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A NEW APPROACH TO TOTALLY UMBILICAL
NULL SUBMANIFOLDS

Fortuné Massamba12 and Samuel Ssekajja3

Abstract. In this paper, we study totally umbilical r-null subman-
ifolds, with r ≥ 1, of a semi-Riemannian manifold using new objects
called generalized Newton transformations. We prove that the results
presented here are umbrella of the well-known results for totally um-
bilical null hypersurfaces, totally umbilical half-null submanifolds and
generally, totally umbilical r-null submanifolds.
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1. Introduction

In [3] and [4], the authors initiated the study of null geometry of submani-
folds in semi-Riemannian manifolds. Null submanifolds are interesting objects
with numerous applications to mathematical physics and general relativity.
More precisely, in general relativity, they are known to represent various types
of black hole horizons (see for instance, [3] and [4] and many more references
therein). Due to this fact that many other researchers are actively exploring
them, for example see [5], [6], [7], [8], [9], [10] and many more. In [5], the au-
thors study totally umbilical null submanifolds of semi-Riemannian manifolds,
in which they presented interesting partial differential equations concerning
such submanifolds.

Null submanifolds are endowed with a number of shape operators, which
we have used in this paper to study generalized Newton transformations for
null submanifolds (see [2] and [1] for details on these transformations). Us-
ing these transformations, we give generalized versions of some results in, [3],
[4] and [5] for totally umbilical null hypersurfaces, totally umbilical half-null
submanifolds and totally umbilical r-null submanifolds. The rest of paper is or-
ganized as follows. In Section 2, we present basic notions on null submanifolds
needed in this paper. In Section 3, we use the concept of generalized Newton
transformations for null submanifolds and in Section 4 we give general results
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on totally umbilical null submanifolds and prove that they are generalizations
of many well-known results for null hypersurfaces, null-half submanifolds and
r-null submanifolds.

2. Preliminaries

Let (M, g) be a real (m + n)-dimensional semi-Riemannian manifold of
constant index ν such that m,n ≥ 1, 1 ≤ ν ≤ m + n − 1, and let (M, g) be
an m-dimensional submanifold of M . In case g is degenerate on the tangent
bundle TM of M , we say that M a null submanifold [3]. We denote the set of
smooth sections of a vector bundle Ξ by Γ(Ξ). For a degenerate metric tensor
g = g|TM , there exists locally a non-zero vector field E ∈ Γ(TM) such that
g(E,X) = 0, for any X ∈ Γ(TM). Then, for each tangent space TxM , x ∈ M ,
we have TxM

⊥ = {u ∈ TxM : g(u, v) = 0, ∀ v ∈ TxM}, which is a degenerate
n-dimensional subspace of TxM . The radical or null subspace of M is denoted
by RadTxM and is given by

RadTxM = {Ex ∈ TxM : g(Ex, X) = 0, ∀X ∈ TxM}.

Notice that RadTxM = TxM ∩TxM
⊥ and its dimension depends on x ∈ M . A

submanifold M of M is called r-null if the mapping RadTM : x −→ RadTxM,
defines a smooth distribution of rank r > 0, where RadTM is called the radical
(null) distribution on M . Let S(TM) be a screen distribution which is a semi-
Riemannian complementary distribution of RadTM in TM , and is given by

(2.1) TM = RadTM ⊥ S(TM).

Note that the distribution S(TM) is not unique and canonically isomorphic to
the factor vector bundle TM/RadTM [3]. Choose a screen transversal bun-
dle S(TM⊥), which is semi-Riemannian complementary to RadTM in TM⊥.
Since, for any local basis {Ei} of RadTM , there exists a local null frame {Ni}
of sections with values in the orthogonal complement of S(TM⊥) in S(TM)⊥

such that g(Ei, Nj) = δij , it follows that there exists a null transversal vector
bundle ltr(TM) locally spanned by {Ni} [3]. Let tr(TM) be complementary
(but not orthogonal) vector bundle to TM in TM . Then,

tr(TM) = ltr(TM) ⊥ S(TM⊥),(2.2)

TM = S(TM) ⊥ S(TM⊥) ⊥ {RadTM ⊕ ltr(TM)}
= TM ⊕ tr(TM).(2.3)

We say that a null submanifold M of M is (i) r-null if 1 ≤ r < min{m,n}, (ii)
co-isotropic if 1 ≤ r = n < m, S(TM⊥) = {0}, (iii) isotropic if 1 ≤ r = m < n,
S(TM) = {0}, (iv) totally null if r = n = m, S(TM) = S(TM⊥) = {0}. The
details on the above classes of submanifolds with examples are found in [3].
Consider a local quasi-orthonormal field of frames of M along M , on U as

{E1, · · · , Er, N1, · · · , Nr, Zr+1, · · · , Zm,W1+r, · · · ,Wn},
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where {Zr+1, · · · , Zm} and {W1+r, . . . ,Wn} are respectively orthogonal bases
of Γ(S(TM)|U ) and Γ(S(TM⊥)|U ) and that ϵa = g(Za, Za) and ϵα = g(Wα,Wα)
are the signatures of {Za} and {Wα}, respectively. The following range of in-
dices will be used. i, j, k ∈ {1, · · · , r}; α, β, µ ∈ {r + 1, · · · , n}; a, b, c ∈
{r + 1, · · · ,m}.

