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REGULAR SEMIGROUPS OF PARTIAL
TRANSFORMATIONS PRESERVING A FENCE N

Laddawan Lohapan1 and Jörg Koppitz23

Abstract. Semigroups of order-preserving transformations have been
extensively studied for finite chains. We study the monoid OPN of all
order-preserving partial transformations on the set N of natural numbers,
where the partial order is a fence (also called zigzag poset). The monoid
OPN is not regular. In this paper, we determine particular maximal
regular subsemigroups of OPN and show that OPN has infinitely many
maximal regular subsemigroups.
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1. Introduction

Semigroups of transformations on a set X preserving a partially order set
(X;≼) have long been considered in the literature, starting with the works by
Aı̆zenštat [1] and Popova [15], in 1962. In the case that (X;≼) is a linearly
ordered set, semigroups of order-preserving transformations have been the ob-
ject of study by several authors and several papers (e.g. [6, 7, 8, 9, 10, 11]).
In particular, the semigroup of all transformations preserving a linear order
is regular. Semigroups of order-preserving transformations on (X;≼), where
(X;≼) is any infinite partially ordered set, have not been extensively studied.
For example in [12], the authors investigated rank properties of endomorphisms
of infinite partially ordered sets. We consider semigroups of transformations
preserving a particular non-linear order on a countable infinite set, where the
partial order is a fence. Let us recall that a fence (also called a zigzag poset)
is a partially ordered set (X;≼), where the order on X is

a1 ≺ a2 ≻ a3 ≺ a4 ≻ a5 ≺ · · · ≻ a2m−1 ≺ a2m ≻ a2m+1 ≺ · · ·

or
a1 ≻ a2 ≺ a3 ≻ a4 ≺ a5 ≻ · · · ≺ a2m−1 ≻ a2m ≺ a2m+1 ≻ · · · ,

whenever X = {a1, a2, . . .} is finite or countable infinite. The definition of the
partial order ≼ is self-explanatory. Every element of X is either minimal or
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maximal. The number of order-preserving maps of fences and of crowns as well
as of maps between fences and crowns are calculated in [3, 5, 16]. Recently,
regular semigroups of transformations preserving a fence were characterized in
[2, 13].

Let N be the set of natural numbers and let ≤ be the natural order on N.
Throughout the paper, we consider the following binary relation ≼ on N :

n ≺ n+ 1 if n is odd;

n ≻ n+ 1 if n is even.

It is easy to verify that (N;≼) is a fence. Where there is no possibility of
confusion, we will write N instead of (N;≼). Let Σ be any subset of N. We say
that Σ is a fence if (Σ;≼ ∩ (Σ × Σ)) is a fence, or in other words, x ∈ Σ
implies either x+ 1 ∈ Σ or x+ k ̸∈ Σ for all k ∈ N. Note that x ⊥ y (x, y ∈ N)
means that x and y are comparable in the fence N, while x∥y means that x
and y are incomparable in the fence N. If Σ1 and Σ2 are subsets of N, we write
Σ1 ⊥ Σ2 (and Σ1∥Σ2, respectively) if x1 ⊥ x2 (and x1∥x2, respectively) for all
x1 ∈ Σ1 and all x2 ∈ Σ2.

In this paper, we study regular semigroups of partial transformations pre-
serving the fence N. Let Y ⊆ N. A mapping α : Y → N is called a partial trans-
formation on N with domain Y (in symbols: dom α = Y ). If Y = N, then α is
called a full transformation on N. We write transformations to the right of their
argument and compose from left to right. The range of a partial transformation
α is denoted by ran α = {y : there exists x ∈ dom α such that xα = y} and
the kernel of α is denoted by ker α = {(x, y) : x, y ∈ dom α and xα = yα}.
The rank of α is the size of its range, denoted by rank α :=| ran α | . For
Σ ⊆ N, the set Σα−1 := {x ∈ dom α : xα ∈ Σ} denotes the pre-image of Σ
under α. If Σ is a singleton set, say Σ = {x}, then we write xα−1 rather than
{x}α−1. We denote by α|Σ the restriction of α to Σ ∩ dom α and by idΣ the
identity mapping on Σ. A subset T of dom α is said to be a transversal of
ker α if the intersection of T and any class of the partition corresponding to
the equivalence relation ker α is a singleton set.

We say that a partial transformation α on N is order-preserving (or pre-
serving the fence) if x ≼ y implies xα ≼ yα, for all x, y ∈ dom α. Note that
ran α is a fence, whenever α is order-preserving and dom α is a fence [2]. Of
course, the empty transformation ∅ and the identity mapping idN on N are
order-preserving partial transformations on N. If α is order-preserving, then
α|Σ is also order-preserving for any set Σ ⊆ dom α. We denote by OPN the set
of all order-preserving partial transformations on N and remark that OPN is a
semigroup under composition. For a subset A of OPN, the least subsemigroup
of OPN containing A is denoted by ⟨A⟩.

A classical topic in the study of semigroups is the characterization of the
regularity. An element x of a semigroup is said to be regular if there exists y
in this semigroup such that xyx = x. A semigroup is called regular if all its
elements are regular. Groups are of course regular semigroup, but the class
of regular semigroups is vastly more extensive than the class of groups. In
[14], regular elements of some order-preserving transformation semigroups are
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investigated. A characterization of the maximal regular subsemigroups of ideals
of order-preserving or order-reversing transformations was given in [4]. Note
that the semigroup OPN of all partial transformations preserving the fence N
is not regular.

