ∈ {1, 2, ..., n}. So ∥A+
λT∥ < ∥A∥, which is a contradiction. Hence at least one of ai11, ai22, ..., ainn
is zero. Without loss of generality we can assume that ai11 = 0. Then ∥T +
λA∥ ≥ |t11 + λa11| + |t21 + λa21| + ... + |ti11 + λai11| + ... + |tn1 + λan1| =
|λa11|+ |λa21|+ ...+ |c1|+ |λai1+1j |+ ...+ |λan1| ≥ |c1| = 1 = ∥T∥. So T ⊥B A.

Case 2. Let sgn(ck) = −sgn(aikk) for all k ∈ {1, 2, ..., n}. As in Case 1 we
can show that A ⊥B T ⇒ T ⊥B A.

Case 3. There exist k, l such that sgn(ck) = sgn(aikk) and sgn(cl) = −sgn(aill).
Without loss of generality we can assume that k = 1, l = 2. Let λ > 0. Then
∥T + λA∥ ≥ |t11 + λa11|+ |t21 + λa21|+ ...+ |ti11 + λai11|+ ...+ |tn1 + λan1| =
|λa11| + |λa21| + ... + |c1 + λai11| + |λai1+1j | + ... + |λan1| ≥ |c1 + λai11| =
|sgn(c1)|c1|+λsgn(ai11)|ai11| = ||c1|+λ|ai11|| = |c1|+λ|ai11| ≥ |c1| = 1 = ∥T∥.
Also ∥T−λA∥ ≥ |t12−λa12|+|t22−λa22|+...+|ti22−λai22|+...+|tn2−λan2| =
|λa12| + |λa22| + ... + |c2 − λai22| + |λai2+12| + ... + |λan2| ≥ |c2 − λai22| =
|sgn(c2)|c2|−λsgn(ai22)|ai22|| = ||c2|+λ|ai22|| = |c2|+λ|ai22| ≥ |c2| = 1 = ∥T∥.
Hence T ⊥B A. This completes the proof.

For any two linear operators T,A on Rn, T ⊥B A may not imply A ⊥B T .
We next prove a theorem which characterizes those T for which A ⊥B T ⇒
T ⊥B A for all A on Rn.
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Theorem 2.3. Suppose T = (tij) is a linear operator on Rn. Then for any
linear operator A on Rn, T ⊥B A ⇒ A ⊥B T if and only if T attains norm
at only one extreme point, image of which is a left symmetric point of Rn and
images of other extreme points are zero.

Proof. Suppose T attains norm at only one extreme point and images of other
extreme points are zero. Without any loss of generality we can assume that
T attains norm only at ±e1. Let A be an operator such that T ⊥B A. Then
by Theorem 2.1 of Sain and Paul [8] Te1 ⊥B Ae1. As Te1 is a left symmetric
point, it follows that Ae1 ⊥B Te1. Also Aei ⊥B Tei = 0 for all i ∈ {2, 3, .., n}.
Clearly, A attains norm at an extreme point ej (say) i.e. ∥Aej∥ = ∥A∥. Thus
A attains norm at ej such that Aej ⊥B Tej and so we get A ⊥B T .

Conversely, let T ⊥B A ⇒ A ⊥B T for all A on Rn. Clearly, T attains
norm at an extreme point, say at ei0 .

Claim: Tei = 0 for all i ∈ {1, 2, ..., n} − {i0}.
Suppose Tej ̸= 0 for some j ̸= i0. Define a linear operator A on Rn as

Aej = Tej , Aei = 0, i ̸= j. It is easy to verify that A attains norm only at
±ej . Also T ⊥B A, as Tei0 ⊥B Aei0 and ∥Tei0∥ = ∥T∥. By Theorem 2.1 of [8]
we get A ̸⊥B T as Aej ̸⊥B Tej and MA = {±ej}. So Tei = 0 for all i ̸= i0.
Our next claim is that Tei0 is a left symmetric point. Suppose Tei0 is not a

left symmetric point, i.e. there exists w such that Tei0 ⊥B w, but w ̸⊥B Tei0 .
Define a linear operator A on Rn as Aei0 = w, Aei = 0, i ̸= i0. It is easy
to verify that A attains norm only at ±ei0 . Also T ⊥B A, as Tei0 ⊥B Aei0
and ∥Tei0∥ = ∥T∥. But A ̸⊥B T as Aei0 ̸⊥B Tei0 . Thus we get T ⊥B A, but
A ̸⊥B T . This contradiction completes the proof.

Remark 2.4. Any operator T on R2 satisfying the property as in the Theorem

2.3 is of the form

(
1 0
±1 0

)
or

(
0 1
0 ±1

)
or their scalar multiples.
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