Let P be the projection morphism of TM onto S(TM). Then, the Gauss-
Weingartein equations [4] of an r-null submanifold M and S(TM) are given
by

∇XY = ∇XY +

r∑
i=1

hl
i(X,Y )Ni +

n∑
α=r+1

hs
α(X,Y )Wα,(2.4)

∇XNi = −ANi
X +

r∑
j=1

τij(X)Nj +

n∑
α=r+1

ρiα(X)Wα,(2.5)

∇XWα = −AWα
X +

r∑
i=1

φαi(X)Ni +

n∑
β=r+1

θαβ(X)Wβ ,(2.6)

∇XPY = ∇∗
XPY +

r∑
i=1

h∗
i (X,PY )Ei,(2.7)

∇XEi = −A∗
Ei
X −

r∑
j=1

τji(X)Ej , ∀ X,Y ∈ Γ(TM),(2.8)

where ∇ and ∇∗ are the induced connections on TM and S(TM), respectively,
hl
i and hs

α are symmetric bilinear forms known as local null and screen funda-
mental forms of TM , respectively. Also h∗

i are the second fundamental forms
of S(TM). ANi

, A∗
Ei

and AWα
are linear operators on TM while τij , ρiα, φαi

and θαβ are 1-forms on TM . It is easy to see from (2.4) that

(2.9) hl
i(X,Y ) = g(∇XY,Ei), ∀X,Y ∈ Γ(TM),

from which we deduce the independence of hl
is on the choice of S(TM). It is

easy to see that ∇∗ is a metric connection on S(TM) while ∇ is generally not
a metric connection and satisfies the relation

(2.10) (∇Xg)(Y, Z) =
r∑

i=1

{hl
i(X,Y )λi(Z) + hl

i(X,Z)λi(Y )},

for any X,Y ∈ Γ(TM) and 1-forms λi given by

(2.11) λi(X) = g(X,Ni), ∀X ∈ Γ(TM).

The above three local second fundamental forms are related to their shape
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operators by the following set of equations

g(A∗
Ei
X,Y ) = hl

i(X,Y ) +

r∑
j=1

hl
j(X,Ei)λj(Y ), ḡ(A∗

Ei
X,Nj) = 0,(2.12)

g(AWα
X,Y ) = ϵαh

s
α(X,Y ) +

r∑
i=1

φαi(X)λi(Y ),(2.13)

ḡ(AWα
X,Ni) = ϵαρiα(X), g(ANi

X,Y ) = h∗
i (X,PY ),(2.14)

for any X,Y ∈ Γ(TM). Let (M, g, S(TM), S(TM⊥)) be a m-dimensional r-
null submanifold of a (m + n)-dimensional semi-Riemannian manifold (M, g).
Let R and R denote the curvature tensors of ∇ and ∇, respectively. The
following identities are needed in this paper (see [3] or [4] for details)

R(X,Y,E, PU) = g((∇Y h
l)(X,PU)− (∇Xhl)(Y, PU), E)

+ g(hs(Y, PU), hs(X,E))− g(hs(X,PU), hs(Y,E)),(2.15)

R(X,Y,N, PU) = g((∇Y A)(N,X)− (∇XA)(N,Y ), PU)

+ g(hs(Y, PU), Ds(X,N))− g(hs(X,PU), Ds(Y,N)),(2.16)

R(X,Y,W,PU) = g((∇Y A)(W,X)− (∇XA)(W,Y ), PU)

+ g(h∗(Y, PU), Dl(X,W ))− g(h∗(X,PU), Dl(Y,W )),(2.17)

g(R(X,Y )PU,N) = g((∇XA)(N,Y )− (∇Y A)(N,X), PU)

+ g(hl(X,PU), ANY )− g(hl(Y, PU), ANX),(2.18)

g(R(X,Y )E,PU) = g((∇Y A
∗)(E,X)− (∇XA∗)(E, Y ), PU),(2.19)

for all X,Y, U ∈ Γ(TM). A semi-Riemannian manifold of constant curvature c
is called a semi-Riemannian space form [3, p. 41] and is denoted by (M(c), g).
Then, the curvature tensor R of M(c) is given by

(2.20) R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y }, ∀X,Y, Z ∈ Γ(TM).

