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STRONG PROXIMINALITY IN METRIC SPACES

Sahil Gupta12 and T.D. Narang3

Abstract. In this paper, we extend the notions of strong proximinality
and strong Chebyshevity available in Banach spaces to metric spaces and
prove that an approximatively compact subset W of a metric space X
is strongly proximinal. Moreover, the converse holds if the set of best
approximants in W to each point of the space X is compact. It is proved
that strongly Chebyshev sets are precisely the sets which are strongly
proximinal and Chebyshev. Further, by extending the notion of local
uniform convexity from Banach spaces to metric spaces, it is proved that
a proximinal convex subset of a locally uniformly convex metric space is
approximatively compact. As a consequence, it is observed that closed
balls in a locally uniformly convex metric space are strongly Chebyshev.
The results proved in the paper generalize and extend several known re-
sults on the subject.
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1. Introduction

Let W be a non-empty closed subset of a metric space (X, d) and x ∈ X.
An element w0 ∈ W is said to be a best approximation to x from W if

d(x,w0) = inf
w∈W

d(x,w) ≡ d(x,W ).

The set of all best approximants to x from W is denoted by PW (x), i.e.,
PW (x) = {w0 ∈ W : d(x,w0) = d(x,W )}. The set W is called proximinal if
PW (x) ̸= ∅ for every x ∈ X. If for each x ∈ X, PW (x) is a singleton then the
set W is called Chebyshev.

A proximinal subset W of a metric space (X, d) is said to be strongly
proximinal at x ∈ X if for any minimizing sequence {yn} ⊆ W for x, i.e.,
limn→∞ d(x, yn) = d(x,W ), there is a subsequence {ynk

} and a sequence
{zk} ⊆ PW (x) such that d(ynk

, zk) → 0. Equivalently, if for every ε > 0
there exists a δ > 0 such that for each y ∈ PW (x, δ), we can find y′ ∈ PW (x)
satisfying d(y, y′) < ε, where PW (x, δ) = {w0 ∈ W : d(x,w0) < d(x,W ) + δ}.
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The set W is said to be strongly proximinal in X if it is strongly proximinal
at every point of X.

For Banach spaces, these two equivalent forms of strong proximinality have
been introduced in [15] and [6] respectively.

The set W is said to be strongly Chebyshev (see [3]) if for any x ∈ X, every
minimizing sequence {yn} ⊆ W for x is convergent in W .

The set W is said to be approximatively compact if for any x ∈ X, every
minimizing sequence {yn} ⊆ W for x has a convergent subsequence in W .

For ε > 0, we define ε−neighborhood Vε(A) of a subset A of a metric space
(X, d) by Vε(A) = {x ∈ X : d(x,A) < ε}. In particular, Vε(A) is an open set
containing A.

A mapping PW : X → 2W defined by PW (x) = {w0 ∈ W : d(x,w0) =
d(x,W )} is called a metric projection.

The metric projection PW is said to be upper Hausdorff semi-continuous
(u.H.s.c.)(see [5]) at x ∈ X if for every ε > 0, there exists an open neighborhood
U of x such that PW (y) ⊆ Vε(PW (x)) for every y ∈ U .

The metric projection PW is said to be upper semi-continuous (u.s.c.) (see
[5]) at x ∈ X if for every open set V ⊇ W such that PW (x) ⊆ V , there exists
an open neighborhood U of x such that PW (z) ⊆ V for all z ∈ U .

A metric space (X, d) is said to be convex if for any two distinct points x
and y of X and every t ∈ [0, 1], there exists at least one z ∈ X such that

(1.1) d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y).

A point z satisfying (1.1) is called a between point of x and y, and the set
of all between points of x and y is denoted by [x, y].

A subset W of a convex metric space (X, d) is said to be convex if for every
x, y ∈ W , any point between x and y also lies in W .

A convex metric space (X, d) is said to be strongly convex (see [4]) or an
M − space (see [9]) if for any two distinct points x and y of X and every
t ∈ [0, 1], there exist exactly one z ∈ X such that d(x, z) = (1 − t)d(x, y) and
d(z, y) = td(x, y).

An M-space (X, d) is said to be strictly convex (see [12]) if for every pair
x, y of X and r > 0 satisfying d(x, p) ≤ r, d(y, p) ≤ r imply d(z, p) < r unless
x = y, where p is an arbitrary but fixed point of X and z is any point between
x and y.