Already in 1972, B. Schein asked for maximal regular subsemigroups of
particular semigroups of binary relations. After that many authors studied
maximal regular subsemigroups of transformations preserving an order (e.g.
[4, 17, 18]). The purpose of this paper is to study (maximal) regular sub-
semigroups of OPN. A subsemigroup C of OPN is called a maximal regular
subsemigroup if C is regular and any subsemigroup of OPN having C as proper
subsemigroup is not regular. In the next section, we describe the regular el-
ements in OPN and the surjective transformations in OPN. In Section 3, we
determine two maximal regular subsemigroups of OPN whose union covers all
the regular transformations with rank ≤ 2. The main result of this paper is
given in Section 4. It seems almost impossible to determine all maximal regu-
lar subsemigroups of OPN but we classify a countable infinite set of maximal
regular subsemigroups of OPN.

2. The Regular Elements in OPN

This section is devoted the set Reg(OPN) of all regular elements in OPN.
First of all, we give a straightforward description of the elements in Reg(OPN).
For the sake of completeness, we give a proof. Since the proof uses only the
properties of a partially ordered set, the statement is true for any semigroup
of order-preserving partial transformations.

Proposition 2.1. Let α ∈ OPN \ {∅}. Then α is regular if and only if there
exists a subset Y of dom α such that α|Y is a bijection from Y to ran α and(
α|Y

)−1 ∈ OPN.

Proof. Let α be regular. Then there exists β ∈ OPN such that αβα = α. It is
clear that ran α ⊆ dom β and ran αβ ⊆ dom α. We show that Y := ran αβ
satisfies the required properties. First, we observe that α|ran αβ : ran αβ →
ran α is a bijection from ran αβ to ran α. It remains to show that (α|ran αβ)

−1 ∈
OPN. Let a, b ∈ ran α with a ≺ b. Since α|ran αβ is a bijection from ran αβ to
ran α, there exist a unique a1 ∈ ran αβ and a unique b1 ∈ ran αβ such that
a1α|ran αβ = a and b1α|ran αβ = b. Since a1, b1 ∈ ran αβ, there are a2, b2 ∈
ran α ⊆ dom β such that a2β = a1 and b2β = b1. Since a2, b2 ∈ ran α, there are
a3, b3 ∈ dom α such that a3α = a2 and b3α = b2. Thus, we obtain a = a3αβα
as well as b = b3αβα and so

a2 = a3α = a3αβα = a ≺ b = b3αβα = b3α = b2.

Since a2, b2 ∈ ran α ⊆ dom β and β ∈ OPN, we obtain a1 = a2β ≺ b2β = b1.
Hence,

a(α|ran αβ)
−1 = a1 ≺ b1 = b(α|ran αβ)

−1.
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Conversely, suppose that there exists a subset Y of dom α such that α|Y is

a bijection from Y to ran α and
(
α|Y

)−1 ∈ OPN. Then, we have α(α|Y )−1α =
αidran α = α, i.e. α is regular.

Note that the set Y in Proposition 2.1 is nothing but a transversal of ker α.
We prefer the setting in Proposition 2.1 since it is more practical for our proofs.
We will frequently use this proposition in our proofs without mentioning it.

It is clear that any regular subsemigroup of OPN is a closed set (under
composition) of regular elements in OPN but not conversely, i.e. a closed set
(under composition) of regular elements in OPN does not need to be a regular
subsemigroup of OPN. For example, let us consider the set

Sur := {α ∈ Reg(OPN) : α is surjective}.

Proposition 2.2. Sur is a semigroup which is not regular.

Proof. First, we show that Sur is closed under composition. Let γ, β ∈ Sur.
Then γβ is surjective. Since γ, β ∈ Reg(OPN), there exist subsets Y1 ⊆ dom γ
and Y2 ⊆ dom β such that γ|Y1 : Y1 → ran γ = N as well as β|Y2 : Y2 →
ran β = N are bijective and (γ|Y1

)−1, (β|Y2
)−1 ∈ OPN. It is easy to verify that

γβ|Y2γ−1∩Y1
: Y2γ

−1 ∩ Y1 → ran γβ

is bijective and (γβ|Y2γ−1∩Y1
)−1 ∈ OPN. This shows that γβ ∈ Reg(OPN)

and hence Sur is a semigroup. We now consider the partial transformation
α : N \ {1, 2} → N defined by xα = x− 2 for all x ∈ N \ {1, 2}. It is clear that
α ∈ Sur. Assume that there exists δ ∈ Sur with αδα = α. Then ran

(
δ|ran α

)
=

dom α, where N = ran α ⊆ dom δ and we conclude that dom δ = N and so
ran δ = Nδ = N \ {1, 2} (otherwise, δ is not a function). It contradicts with
the assumption that δ is surjective. Therefore, there is no δ ∈ Sur such that
αδα = α and so Sur is not regular.

Now, we give a kind of constructive description of the transformations in
Sur.

Proposition 2.3. Sur is the set of all partial transformations α on N such that
there are a natural number k and a transformation β ∈ OPN with the following
properties:

(i) dom β = {i ∈ N : 1 ≤ i ≤ 2(k − 1)} ∩ dom α;

(ii) (2(k − 1))β ∈ {1, 2}, whenever 2(k − 1) ∈ dom β;

(iii) α|dom β = β;

(iv) (2(k − 1) + i)α = i for all i ∈ N.

Proof. Clearly, a partial transformation α satisfying the given properties is
order-preserving and surjective. Let Y := {2(k − 1) + i : i ∈ N} ⊆ dom α.
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It is easy to verify that α|Y : Y → N is bijective and (α|Y )−1 ∈ OPN, i.e.
α ∈ Reg(OPN).