A null submanifold (M, g, S(TM), S(TM⊥)), of a semi-Riemannian manifold
(M, g) is said to be totally umbilical in M [4] if there is a smooth transversal
vector field H ∈ Γ(tr(TM)), called the transversal curvature vector of M such
that

h(X,Y ) = Hg(X,Y ),(2.21)

for all X,Y ∈ Γ(TM). Moreover, it is easy to see that M is totally umbilical
in M if and only if on each coordinate neighborhood U there exist smooth
vector fields Hl ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)) and smooth functions
Hl

i ∈ F (ltr(TM)) and Hs
α ∈ F (S(TM⊥)) such that, for all X,Y ∈ Γ(TM),

hl(X,Y ) = Hlg(X,Y ), hs(X,Y ) = Hsg(X,Y ),

hl
i(X,Y ) = Hl

ig(X,Y ), hs
α(X,Y ) = Hs

αg(X,Y ).(2.22)
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3. Generalized Newton transformations

In this section, we use the notion of generalized Newton transformations
of a system of endomorphisms on a r-null submanifold of a semi-Riemannian
manifold (M, g) (see [2] and [1] for more details).

Let (M, g, S(TM), S(TM⊥)) be an r-null submanifold of (M, g). Notice
that the operators A∗

E1
, · · · , A∗

Er
are self-adjoint on S(TM), and hence diago-

nalizable on S(TM). Let Z+(r) denote the set of all sequences u = (u1, · · · , ur),
with ui ∈ Z+, where Z+ is the set of positive integers. Then the length of u
is denoted by |u| and given by |u| =

∑r
i=1 ui. Let us define an operator A∗ ∈

Endr(TM) by A∗ = (A∗
E1

, · · · , A∗
Er

), where Endr(TM) is the vector space
End(TM) × · · · × End(TM) (r-times). Furthermore, let t = (t1, · · · , tr) ∈ Rr

and set tu = tu1
1 · · · tur

r and tA∗ =
∑r

i=1 tiA
∗
Ei
. Then, the Newton polynomial of

A∗ is denoted by PA∗ and defined by PA∗ : Rr −→ R, PA∗(t) = det(I+ tA∗) =∑
|u|≤p σ

∗
ut

u, where the coefficients σ∗
u = σ∗

u(A∗) (the symmetric functions or

mean curvatures) depend only on A∗. We note that σ∗
(0,··· ,0) = 1. We suppose

further that σ∗
u = 0 for all |u| > p. Consider the functions ϱ♯ : Z+(r) −→

Z+(r) and ϱ♭ : Z+(r) −→ Z+(r), given by ϱ♯(s1, · · · , sr) = (s1, · · · si−1, si +
1, si+1, · · · , sr) and ϱ♭(s1, · · · , sr) = (s1, · · · si−1, si − 1, si+1, · · · , sr). We can
see that ϱ♯ increases the value of the i-th element by 1 and ϱ♭ decreases the
value of i-th element by 1. It is also clear that ϱ♯ is the inverse map to ϱ♭.

The generalized Newton transformation [2] of A∗ = (A∗
E1

, · · · , A∗
Er

) is a
system of endomorphisms T ∗

u = T ∗
u (A∗), u ∈ Z+(r), satisfying the following

condition. For every smooth curve γ 7→ A∗(γ) in Endr(M) such that A∗(0) =
A∗, we have d

dγσ
∗
u(γ)γ=0 =

∑
i tr(

d
dγA

∗
Ei
(γ)γ=0 ◦ T ∗

i♭(u)
). For a fixed system

a of endomorphisms A∗ = (A∗
E1

, · · · , A∗
Er

), the object T ∗
u is unique (see [2]

and [1]). However, it is important to note that T ∗
u depend on the choice of

chosen screen distribution S(TM). This is due to the fact that the object
A∗ = (A∗

E1
, · · · , A∗

Er
) is dependent on S(TM). In fact, let us consider two

quasi-orthonormal frames {Ei, Ni, Za,Wα} and {Ei, N
′
i , Z

′
a,W

′
α} induced on U

by {S(TM), S(TM⊥), F} and {S′(TM), S′(TM⊥), F ′}, respectively. In this
case, F and F ′ are the complementary vector bundles of RadTM in S(TM⊥)⊥

and S′(TM⊥)⊥, respectively. Setting Y = Ei in (5.2.20) of [4, p. 208]) and
using hl

i(Ei, X) = 0, we have

A∗
Ei
X = A

′∗
Ei
X +

r∑
j=1

{
n∑

α,β=r+1

εβh
′s
α (X,Ei)W

β
αQjβ}Ej

−
r∑

j=1

τji(X)Ej +

r∑
j=1

τ ′ji(X)Ej , ∀X ∈ Γ(TM),(3.1)

where W β
α and Qjβ are smooth functions on U . Notice from (3.1) that the

operators A∗
Ei

depend on the chosen screen distribution, S(TM), and so A∗

and T ∗
u .