An M-space (X, d) is said to be locally uniformly convex if given ε > 0 and
an element x with d(x, p) ≤ r, there exists δ(ε, x) > 0 such that d(z, p) < r for
all y ∈ X with d(x, y) ≥ ε and d(y, p) < r + δ, where z is any point between x
and y, and p is arbitrary but fixed point of X.

It is easy to see that a locally uniformly convex metric space is strictly
convex, but the converse is not true even in Banach spaces (see [11]).

Several researchers have discussed strongly proximinal and strongly Cheby-
shev sets in Banach spaces (see e.g. [3], [6], [15], [16] and references cited
therein). By extending these notions and the notion of local uniform convex-
ity from Banach spaces (see [11]) to metric spaces, we discuss relationships
between proximinality, strong proximinality, approximative compactness and



Strong proximinality in metric spaces 109

strong Chebyshevity in metric spaces and in locally uniformly convex metric
spaces. We also prove that for a strongly proximinal subset W of a metric
space, the metric projection PW is u.H.s.c. Further, we show that if a metric
space X is locally uniformly convex, then every proximinal convex subset of
X is strongly Chebyshev, but the converse is not true. Moreover, we prove
that the closed balls in a locally uniformly convex metric space are strongly
Chebyshev. We also show that in an M-space (X, d), if a Chebyshev set W
is strongly proximinal at x ∈ X then W is strongly proximinal at every point
between x and PW (x).

The results proved in this paper generalize and extend some results of [3],
[6], [7], [9], [12] and [15].

2. Strong proximinality and approximative compactness

In this section, we discuss relationships between strong proximinality, ap-
proximative compactness and strong Chebyshevity in metric spaces and also
prove that for a strongly proximinal set W of a metric space X, the metric
projection PW is u.H.s.c. We start with the following theorem.

Theorem 2.1. A non-empty subset W of a metric space (X, d) is approxima-
tively compact if and only if W is strongly proximinal and PW (x) is compact
for every x ∈ X.

Proof. Suppose W is approximatively compact, x ∈ X and {yn} ⊆ W is any
minimizing sequence for x, i.e.,

(2.1) lim
n→∞

d(x, yn) = d(x,W ).

Then there exist a subsequence {ynk
} such that {ynk

} → y ∈ W. It follows
from (2.1) that y ∈ PW (x) and so W is proximinal. The constant sequence {y}
satisfies the requirements of strong proximinality. Now, we show that PW (x)
is compact. Let {yn} be any sequence in PW (x) then d(x, yn) = d(x,W ) for
all n and so

lim
n→∞

d(x, yn) = d(x,W )

i.e., {yn} ⊆ W is a minimizing sequence for x. By the hypothesis, {yn} has a
convergent subsequence converging to some point y ∈ W . Also y ∈ PW (x) and
so PW (x) is compact.

Conversely, suppose that W is strongly proximinal and PW (x) is compact
for every x ∈ X. Let x ∈ X be arbitrary and {yn} ⊆ W be any minimizing
sequence for x, i.e., limn→∞ d(x, yn) = d(x,W ). SinceW is strongly proximinal,
there exists a subsequence {ynk

} of {yn} and a sequence {zk} ⊆ PW (x) such
that d(ynk

, zk) → 0. Since PW (x) is compact, we may assume without loss
of generality that zk → z ∈ PW (x). So, {ynk

} → z ∈ W . Hence W is
approximatively compact.

A closed subset W of a metric space (X, d) is said to be quasi-Chebyshev
(see [8]) if PW (x) is non-empty and compact for all x ∈ X.

From Theorem 2.1, we obtain



110 Sahil Gupta, T.D. Narang

Corollary 2.2. A non-empty subset W of a metric space (X, d) is approxima-
tively compact if and only if W is strongly proximinal and quasi-Chebyshev in
X.

The following theorem gives relationships between strong proximinality, ap-
proximative compactness and strong Chebyshevity.

Theorem 2.3. Let W be a non-empty subset of a metric space (X, d). Then
the following statements are equivalent:
(i) W is strongly Chebyshev.
(ii) W is strongly proximinal and Chebyshev.
(iii) W is approximatively compact and Chebyshev.

Proof. (i)⇒ (ii). SinceW is strongly Chebyshev, it is approximatively compact
and so by Theorem 2.1, W is strongly proximinal. Now, we show that W is
Chebyshev. Suppose that for some x ∈ X there exist w1, w2 ∈ PW (x), w1 ̸=
w2. Then

d(x,w1) = d(x,W ) = d(x,w2).