Conversely, let α ∈ Sur. Then α ∈ Reg(OPN) and ran α = N. Since α ∈
Reg(OPN), there exists a subset Y of dom α such that α|Y : Y → N is bijective
and (α|Y )−1 ∈ OPN. Since ran α = N is a fence and (α|Y )−1 ∈ OPN, we obtain
that Y is a fence. Let a be the least natural number in Y with respect to the
natural order of N. Assume that aα = x for some x ∈ N\{1}. Since x−1, x+1 ∈
ran α = N and α|Y : Y → N is bijective, there exist (x− 1)′, (x+ 1)′ ∈ Y such
that (x− 1)′α = x− 1 and (x+ 1)′α = x+ 1. Since (α|Y )−1 ∈ OPN and either
x−1 ≺ x ≻ x+1 or x−1 ≻ x ≺ x+1, we obtain that either (x−1)′ ≺ a ≻ (x+1)′

or (x− 1)′ ≻ a ≺ (x+1)′. Because (x− 1)′ ̸= (x+1)′, this provides that either
(x − 1)′ = a − 1 or (x + 1)′ = a − 1. It contradicts with a is the least natural
number in Y. So, we have aα = 1. Since 1 ≺ 2 in ran α = N, from α|Y : Y → N
is bijective and (α|Y )−1 ∈ OPN, we conclude that a = 1(α|Y )−1 ≺ 2(α|Y )−1.
This shows that a is odd. We choose k ∈ N such that 2(k − 1) + 1 = a. Using
the facts that aα = 1 and that the image of {a, . . . , a+ i} under α|Y is a fence
of size i + 1 for all i ∈ N, we obtain recursively that (a + i)α = i + 1 for all
i ∈ N. So, (2(k − 1) + i)α = i for all i ∈ N.

Let us put β := α|{1,...,a−1}∩dom α. Clearly, β ∈ OPN and dom β = {i ∈
N : 1 ≤ i ≤ 2(k − 1)} ∩ dom α. Suppose 2(k − 1) ∈ dom β. Since 2(k − 1) ≻
2(k−1)+1 = a in dom α, we have that (2(k−1))α ≽ (2(k−1)+1)α = aα = 1.
This implies that either (2(k − 1))α = 1 or (2(k − 1))α = 2.

Note that Inj := {α ∈ OPN : α is injective and α−1 ∈ OPN} = {α ∈
Reg(OPN) : α is injective} is an inverse subsemigroup of OPN. It is well known
that a partial transformation α on N is idempotent if α|ran α is the identity
mapping on ran α. Any idempotent element in OPN is regular in OPN. But
OPN is not orthodox, i.e. the idempotent elements in OPN do not form a
regular semigroup.

3. Regular Transformations with rank ≤ 2

In this section, we study regular subsemigroups of OPN containing regular
transformations with rank ≤ 2. The set

I1 := {α ∈ OPN : rank α ≤ 1}

is a regular subsemigroup of OPN since I1 is an ideal consisting entirely of
regular elements in OPN.

Remark 3.1. I1 is contained in all maximal regular subsemigroups of OPN.

Proof. Let C be any maximal regular subsemigroup of OPN. Since I1 and C are
regular subsemigroups of OPN and I1 is an ideal of OPN, we obtain that I1 ∪C
is a regular subsemigroup of OPN. Since C is a maximal regular subsemigroup
of OPN, we have that C = I1 ∪ C and so I1 ⊆ C.
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Not all order-preserving partial transformations with rank = 2 are regular,
for example the partial transformation α ∈ OPN with dom α = N \ {2} defined
by 1α = 1 and xα = 2 for all x ∈ N \ {1, 2} is not regular in OPN.

Proposition 3.2. Let α ∈ OPN with rank α = 2, say ran α = {a, b}. Then the
following statements are equivalent:

(i) α ∈ Reg(OPN);

(ii) a∥b if and only if aα−1∥bα−1.

Proof. Suppose that α ∈ Reg(OPN). Then there exists a subset Y of dom α
such that α|Y is a bijection from Y to ran α = {a, b} and (α|Y )−1 ∈ OPN. If
a∥b, then α ∈ OPN implies aα−1∥bα−1. If aα−1∥bα−1, then (α|Y )−1 ∈ OPN
implies a∥b.

Conversely, suppose that a∥b if and only if aα−1∥bα−1. If a∥b, then we let
Y be a transversal of ker α. If a ⊥ b, then there are a′ ∈ aα−1, b′ ∈ bα−1 such
that a′ ⊥ b′ and we set Y := {a′, b′}. It is easy to verify that in both cases α|Y
is a bijection from Y to ran α and (α|Y )−1 ∈ OPN, i.e. α ∈ Reg(OPN).

In the remainder of this section, we will frequently use the following well
known fact.

Remark 3.3. Let α, β ∈ OPN. Then rank αβ ≤ min{rank α, rank β}, where
min{rank α, rank β} means the least one of both cardinals rank α and rank β.

Let now K1 := {α ∈ Reg(OPN) : ran α is a fence and rank α = 2} ∪ I1.

Proposition 3.4. K1 is a regular subsemigroup of OPN.

Proof. First, we show that K1 is a subsemigroup of OPN. Let α, β ∈ K1. By
Remark 3.3, we have that rank αβ ≤ 2. If rank αβ ≤ 1, then αβ ∈ I1 ⊆ K1.
Suppose that rank αβ = 2. Then rank α = rank β = 2 and ran αβ = ran β
as well as dom αβ = dom α. Suppose that ran α = {a1, a2} with a1 ≺ a2.
There are x1, x2 ∈ dom α = dom αβ with x1α = a1 and x2α = a2 such that
x1 ≺ x2 by Proposition 3.2. Since α, β ∈ OPN, we obtain x1αβ ≺ x2αβ,
where ran αβ = ran β = {a1β, a2β} = {x1αβ, x2αβ}. This provides that αβ ∈
Reg(OPN) by Proposition 3.2 and so αβ ∈ K1.