Let T ∗ = (T ∗
u : u ∈ Z+(r)) be the generalized Newton transformation of

A∗. Then for every u ∈ Z+(r) of length greater or equal to p we have T ∗
u = 0
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(Cayley-Hamilton Theorem). Moreover, T ∗
u satisfy the following recurrence

relation

T ∗
0 = I, where 0 = (0, · · · , 0),

T ∗
u = σ∗

uI−
r∑

i=1

A∗
Ei

◦ T ∗
i♭(u)

, where |u| ≥ 1,(3.2)

where I denotes the identity on M . We also have [1]:

tr(T ∗
u ) = (m− r − |u|)σ∗

u,

r∑
i=1

tr(A∗
Ei

◦ T ∗
i♭(u)

) = |u|σ∗
u,(3.3)

and

r∑
i,j=1

tr(A∗
Ei

◦A∗
Ej

◦ T ∗
j♭i♭(u)

) = −|u|σ∗
u +

r∑
i=1

tr(A∗
Ei
)σ∗

i♭(u)
,(3.4)

where trace is taken with respect to S(TM). If r = 1, i.e., M is a null hyper-
surface or a half-null submanifold, then u = (u1, 0 · · · , 0) and thus |u| = u1,
from which σu = Su1

(the well-known symmetric polynomials of one shape
operator). Furthermore, A∗ = (A∗

E , 0, . . . , 0), where E is the only section span-
ning RadTM . Thus, T ∗

u in this case coincides with that already known for one
shape operator (see [1]).

3.1. The operator A = (AN1
, · · · , ANr

), where {N1, · · · , Nr} ∈ ltr(TM)

It is important to note that the screen local second fundamental forms h∗
i

are not generally symmetric. This makes the operators ANi
, for i ∈ {1, · · · , r}

non-symmetric (not self-adjoint on S(TM)) with respect to g. However, when
S(TM) is integrable then it is well-known, see Theorem 2.5 of [3, p. 161], that
h∗
i are symmetric and all the operators ANi become symmetric (or self-adjoint)

on S(TM). Moreover, each 1-form tr(τij) induced by S(TM) is closed, i.e.,
dtr(τij) = 0. Thus, each operator ANi

is diagonalizable on S(TM). For this
case, let us consider A = (AN1

, · · · , ANr
) ∈ Endr(TM). Then its correspond-

ing symmetric function σu = σu(A) and generalized Newton transformation Tu

satisfy the following recurrence relation

T0 = I, where 0 = (0, · · · , 0),

Tu = σuI−
r∑

i=1

ANi ◦ Ti♭(u), where |u| ≥ 1.(3.5)

The above objects also satisfy relations (3.3) and (3.4) in which {σ∗
u, T

∗
u} is

replaced with {σu, Tu}, where I denote the identity on M .

Example 3.1. Let us consider the Minkowski spacetime manifold (R4
1, g),

where g(x, y) = −x0y0 + x1y1 + x2y2 + x3y3, for any x, y ∈ R4. Let D be
an open set of R4 and consider a smooth function f : D −→ R4. Then
M = {(x0, · · · , x3) ∈ R4

1 : x0 = f(x1, · · · , x3)} is called a Monge hypersur-
face [3]. Consider a parameterization on M as x0 = f(v0, · · · , v3); xd+1 =
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vd, d ∈ {0, · · · , 3}. In this case, natural frame fields on M are given by
∂vd = f ′

xd+1∂x0 + ∂xd+1 , for all d ∈ {0, · · · , 3}. Then it follows that TM⊥

is spanned by E = ∂x0 +
∑3

i=1 f
′
xi∂xi . It is known [3] that M is a null

hypersurface if TM⊥ = RadTM , which means that E must be a null vec-
tor field. Hence, M is null Monge hypersurface if f satisfies the differential
equation:

∑3
i=1 f

′2
xi = 1. The corresponding null transversal vector N is

given by N = 1
2{−∂x0 +

∑3
i=1 f

′
xi∂xi}. Then, S(TM) = span{X,Y } where

X = f ′
x3∂x1 − f ′

x1∂x3 and Y = f ′
x3∂x2 − f ′

x2∂x3 , in which we have consid-
ered f ′

x3 ̸= 0 locally on M . By simple calculations we have g([X,Y ], N) = 0.
Hence, S(TM) is integrable. Now, using the fact that g([X,Y ], N) = 0, we
have g(Y,∇XN) − g(X,∇Y N) = 0. Hence, from this last equation we have
g(ANX,Y ) = g(X,ANY ), which shows that AN is self-adjoint on S(TM). The
closeness of the respective 1-form τ also follows easily.