Consider the sequence {yn} in W such that y2n = w1 and y2n+1 = w2. Then
{yn} is a minimizing sequence for x in W . Since w1 ̸= w2, {yn} is not conver-
gent, a contradiction to strong Chebyshevity of W . Thus w1 = w2 and hence
W is Chebyshev.
(ii) ⇒ (iii). follows from Theorem 2.1.
(iii) ⇒ (i). Let x ∈ X be arbitrary and {yn} ⊆ W a minimizing sequence
for x, i.e., limn→∞ d(x, yn) = d(x,W ). Since W is approximatively compact,
{yn} has a subsequence {ynk

} → y0 ∈ W . Then d(x, y0) = d(x,W ), i.e.,
y0 ∈ PW (x). We claim that every subsequence of {yn} also converges to y0.
Suppose {yn} has a subsequence {yni

} such that {yni
} → z0, z0 ̸= y0. Then

d(x, z0) = d(x,W ), i.e., z0 is also a best approximation to x in W . But W is
Chebyshev and so y0 = z0, a contradiction. Therefore, every subsequence of
{yn} converges to y0 and hence {yn} → y0 ∈ W .

Remarks:

1. Whereas a strongly Chebyshev subset of a metric space is approximatively
compact, an approximatively compact subset of a metric space need not
be strongly Chebyshev.

Let X = R2 with the usual metric and W = {(x, y) ∈ X : x2 +
y2 = 1}. Then W , being a compact subset of the metric space X, is
approximatively compact. But PW ((0, 0)) = W , i.e.,W is not Chebyshev.
Therefore, it follows from Theorem 2.3 that W is not strongly Chebyshev.

2. Whereas an approximatively compact subset of a metric space is strongly
proximinal, a strongly proximinal subset of a metric space (even of a
Banach space) need not be approximatively compact.

LetX = l∞,W = c0. ThenW is strongly proximinal inX but for x =
(1, 1, 1, ...) ∈ l∞, the sequence {yn} such that yn = (1, 1, ..., 1(nth place),
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0, 0, ...) ∈ W is a minimizing sequence for x having no convergent subse-
quence (see [3]).

3. A proximinal subset of a metric space need not be strongly proximinal.
Even a proximinal convex subset of a Banach space space need not be
strongly proximinal.

Let X = (l1, ∥.∥H) Then the unit ball B(XH) is proximinal in X, but
is not strongly proximinal in X (see [16]).

In view of the above results and remarks, we obtain that strong Cheby-
shevity ⇒ approximative compactness ⇒ strong proximinality ⇒ proximinal-
ity, but none of the implications can be reversed.

Concerning strong Chebyshevity, we also have the following result.

Theorem 2.4. Let W be a closed subset of a metric space (X, d) and x ∈ X.
Then W is strongly Chebyshev for x if and only if diam PW (x, δ) < ε.

Proof. If W is strongly Chebyshev for x then PW (x) = {y0}. Therefore, every
minimizing sequence {yn} ⊆ W for x converges to y0. Suppose that the given
condition does not hold. Then there exists an ε > 0 and zn ∈ PW (x, 1

n ) such
that d(zn, y0) ≥ ε. This implies that {zn} is a minimizing sequence for x that
does not converge to y0, a contradiction. Hence diam PW (x, δ) < ε.

Conversely, suppose that {yn} ⊆ W is any minimizing sequence for x, i.e.,
limn→∞ d(x, yn) = d(x,W ). Then for any δ > 0, yn ∈ PW (x, δ) after some
stage. This implies that for any δ > 0, d(yn, yn+p) ≤ diam PW (x, δ) < ε
after some stage. This implies that the sequence {yn} is Cauchy. Since W is
a closed subset of a complete metric space, W is complete. Therefore, {yn} →
y0 ∈ W , i.e., every minimizing sequence for x is convergent. Hence W is
strongly Chebyshev.

Remarks. Theorems 2.1, 2.3 and 2.4 extend the corresponding Theorems
2.2, 2.3 and Proposition 2.7 of [3] (see also Proposition 3 of [15]) from Banach
spaces to metric spaces, respectively.

We require the following lemma in the proof of our next theorem show-
ing that for strongly proximinal sets in metric spaces, the associated metric
projection is u.H.s.c.

Lemma 2.5. [5] Let W be a closed subset of a metric space (X, d) then the
following statements are equivalent:
(i) PW is u.H.s.c. at x.
(ii) The relations xn → x and yn ∈ PW (xn) imply d(yn, PW (x)) → 0.