Now, we show that K1 is a regular subsemigroup of OPN. Since I1 is a
regular semigroup and I1 ⊂ K1, we have only to consider the elements in
K1 \ I1. Let α ∈ K1 \ I1. Assume now that ran α = {b1, b2} with b1 ≺ b2.
Since α ∈ Reg(OPN), there are a1, a2 ∈ dom α with a1α = b1, a2α = b2,
and a1 ≺ a2 by Proposition 3.2. Let us consider the partial transformation
β : {b1, b2} → {a1, a2} defined by b1β = a1 and b2β = a2. It is easy to verify
that β ∈ K1 and αβα = αidran α = α. This shows that α is regular in K1.
Altogether, we have that K1 is a regular subsemigroup of OPN.

As an immediately consequence, we obtain the following:

Corollary 3.5. K1 ∪ {idN} is a regular subsemigroup of OPN.
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Proof. The monoid K1 ∪ {idN} corresponding to the regular semigroup K1 is
regular.

In order to prove that K1 ∪ {idN} is a maximal regular subsemigroup of
OPN, we need two technical lemmas. The first one states that the union of the
semigroups K1 and Sur is also a semigroup. The second one shows that idN is
the only bijection from N to N which preserves the fence N.

Lemma 3.6. K1 ∪ Sur is a subsemigroup of OPN.

Proof. Proposition 2.2 and Theorem 3.4 show that both Sur and K1 are closed.
Let α ∈ K1 and β ∈ Sur. By Remark 3.3, we have that rank αβ ≤ 2 and
rank βα ≤ 2. If rank αβ, rank βα ≤ 1, then αβ, βα ∈ I1 ⊆ K1.

Assume now that rank αβ = 2. Then rank α = 2 and we have that ran α ⊆
dom β and dom αβ = dom α. Since ran α ⊆ dom β and ran α is a fence,
we have that ran αβ = (ran α)β is a fence. It remains to show that αβ ∈
Reg(OPN). Suppose that ran α = {b1, b2} and ran αβ = {x1, x2} with b1 ≺ b2
and x1 ≺ x2. Then there exist a1 ∈ b1α

−1 and a2 ∈ b2α
−1 such that a1 ≺ a2

by Proposition 3.2. We conclude that a1αβ = x1 and a2αβ = x2, i.e. a1 ∈
x1(αβ)

−1 and a2 ∈ x2(αβ)
−1, since x1 ≺ x2, b1 ≺ b2, and ran αβ = {x1, x2}.

We obtain αβ ∈ Reg(OPN) by Proposition 3.2.

Next, we assume that rank βα = 2. Since ran β = N, we have that dom α ⊆
ran β and ran βα = ran α, say ran α = {x1, x2} with x1 ≺ x2. It remains
to show that βα ∈ Reg(OPN). Since α ∈ K1, there exist b1 ∈ x1α

−1 and
b2 ∈ x1α

−1 such that b1 ≺ b2 by Proposition 3.2. Because β ∈ Reg(OPN),
there exists a subset Y of dom β such that β|Y is a bijection from Y to
ran β = N and (β|Y )−1 ∈ OPN. Since b1 ≺ b2 in dom α ⊆ ran β, we ob-
tain b1(β|Y )−1 ≺ b2(β|Y )−1, where b1(β|Y )−1 ∈ x1(βα)

−1 ⊆ dom βα and
b2(β|Y )−1 ∈ x2(βα)

−1 ⊆ dom βα. Together with ran βα = {x1, x2} and
x1 ≺ x2, we conclude that βα ∈ Reg(OPN) by Proposition 3.2.

Lemma 3.7. Let α ∈ OPN be a bijection from N to N. Then α = idN.

Proof. Assume that α ̸= idN. Then there exists the least natural number n ∈ N
with respect to the natural order on N such that nα ̸= n, i.e. nα > n. If n ≥ 2,
then n − 1 ∈ dom α. Since n − 1 ⊥ n in dom α but (n − 1)α = n − 1∥nα, we
obtain α ̸∈ OPN, a contradiction. Suppose now that n = 1. Then aα > 1 and
there are a1, . . . , a1α−1 ∈ dom α with {a1α, . . . , (a1α−1)α} = {1, . . . , 1α − 1}.
Let b := max{a1, . . . , a1α−1} (the maximal element with respect to the natural
order on N). Because of bα < 1α < (b + 1)α, we get that bα∥(b + 1)α, a
contradiction with α ∈ OPN.

Now, we are able to prove that the regular subsemigroup K1∪{idN} of OPN
is a maximal one.

Theorem 3.8. K1 ∪ {idN} is a maximal regular subsemigroup of OPN.
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Proof. K1∪{idN} is a regular subsemigroup of OPN by Corollary 3.5. It remains
to show the maximality. Assume that there exists a regular semigroup S such
that

K1 ∪ {idN} ( S.

Then there is β ∈ S \ (K1 ∪ {idN}).
We claim that there exists an element in S\(K1∪{idN}) which is not in Sur.

If β ̸∈ Sur, then β is the required element. Assume now that β ∈ Sur. Since
S is regular and β ∈ S, there exists α ∈ S such that βαβ = β. Assume that
ran α = N. Since βαβ = β, we have N = ran β ⊆ dom α and so dom α = N.
Since ran α = N = dom α and βαβ = β, we obtain that α : N → N is a
bijection from N to N. Therefore, α = idN by Lemma 3.7. Then βαβ = β
implies that β2 = β. But β is idempotent means that β|N = idN, i.e. β = idN,
a contradiction. Thus, ran α ̸= N and so α ̸∈ Sur. Since βαβ = β, we obtain
rank α > 2 by Remark 3.3, i.e. α ̸∈ K1. Consequently, we have shown that
α ∈ S \ (K1 ∪ {idN}) and α ̸∈ Sur. Then α is the required element and so we
have the claim.