Also, by simple calculations the eigenvalues of AN with respect to eigenvec-

tors E, X and Y are k0 = 0, k1 =
2f ′

x1f
′
x3f

′′
x1x3−(f ′

x1 )
2f

′′
x3x3−(f ′

x3 )
2f

′′
x1x1

2(1−(f ′
x2 )

2) and

k2 =
2f ′

x2f
′
x3f

′′
x2x3−(f ′

x2 )
2f

′′
x3x3−(f ′

x3 )
2f

′′
x2x2

2(1−(f ′
x1 )

2) , respectively. Hence, σ0 = 1 and

σu = σu(AN ) = σq(k0, k1, k2), for q = 1, 2, which is the usual symmet-
ric function of the single operator AN . Then, it follows that T0 = I and
Tq = σq(k0, k1, k2)I− (kq−1)Tq−1 ◦AN , for q = 1, 2.

3.2. The operator Â = (AWr+1 , · · · , AWn),
where {Wα}r+1≤α≤n ∈ S(TM⊥)

From (2.13) we see that the operators AWα , for α ∈ {r+1, · · · , n} are each
self-adjoint on S(TM), and thus diagonalizable on S(TM). Let us consider

an operator Â = (AWr+1
, · · · , AWn

) ∈ Endn−r(TM) and let σ̂u, for u ≥ 1, be
its corresponding symmetric function (generalized mean curvatures). Further-

more, let T̂u denote its generalized Newton transformation. Then, σ̂ and T̂u

satisfy the following recurrence relation

T̂0 = I, where 0 = (0, · · · , 0),

T̂u = σ̂uI−
n∑

α=r+1

AWα ◦ T̂α♭(u), where |u| ≥ 1,(3.6)

where I denotes the identity on M . It is easy to show that the above objects
also satisfy relations (3.3) and (3.4) in which {σ∗

u, T
∗
u} is replaced with {σ̂u, T̂u}

and all the sums taken within (r + 1) to n.

Let us consider a quasi-orthonormal basis {X1, · · · , Xm} adapted to TM .
Then, the divergence [3] of a (1, p)-tensor T is a (1, p−1)-tensor (div∇T) given
by

(div∇T)(ω1, · · · , ωp−1) =

m∑
e=1

(∇XeT)(Xe, ω1, · · · , ωp−1).(3.7)
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4. Main results

In this section, we give new generalized results on umbilical null submani-
folds in semi-Riemannian manifolds, which brings together well-known results
on null hypersurfaces, half-null submanifolds and in a more general sense, r-null
submanifolds given by Duggal-Bejancu [3], Duggal-Sahin [4] and Duggal-Jin [5].
The following technical lemma is fundamental to this paper.

Lemma 4.1. For all X ∈ Γ(TM), we have∑
j,a

g((∇Za
A∗

Ej
)T ∗

j♭(u)
Za, X) =

∑
j,a

g((∇Za
A∗

Ej
)X,T ∗

j♭(u)
Za)

−
r∑

i,j=1

tr(A∗
Ei

◦A∗
Ej

◦ Tj♭(u))λi(X).

Proof. Applying the definition of covariant derivative of a tensor we have

r∑
j=1

g((∇ZaA
∗
Ej

)T ∗
j♭(u)

Za, X) =

r∑
j=1

g(∇ZaA
∗
Ej

T ∗
j♭(u)

Za, X)

−
r∑

j=1

g(∇ZaT
∗
j♭(u)

Za, A
∗
Ej

X),(4.1)

for any X ∈ Γ(TM). Now, setting X = Za, Y = A∗
Ej

T ∗
j♭(u)

Za and Z = X in

(2.10), we have

r∑
j=1

g(∇ZaA
∗
Ej

T ∗
j♭(u)

Za, X) =

r∑
j=1

Za(g(A
∗
Ej

T ∗
j♭(u)

Za, X))

−
r∑

j=1

g(∇ZaX,A∗
Ej

T ∗
j♭(u)

Za)−
r∑

i,j=1

hl
i(Za, A

∗
Ej

T ∗
j♭(u)

Za)λi(X).(4.2)

Also, setting X = Za, Y = T ∗
j♭(u)

Za and Z = A∗
Ej

Za in (2.10) we derive

r∑
j=1

g(∇ZaT
∗
j♭(u)

Za, A
∗
Ej

X) =

r∑
j=1

Za(g(T
∗
j♭(u)

Za, A
∗
Ej

X))

−
r∑

j=1

g(∇ZaA
∗
Ej

X,T ∗
j♭(u)

Za).(4.3)

Substituting (4.2) and (4.3) in (4.1) we get

r∑
j=1

g((∇Za
A∗

Ej
)T ∗

j♭(u)
Za, X) =

r∑
j=1

g((∇ZaA
∗
Ej

)X,T ∗
j♭(u)

Za)

−
r∑

i,j=1

hl
i(Za, A

∗
Ej

T ∗
j♭(u)

Za)λi(X).(4.4)
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Using (2.12) we have hl
i(Za, A

∗
Ej

T ∗
j♭(u)

Za) = g(Za, A
∗
Ei
A∗

Ej
T ∗
j♭(u)

Za). Hence,

summing (4.4) over a ∈ {r + 1, · · · ,m} yields∑
j,a

g((∇Za
A∗

Ej
)T ∗

j♭(u)
Za, X) =

∑
j,a

g((∇Za
A∗

Ej
)X,T ∗

j♭(u)
Za)

−
r∑

i,j=1

tr(A∗
Ei

◦A∗
Ej

◦ Tj♭(u))λi(X),

for all X ∈ Γ(TM), which proves our assertion.

Proposition 4.2. Let (M, g, S(TM), S(TM⊥)) be an m-dimensional r-null
submanifold of an (m + n)-dimensional semi-Riemannian manifold (M, g).
Then,

g(div∇(T ∗
u ), X) = −

r∑
i=1

Ei(σ
∗
u)λi(X)−

r∑
i=1

g((∇Ei

r∑
j=1

A∗
Ej

◦ T ∗
j♭(u)

)Ei, X)

−
r∑

j=1

g(div∇
∗
(T ∗

j♭(u)
), A∗

Ej
X) +

r∑
i,j=1

tr(A∗
Ei

◦A∗
Ej

◦ Tj♭(u))λi(X)

+
∑
j,a

R(Za, X,Ej , T
∗
j♭(u)

Za)−
r∑

i,j=1

tr(A∗
Ei

◦ T ∗
j♭(u)

)τij(X)

+
∑
j,α

εαtr(AWα
◦ T ∗

j♭(u)
)φαj(X) +

∑
j,a

r∑
i=1

hl
i(X,T ∗

j♭(u)
Za)τij(Za)

−
∑
j,a

n∑
α=r+1

hs
α(X,T ∗

j♭(u)
Za)φαj(Za), ∀X ∈ Γ(TM).

Proof. Applying recurrence relation (3.2) and (3.7) we derive

g(div∇(T ∗
u ), X) = PX(σ∗

u)−
r∑

i=1

g((∇Ei

r∑
j=1

A∗
Ej

◦ T ∗
j♭(u)

)Ei, X)

−
r∑

j=1

g(div∇
∗
(T ∗

j♭(u)
), A∗

Ej
X)−

∑
j,a

g((∇Za
A∗

Ej
)T ∗

j♭(u)
Za, X).(4.5)

Applying Lemma 4.1 to (4.5) we get

g(div∇(T ∗
u ), X) = PX(σ∗

u)−
r∑

i=1

g((∇Ei

r∑
j=1

A∗
Ej

◦ T ∗
j♭(u)

)Ei, X)

−
r∑

j=1

g(div∇
∗
(T ∗

j♭(u)
), A∗

Ej
X) +

r∑
i,j=1

tr(A∗
Ei

◦A∗
Ej

◦ Tj♭(u))λi(X)

−
∑
j,a

g(T ∗
j♭(u)

Za, (∇Za
A∗

Ej
)X), ∀X ∈ Γ(TM).(4.6)
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From (2.4), (2.8) and (2.15) and taking X = Za, Y = X, PU = T ∗
j♭(u)

Za, we
get

g(T ∗
j♭(u)

Za, (∇Za
A∗

Ej
)X)

= −R(Za, X,Ej , T
∗
j♭(u)

Za) + g(T ∗
j♭(u)

Za, (∇XA∗
Ej

)Za)

+

r∑
i=1

hl
i(Za, T

∗
j♭(u)

Za)τij(X)−
r∑

i=1

hl
i(X,T ∗

j♭(u)
Za)τij(Za)

−
n∑

α=r+1

εαh
s
α(Za, T

∗
j♭(u)

Za)φαj(X) +

n∑
α=r+1

hs
α(X,T ∗

j♭(u)
Za)φαj(Za).(4.7)

Finally, putting (4.7) into (4.6) and using the fact that

r∑
j=1

tr(T ∗
j♭(u)

(∇XA∗
Ej

)) =

X(σ∗
u), we get the desired result, which completes the proof.