So, there is γ ∈ S \ (K1 ∪ {idN}) with γ ̸∈ Sur. If ran γ = N \ {1, 2, . . . , i}
for some i ∈ N, then we put b1 := i + 1, b2 := i + 3, and b3 := i. If ran γ =
{i, i+ 1, i+ 2, . . . , j} with 2 ≤ i+ 1 < j ∈ N, then we put b1 := j, b2 := j − 2,
and b3 := j + 1. If rank γ = 2 and ran γ is not a fence, say ran γ = {c, d},
then we put b1 := c, b2 := d, and b3 := c + 1. If ran γ is not a fence with
rank γ ≥ 3, then there exist c, d ∈ ran γ with c < d and c+ 1 ̸∈ ran γ. In this
case we put b1 := c, b2 := d, and b3 := c + 1. It is easy to verify that we have
covered all the possibilities for ran γ. Now, we define a partial transformation
α : {b1, b2, b3} → {b1, b3} by

xα :=

{
b1 if x = b1

b3 if x = b2, b3.

It is clear that α ∈ K1. Then γα ∈ S. Now, we have ran γα = {b1, b3}. Since
b1||b2 in ran γ, we obtain b1γ

−1∥b2γ−1. Since b1(γα)
−1 = b1α

−1γ−1 = b1γ
−1

and b3(γα)
−1 = b3α

−1γ−1 = {b2, b3}γ−1 = b2γ
−1, we get b1(γα)

−1∥b3(γα)−1.
By Proposition 3.2, we obtain γα ̸∈ Reg(OPN). It contradicts that S is regular.

Altogether, we obtain that K1 ∪ {idN} is a maximal regular subsemigroup
of OPN.

Let K2 := {α ∈ Reg(OPN) : a ⊥ b ⇒ aα−1 ⊥ bα−1for all a ̸= b ∈ ran α}.

It is easy to verify that any α ∈ Reg(OPN) with rank α = 2 such that ran α
is not a fence is contained in K2. Moreover, we can observe that x1 ≺ x2 for
all x1 ∈ a1α

−1 and all x2 ∈ a2α
−1, whenever α ∈ K2 and a1, a2 ∈ ran α with

a1 ≺ a2. We will show that K2 is a maximal regular subsemigroup of OPN.
Since we will need it in the proof of the next theorem, let us note that K2

contains both the inverse semigroups Inj and I1.
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Theorem 3.9. K2 is a maximal regular subsemigroup of OPN.

Proof. First, we show that K2 is a subsemigroup of OPN. Let α, β ∈ K2. Since
α ∈ Reg(OPN), there exists a subset Y of dom α such that α|Y is a bijection
from Y to ran α and (α|Y )−1 ∈ OPN. Since β ∈ K2, it is easy to verify that
β|ran α ∈ K2. Since β|ran α ∈ Reg(OPN), there exists Z ⊂ domβ|ran α such
that β|ran α is a bijection from Z to ranβ|ran α = ran αβ. Let

Y ′ := Z(α|Y )−1.

It is easy to check that αβ|Y ′ is a bijection from Y ′ to ran αβ. Let a1, a2 ∈
ran (αβ|Y ′) with a1 ≺ a2. Then there are x1, x2 ∈ Y ′ with x1αβ = a1 and
x2αβ = a2 and thus x1α ∈ a1β

−1 and x2α ∈ a2β
−1. This provides x1α ≺ x2α

and so x1 ≺ x2 since β ∈ K2 and α ∈ K2, respectively. Consequently,
(αβ|Y ′)−1 ∈ OPN, i.e. αβ ∈ Reg(OPN). Now, we show that αβ ∈ K2. Let
b1, b2 ∈ ran αβ with b1 ⊥ b2. Assume that there are a1 ∈ b1(αβ)

−1 and
a2 ∈ b2(αβ)

−1 such that a1∥a2. This implies a1α∥a2α since α ∈ K2, where
a1α, a2α ∈ dom β. Thus, β ∈ K2 implies a1αβ∥a2αβ. This means b1∥b2, a
contradiction. Hence, b1(αβ)

−1 ⊥ b2(αβ)
−1. This shows αβ ∈ K2.

Next, we show that K2 is a regular subsemigroup of OPN. Let α ∈ K2

and let Y be a transversal of ker α. Then (α|Y )−1 is a bijection from ran α to
Y with (α|Y )−1 ∈ OPN, which is an immediate consequence of the fact that
α ∈ K2. On the other hand, α ∈ OPN implies ((α|Y )−1)−1 = α|Y ∈ OPN. Then
(α|Y )−1 ∈ Inj ⊆ K2, where α(α|Y )−1α = αidran α = α.

Finally, we show that K2 is a maximal regular subsemigroup of OPN. As-
sume that there is a regular semigroup S such that K2 ( S. Then there exists
β ∈ S \ K2. Since β ̸∈ K2, there are a, b ∈ ran β with a ⊥ b such that there
are x ∈ aβ−1 and y ∈ bβ−1 with x∥y. Let α be the identity mapping on {x, y}.
It is clear that α ∈ K2 and so αβ ∈ S. Now, we have that dom αβ = {x, y}
and ran αβ = {a, b}. Thus, a ⊥ b and x∥y implies αβ ̸∈ Reg(OPN) by Propo-
sition 3.2. It contradicts that S is a regular semigroup. Consequently, K2 is a
maximal regular subsemigroup of OPN.

We finish this section with the remark that the union of both maximal regu-
lar subsemigroups K1∪{idN} and K2 covers all regular partial transformations
with rank ≤ 2. In the next section, we will show that there are countably
infinitely many maximal regular subsemigroups of OPN.

4. Maximal Regular Subsemigroups

It seems almost impossible to classify all (maximal) regular subsemigroups
of OPN. But we are able to determine countably infinitely many maximal
regular subsemigroups of OPN.

Definition 4.1. Let a ∈ N \ {1}. Then let C∗
a be the set of all α ∈ Reg(OPN)

with

(i) a ̸∈ ran α or ran α ⊆ {a− 1, a, a+ 1};
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(ii) a ̸∈ dom α or | aαα−1 |≥ 2 or ran α = ran
(
α|{a−1,a,a+1}

)
;

(iii) α|dom α\{a} ∈ K2.

Corollary 4.2. Let a, b ∈ N \ {1} with a ̸= b. Then C∗
a ̸= C∗

b .

Proof. Let a, b ∈ N\{1} with a ̸= b. Without loss of generality, we can suppose
that a = b+ i for some i ∈ N. Let α be the identity mapping on {a, a+2}. It is
clear that α ∈ C∗

b . Since a ∈ dom α and ran α = {a, a+ 2} ̸⊆ {a− 1, a, a+ 1},
we conclude that α ̸∈ C∗

a and so C∗
a ̸= C∗

b .

We show now that Ca := C∗
a ∪ {idN} is a maximal regular subsemigroup of

OPN. First, we observe that any α ∈ Ca with a ̸∈ dom α belongs to K2. But
also the remaining elements in C∗

a are related to the semigroup K2.

Lemma 4.3. Let a ∈ N \ {1}. If α ∈ C∗
a \ {∅}, then there exists a subset Y of

dom α such that α|Y is a bijection from Y to ran α with

(a) α|Y ∈ K2 :

(b) a ̸∈ Y if a ̸∈ dom α or | aαα−1 |≥ 2 :

(c) Y ⊆ {a− 1, a, a+1} if ran α = ran (α|{a−1,a,a+1}) and | aαα−1 |= 1.

Proof. Let α ∈ C∗
a \ {∅}. If a ̸∈ dom α or | aαα−1 |≥ 2, then let Y be

a transversal of ker α with a ̸∈ Y. Since α|dom α\{a} ∈ K2, we obtain that

α|Y ∈ K2. Assume now that ran α = ran
(
α|{a−1,a,a+1}

)
and | aαα−1 |= 1.

Let Y ⊆ {a− 1, a, a+ 1} be a transversal of ker α. Then | aαα−1 |= 1 implies
a ∈ Y and so Y is a fence. Hence, α|Y ∈ K2 is clear.

In the next step, we verify that Ca is a semigroup which is regular.

Lemma 4.4. Let a ∈ N \ {1}. Then Ca is a regular subsemigroup of OPN.

Proof. First, we show that Ca is a subsemigroup of OPN. Let α, β ∈ Ca. If
αβ = ∅, then αβ ∈ Ca. Moreover, α = idN or β = idN gives immediately αβ ∈
Ca. Assume now that α, β ̸= idN and αβ ̸= ∅. By Lemma 4.3, there are sets
X ⊆ dom α and Y ⊆ dom β such that α|X : X → ran α and β|Y : Y → ran β
are bijective and α|X , β|Y ∈ K2. Let

X ′ := (ran α ∩ Y )α−1 ∩X ⊆ dom αβ.

It is clear that αβ|X′ : X ′ → ran αβ is bijective and
(
αβ|X′

)−1 ∈ OPN, i.e.
αβ ∈ Reg(OPN). It remains to show that αβ satisfies the three properties of
C∗

a .
(i) Since a ̸∈ ran β or ran β ⊆ {a − 1, a, a + 1}, we obtain that a ̸∈ ran αβ or
ran αβ ⊆ ran β ⊆ {a− 1, a, a+ 1}.
(ii) If a ̸∈ dom α or | aαα−1 |≥ 2, then a ̸∈ dom αβ or | a(αβ)(αβ)−1 |≥ 2.
Suppose now

ran α = ran
(
α|{a−1,a,a+1}

)
.
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This implies
(ran α)β = (ran α|{a−1,a,a+1})β,

where
(ran α)β = ran αβ

and

(ran α|{a−1,a,a+1})β = ran (α|{a−1,a,a+1}β) = ran (αβ|{a−1,a,a+1}).

Altogether, we obtain that

ran αβ = ran
(
αβ|{a−1,a,a+1}

)
.

(iii) Let b1, b2 ∈ ran
(
αβ|dom αβ\{a}

)
be such that b1 ̸= b2 and b1 ⊥ b2. Assume

that there are a1 ∈ b1
(
αβ|dom αβ\{a}

)−1
and a2 ∈ b2

(
αβ|dom αβ\{a}

)−1
with

a1∥a2. Since a1∥a2 in dom α \ {a} and α|dom α\{a} ∈ K2, we have a1α∥a2α.
If a ̸∈ ran α, then a1α∥a2α in dom β \ {a}. Assume now that ran α ⊆ {a −
1, a, a + 1}. If a1α = a or a2α = a, then a1α ⊥ a2α, a contradiction. Hence,
a1α, a2α ̸= a and a1α∥a2α in dom β \ {a}. Since β|dom β\{a} ∈ K2, we obtain
a1αβ∥a2αβ. This means that b1∥b2, a contradiction. Thus,

b1
(
αβ|dom αβ\{a}

)−1 ⊥ b2
(
αβ|dom αβ\{a}

)−1
.