The following result follows immediately from Proposition 4.2.

Theorem 4.3. Let (M, g, S(TM), S(TM⊥)) be an m-dimensional totally um-
bilical r-null submanifold of an (m + n)-dimensional semi-Riemannian man-
ifold of constant curvature (M(c), g). Then, the generalized mean curvature
functions σ∗

u : u ≥ 1 of A∗ = (A∗
E1

, · · · , A∗
Er

) satisfy the following partial
differential equations

Ek(σ
∗
u)−

r∑
j=1

tr(A∗
Ek

◦A∗
Ej

◦ T ∗
j♭(u)

) +

r∑
i,j=1

tr(A∗
Ei

◦ T ∗
j♭(u)

)τij(Ek) = 0,

for all k ∈ {1, 2, · · · , n}.

Proof. When M is totally umbilical, then we have φαj(X) = φαj(Za) = 0,
hl
i(X,T ∗

j♭(u)
Za) = 0 and hs

α(X,T ∗
j♭(u)

Za) = 0 for any X ∈ Γ(RadTM). Setting

X = Ek in Proposition 4.2 and using (2.20), then div∇(T ∗
u ) belongs to TM⊥,

the result follows.

Theorem 4.4. Let (M, g, S(TM), S(TM⊥)) be an m-dimensional totally um-
bilical r-null submanifold of an (m + n)-dimensional semi-Riemannian man-
ifold of constant curvature (M(c), g). Then, the generalized mean curvature

functions σ̂∗
u : u ≥ 1 of Â = (AWr+1

, · · · , AWn
) satisfy the following partial

differential equations

Ej(σ̂u)−
∑
α

tr(A∗
Ej

◦AWα
◦ T̂α♭(u)) +

∑
α,β

tr(AWα
◦ T̂α♭(u))θαβ(Ej) = 0,

for all j ∈ {1, 2, · · · , n}.
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Proof. By considering (3.6), (2.17), (2.10) and (2.14) we have by the method
of Lemma 4.1 and Proposition 4.2 that

g(div∇(T̂u), X) = −
r∑

i=1

Ei(σ̂u)λi(X)−
r∑

i=1

g((∇Ei

n∑
α=r+1

AWα
◦ T̂α♭(u))Ei, X)

−
n∑

α=r+1

g(div∇
∗
(T̂α♭(u)), AWα

X) +
∑
i,α

tr(A∗
Ei

◦AWα
◦ T̂α♭(u))λi(X)

+
∑
α,a

R(Za, X,Wα, T̂α♭(u)Za)−
∑
α,β

tr(AWβ
◦ T̂α♭(u))θαβ(X)

+
∑
a

∑
α,β

g(AWβ
X, T̂α♭(u)Za)θαβ(Za)−

∑
α,a

∑
i

h∗
i (X, T̂α♭(u)Za)φαi(Za)

+
∑
i,α

tr(ANi
◦ T̂α♭(u))φαi(X),(4.8)

for any X ∈ Γ(TM).The result follows by taking X = Ej in (4.8) and using
the umbilicity of M .

In Theorem 5.2 of [3, p. 108] the authors showed that for a totally umbil-
ical null hypersurface of a (m + 2)-dimensional semi-Riemannian manifold of
constant curvature (M(c), g), the function ρ such that A∗

EPX = ρPX, where
X ∈ Γ(TM), satisfies the following differential equation E(ρ)−ρ2+ρτ(E) = 0.
The above differential equation also holds for a half null submanifold (see The-
orem 4.3.3 of [4, p. 170]). For the case of a totally umbilical null subman-
ifold, Duggal-Jin [5, p. 60] showed, in Theorem 4.2 therein, that the func-
tions Hl

i and Hs
α in (2.22) satisfy the differential equations Ej(H

l
i)−Hl

iH
l
j +∑r

k=1 H
l
kτki(Ej) = 0 and Ej(H

s
α)−Hs

αH
l
j +

∑n
β=r+1 H

s
βθβα(Ej) = 0. Hence,

we can say that Theorems 4.3 and 4.4 are generalizations of all the above
mentioned results.

Let (M, g, S(TM), S(TM⊥)) be an r-null submanifold of a semi-Riemannian
manifold (M, g), the screen distribution S(TM) is said to be totally umbil-
ical in M [3] if there is a smooth vector field K of RadTM on M , such
that h∗(X,PY ) = g(X,PY )K, for any X,Y ∈ Γ(TM). Moreover, S(TM)
is totally umbilical, if and only if, on any coordinate neighborhood U ⊂ M ,
there exist smooth functions Ki such that h∗

i (X,PY ) = Kig(X,PY ), for any
X,Y ∈ Γ(TM). It is also easy to see that for an umbilical S(TM) one gets
P (ANiX) = KiPX, h∗(E,PX) = 0, ∀X ∈ Γ(TM), where E ∈ Γ(RadTM).