Altogether, we have shown that αβ|dom αβ\{a} ∈ K2.
Next, we check that Ca is a regular subsemigroup of OPN. Let α ∈ Ca. If

α ∈ {∅, idN}, then α is regular in Ca. Assume now that α ∈ Ca \ {∅, idN}.
By Lemma 4.3, there exists a subset Y of dom α such that α|Y : Y → ran α
is bijective and α|Y ∈ K2 satisfying the properties (a), (b), and (c). Let
β := (α|Y )−1. It is clear that αβα = αidran α = α. We still have to show that
β ∈ C∗

a .
(i) If a ̸∈ dom α or | aαα−1 |≥ 2, then a ̸∈ Y = ran β by (b). If ran α =
ran

(
α|{a−1,a,a+1}

)
and | aαα−1 |= 1, then we obtain that ran β = Y ⊆

{a− 1, a, a+ 1} by (c).
(ii) If a ̸∈ ran α, then a ̸∈ ran α = dom β. If ran α ⊆ {a − 1, a, a + 1}, then
dom β = ran α ⊆ {a − 1, a, a + 1} and so β = β|{a−1,a,a+1}, i.e. ran β =
ran (β|{a−1,a,a+1}).
(iii) Since β−1 = ((α|Y )−1)−1 = α|Y ∈ K2 ⊆ OPN is bijective, we conclude
that β ∈ Inj ⊆ K2. Hence, β|dom β\{a} ∈ K2.

Now we show that Ca is a maximal regular subsemigroup of OPN. In order
to prove it we need three technical lemmas.

Lemma 4.5. Let α ∈ Sur. If there exists x ∈ N such that xα = x and |
xα−1 |= 1, then α = idN.

Proof. By Proposition 2.3, there is k ∈ N such that (2(k − 1) + i)α = i for all
i ∈ N. Since (2(k−1)+x)α = x and xα−1 = {x}, we obtain that 2(k−1)+x = x
and so k = 1. Therefore, (2(k− 1)+ i)α = iα = i for all i ∈ N. This shows that
α = idN.
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Lemma 4.6. Let a ∈ N \ {1}, let C be a regular subsemigroup of OPN with
Ca ⊆ C and let α ∈ Reg(OPN). If a ∈ ran α and if there is b ∈ ran α with a∥b
and b+ 1 ̸∈ ran α or b− 1 ∈ N \ ran α, then α ̸∈ C.

Proof. Let a, b ∈ ran α with a∥b such that b+ 1 ̸∈ ran α or b− 1 ∈ N \ ran α.
Assume that α ∈ C. If b+ 1 ̸∈ ran α, then we put d := b+ 1. If b+ 1 ∈ ran α,
then b−1 ∈ N\ran α and we put d := b−1. We define a partial transformation
β : {a, d, b} → {d, b} by

zβ :=

{
d if z = a, d

b if z = b.

It is clear that β ∈ Ca and so αβ ∈ C. Now, we have that dom αβ = aα−1 ∪
bα−1, ran αβ = {d, b}, and d ⊥ b. Since a∥b in ran α, we get x∥y for all x ∈
aα−1 = d(αβ)−1 and for all y ∈ bα−1 = b(αβ)−1. By Proposition 3.2, we obtain
that αβ ̸∈ Reg(OPN) and so αβ ̸∈ C, a contradiction. Hence, α ̸∈ C.

Lemma 4.7. Let a ∈ N \ {1, 2, 3} and let C be a regular subsemigroup of OPN
with Ca ⊆ C. If α ∈ C \Ca, then | aαα−1 |≠ 1 or ran α = ran

(
α|{a−1,a,a+1}

)
.

Proof. Let α ∈ C\Ca.Assume that | aαα−1 |= 1 and ran α ̸= ran
(
α|{a−1,a,a+1}

)
.

Then there exists b ∈ ran α with a − 1, a, a + 1 ̸∈ bα−1 and so aα∥b since
α ∈ Reg(OPN). We will consider the both cases aα = a and aα ̸= a.
Case 1 : aα = a. Assume that ran α = N. Then α ∈ Sur with aα = a and
| aα−1 |= 1. Hence, we obtain α = idN ∈ Ca by Lemma 4.5, a contradiction.
Thus, ran α ̸= N. If b+1 ̸∈ ran α or b−1 ∈ N\ ran α, then we obtain α ̸∈ C by
Lemma 4.6, a contradiction. Suppose that b+ 1 ∈ ran α and either b− 1 ̸∈ N
or b − 1 ∈ ran α. Since ran α ̸= N, there exists c ∈ N \ ran α such that c∥b.
Then we define a partial transformation γ : {a, b, c} → {b, c} by

yγ :=

{
c if y = a, c

b if y = b.

It is clear that γ ∈ Ca and so αγ ∈ C. Now, we have that dom αγ = bα−1∪{a}
and ran αγ = {c, b}, where aαγ = c and zαγ = b for all z ∈ bα−1. Since
αγ ∈ C and C is a regular subsemigroup of OPN, there exists β ∈ C such that
(αγ)β(αγ) = αγ. Then cβ = a and bβ = x for some x ∈ bα−1. Note that c ̸= a
(since a ∈ ran α and c ̸∈ ran α), b ̸= a (since aα = a and aα∥b), and a∥x (since
x ∈ bα−1 and a− 1, a, a+ 1 ̸∈ bα−1). Let δ be the identity mapping on {b, c}.
It is clear that δ ∈ Ca and so δβ ∈ C. Now, we have ran δβ = {x, a} and x∥a.
We obtain δβ ̸∈ C by Lemma 4.6, a contradiction.
Case 2 : aα ̸= a. Since α ∈ C ⊆ Reg(OPN), there exists β ∈ C such that
αβα = α. Then (aα)β = a and bβ = x for some x ∈ bα−1. Note that a∥x (since
x ∈ bα−1 and a−1, a, a+1 ̸∈ bα−1). If x+1 ̸∈ ran β or x−1 ∈ N\ran β, then we
obtain β ̸∈ C by Lemma 4.6, a contradiction. Suppose that x+ 1 ∈ ran β and
either x−1 ̸∈ N or x−1 ∈ ran β. If a ̸= b, then we let γ be the identity mapping
on {aα, b}. It is clear that γ ∈ Ca and so γβ ∈ C. Now, we have ran γβ = {a, x}
as well as a∥x and obtain γβ ̸∈ C by Lemma 4.6, a contradiction. Suppose
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now that a = b. If x− 1 ̸∈ N, then x = 1. Since x+ 1 = 2 ∈ ran β and aβ = 1,
there exists y ∈ 2β−1 \ {a}. In this case, we put c := y and d := 2, where a∥d
since a ≥ 4. If x − 1 ∈ ran α, then there exists l ∈ {x − 1, x + 1} such that
a∥l. Since bβ = x and b = a, there exists y′ ∈ lβ−1 such that y′ ̸= a. In this
case, we put c := y′ and d := l. Note that a∥d and aα∥c (since aα ∈ aβ−1 and
c ∈ dβ−1). Let δ be the identity mapping on {aα, c}. It is clear that δ ∈ Ca