Theorem 4.5. Let (M, g, S(TM), S(TM⊥)) be either an r-null or a co-isotro-
pic submanifold of a semi-Riemannian manifold (M, g) of constant curvature
c, with a totally umbilical screen distribution S(TM). If M is also totally um-
bilical, then the generalized mean curvatures σu; u ≥ 1 of A = (AN1 , · · · , ANr )
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on S(TM) are a solution of the following partial differential equations

Ek(σu)−
r∑

j=1

tr(A∗
Ek

◦ANj ◦ Tj♭(u))−
r∑

i,j=1

tr(ANi ◦ Tj♭(u))τij(Ek)

− c

r∑
j=1

tr(Tj♭(u)) = 0,

for all k ∈ {1, 2, · · · , n}.

Proof. By the method of Lemma 4.1 and Proposition 4.2 with recurrence (3.5)
and (2.16) we derive

g(div∇(Tu), X) = −
r∑

i=1

Ei(σu)λi(X)−
r∑

i=1

g((∇Ei

r∑
j=1

ANj ◦ Tj♭(u))Ei, X)

−
r∑

j=1

g(div∇
∗
(Tj♭(u)), ANjX) +

r∑
i,j=1

tr(A∗
Ei

◦ANj ◦ Tj♭(u))λi(X)

+
∑
j,a

R(Za, X,Nj , Tj♭(u)Za) +

r∑
i,j=1

tr(ANi ◦ Tj♭(u))τij(X)

+
∑
j,α

εαtr(AWα
◦ Tj♭(u))ραj(X)−

∑
j,a

r∑
i=1

h∗
i (X,Tj♭(u)Za)τij(Za)

−
∑
j,a

g(hs(X,Tj♭(u)Za), D
s(Za, N)), ∀X ∈ Γ(TM).

Now, replacing X in the above equation with Ek and using the facts M is of
constant sectional curvature, M and S(TM) are totally umbilical we get the
desired result. Hence the proof.

Corollary 4.6. Under the hypothesis of Theorem 4.5, ∇ on M is a metric
connection if, and only if, the mean curvature functions σu; u ≥ 1 are a
solution of the following partial differential equations

Ek(σu)−
r∑

i,j=1

tr(ANi ◦ Tj♭(u))τij(Ek)− c

r∑
j=1

tr(Tj♭(u)) = 0,

for all k ∈ {1, 2, · · · , n}.

Notice that Theorem 4.5 and Corollary 4.6 are generalizations of Theorem
4.4 and Corollary 2 of [5], respectively. Let x ∈ M and E be a null vector of
TxM . A plane Π of TxM is called a null plane directed by E if it contains E,
g(E,W ) = 0 for any W ∈ Π and there exists W0 ∈ Π such that g(W0,W0) ̸= 0.
Then, from [3, p. 95], we define the null sectional curvature of Π with respect
to E and ∇ as the real number

KE(Π) =
R(W,E,E,W )

g(W,W )
,(4.9)
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where W is an arbitrary non-null vector in Π. Similarly, we define the null
sectional curvature KE(Π) of the null plane Π of the tangent space TxM with
respect to E and ∇ as the real number

KE(Π) =
R(W,E,E,W )

g(W,W )
.(4.10)

Using the fact that both the null sectional curvatures in (4.9) and (4.10) are
independent of W ∈ Π, we derive from (2.15) and (2.19) that

KE(Πj) = Ej(σ
∗
u)−

r∑
j=1

tr(A∗2
Ej

◦ T ∗
j♭(u)

)

+

r∑
i,j=1

tr(A∗
Ei

◦ T ∗
j♭(u)

)τij(Ej) = KE(Πj).(4.11)

Therefore, we have the following theorem.

Theorem 4.7. Let (M, g, S(TM), S(TM⊥)) be either an r-null or a co-iso-
tropic submanifold of a semi-Riemannian manifold (M, g). Then, both the null
sectional curvature KE(Πj) and KE(Πj) vanish, if and only if, σ∗

u : u ≥ 1 of
A∗ = (A∗

E1
, · · · , A∗

Er
) is a solution of the partial differential equations

Ej(σ
∗
u)−

r∑
j=1

tr(A∗2
Ej

◦ T ∗
j♭(u)

) +

r∑
i,j=1

tr(A∗
Ei

◦ T ∗
j♭(u)

)τij(Ej) = 0.

Proof. The proof follows immediately from (4.11).

Notice that Theorem 4.7 generalizes Theorem 4.7 of [5].
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