and so δβ ∈ C. Now, we have ran δβ = {a, d} with a∥d and obtain δβ ̸∈ C by
Lemma 4.6, a contradiction.

Now, we are able to prove the main result of this paper.

Theorem 4.8. Let a ∈ N\{1, 2, 3}. Then Ca is a maximal regular subsemigroup
of OPN.

Proof. Ca is a regular subsemigroup of OPN by Lemma 4.4. It remains to show
that Ca is maximal. Let C be a regular subsemigroup of OPN with Ca ⊆ C.
Assume that Ca is a proper subsemigroup of C, i.e. C \ Ca ̸= ∅. Then there
exists α ∈ C \ Ca.

By Lemma 4.7, we obtain that | aαα−1 |≠ 1 (i.e. a ̸∈ dom α or | aαα−1 |≥
2) or ran α = ran

(
α|{a−1,a,a+1}

)
.

Next, we show that a ̸∈ ran α or ran α ⊆ {a− 1, a, a+1}. Assume that a ∈
ran α and ran α ̸⊆ {a−1, a, a+1}. Then there exists b ∈ ran α\{a−1, a, a+1}
and so a∥b. Assume that | aαα−1 |= 1. Then ran α = ran

(
α|{a−1,a,a+1}

)
.

Without loss of generality, we suppose that a is odd. Since | aαα−1 |= 1 and
a∥b in ran α, there exists c ∈ ran α\{a, b} such that {a−1, a, a+1}α = {a, b, c}.
Since {a−1, a, a+1} is a fence and a∥b in ran α, we can conclude that aα = c.
If (a−1)α = a, then (a−1) ≻ a implies a = (a−1)α ≻ aα = c, a contradiction
with a is odd. If (a + 1)α = a, then we obtain a contradiction by the same
arguments. Thus, | aαα−1 |̸= 1 and so there exist x ∈ aα−1 and y ∈ bα−1 such
that x ̸= a and y ̸= a. Let δ be the identity mapping on {x, y}. It is clear that
δ ∈ Ca and so δα ∈ C. Note that ran δα = {a, b} and a∥b. We obtain δα ̸∈ C
by Lemma 4.6, a contradiction. Hence, a ̸∈ ran α or ran α ⊆ {a− 1, a, a+ 1}.

Up to now, we have shown that α ∈ C ⊆ Reg(OPN) satisfies the conditions
(i) and (ii) in Definition 4.1. Since α ̸∈ Ca, we conclude that α|dom α\{a} ̸∈
K2. Then there are x1, x2 ∈ ran α|dom α\{a} with x1 ⊥ x2 as well as a1 ∈
x1(α|dom α\{a})

−1 and a2 ∈ x2(α|dom α\{a})
−1 such that a1∥a2. Let γ be the

identity mapping on {a1, a2}. It is clear that γ ∈ Ca and so γα ∈ C. Now,
we have that dom γα = {a1, a2} and ran γα = {x1, x2}. Since x1 ⊥ x2 and
a1∥a2, we obtain γα ̸∈ Reg(OPN) by Proposition 3.2. Therefore, γα ̸∈ C, a
contradiction.

Consequently, we obtain C \Ca = ∅ and thus C = Ca, i.e. Ca is a maximal
regular subsemigroup of OPN.

After all together with Corollary 4.2, we obtain immediately:

Corollary 4.9. There are countably infinitely many maximal regular subsemi-
groups of OPN.
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Proof. By Theorem 4.8 and Corollary 4.2, we have that {Ca : a ∈ N \ {1, 2, 3}}
is a countably infinite set of maximal regular subsemigroups of OPN.

We finish this section with a remark about the cardinalities of any semigroup
Ca.

Proposition 4.10. Let a ∈ N \ {1}. Then | Ca |> ℵ0.

Proof. Let A := {a + 2n : n ∈ N}, B := {a + 1, a + 3}, and let BA be the
set of all mappings from A to B. Further, let α ∈ BA. Clearly, α is a partial
transformation on N. If rank α = 1, then α ∈ Ca by Remark 3.1. Suppose now
that ran α = {a+1, a+3}. Since a+2n∥a+2m for all n,m ∈ N with n ̸= m, we
get immediately that α ∈ OPN. Moreover, a+ 1∥a+ 3 provides α ∈ Reg(OPN)
by Proposition 3.2. From ran α = {a + 1, a + 3} with a + 1∥a + 3, we obtain
α|dom α\{a} ∈ K2. Together with a ̸∈ dom α and a ̸∈ ran α, we conclude that

α ∈ Ca. Thus, B
A ⊆ Ca, where | Ca |≥| BA |=| B ||A|= 2ℵ0 > ℵ0.

Proposition 4.10 shows us that Ca is an uncountably infinite set for all
a ∈ N \ {1}.
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