Theorem 2.6. If W is a strongly proximinal subset of a metric space (X, d)
then PW is u.H.s.c..

Proof. Let x ∈ X be arbitrary, xn → x and yn ∈ PW (xn). Then d(xn, yn) =
d(xn,W ) and so limn→∞ d(x, yn) = d(x,W ). This implies that yn ∈ PW (x, δ)
for any δ > 0 after some stage. Since W is strongly proximinal at x, for
any ε > 0, we can choose δ > 0 such that for any yn ∈ PW (x, δ) we can find
y ∈ PW (x) satisfying d(yn, y) < ε. As ε > 0 is arbitrary, d(yn, PW (x)) → 0.
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It is well-known (see [5]) that the mapping PW is u.s.c. at x if and only
if it is u.H.s.c. at x and PW (x) is compact. Therefore using Theorem 2.1 and
Theorem 2.6, we obtain the following well-known result.

Corollary 2.7. [14] If W is an approximatively compact subset of a metric
space (X, d) then the metric projection PW is u.s.c..

Corollary 2.8. If W is a strongly proximinal, quasi-Chebyshev subset of a
metric space (X, d) then the metric projection PW is u.s.c..

Using Theorem 2.3, we obtain

Corollary 2.9. If W is a strongly Chebyshev subset of a metric space (X, d)
then the metric projection PW is continuous.

The converse of Theorem 2.6 is not true even if W is a Chebyshev subset
of X.

Example 2.10. (see [13]) Let X be the dual space of the normed linear space
constructed by Klee [10] by suitable renorming of l2. Lambert (unpublished)
(see [13]) has shown that in the space X the metric projection PW supported by
any Chebyshev subspace W of X is continuous. However, X does not satisfy
the Effimov-Steckin property and hence contains a closed hyperplane K which is
not approximatively compact (see [14], Theorem 3). Since X is strictly convex
and reflexive, K is Chebyshev and thus supports a continuous metric projection.
Since K is Chebyshev, approximative compactness and strong proximinality are
equivalent and so K is not strongly proximinal.

Remarks. It was erroneously stated in [6] (Lemma 4.1) that for a strongly
proximinal subset W of a Banach space X, the associated metric projection PW

is u.s.c.. In fact, it is only u.H.s.c.. Theorem 2.6 extends this result to metric
spaces.

3. Strong proximinality in convex spaces

In this section, we prove that proximinality and approximative compactness
are equivalent for convex sets in locally uniformly convex metric spaces. As a
consequence, we prove that closed balls in a locally uniformly convex metric
space are strongly Chebyshev. We also prove that in an M-space (X, d), if a
Chebyshev set W is strongly proximinal at x, then W is strongly proximinal at
every point between x and PW (x). The results proved in this section are mo-
tivated by the corresponding results proved for best approximation in Banach
spaces given in [7] and in metric spaces given in [9] and [12]. Using the fact
that a proximinal convex subset of a strictly convex metric space is Chebyshev
(see [9]), we prove the following theorem:

Theorem 3.1. A closed convex subset W of a complete locally uniformly con-
vex metric space (X, d) is proximinal if and only if W is approximatively com-
pact.
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Proof. Suppose W is proximinal and x ∈ X. Since a locally uniformly con-
vex metric space is strictly convex, proximinal convex subsets of locally uni-
formly convex metric spaces are Chebyshev. Thus W is Chebyshev. Suppose,
PW (x) = {y′}. Let {yn} ⊆ W be any minimizing sequence for x, i.e.,

(3.1) lim
n→∞

d(x, yn) = d(x,W ).

If x ∈ W then limn→∞ d(x, yn) = 0, i.e., {yn} → x and so W is approxima-
tively compact.

Now, suppose x ∈ X\W then limn→∞ d(x, yn) = d(x,W ) ≡ r > 0. Let
ε > 0 be arbitrary and δ(ε, y′) be taken as in the definition of local uniform
convexity. Using (3.1), we can find m ∈ N such that d(x, yn) < r + δ for all
n ≥ m. Let p ≥ m then d(x, yp) < r + δ.

Let zp be a between point of yp and y′. Then, by the convexity of the set
W , we have zp ∈ W , d(x, zp) ≥ r. Therefore, by the local uniform convexity of
the space X, we obtain

d(yp, y
′) < ε.

Similarly, we can choose yl for l > m such that

d(yl, y
′) < ε.

Then d(yp, yl) < 2ε for all l, p ≥ m, i.e., {yn} is a Cauchy sequence in W . Now,
W being a closed subset of complete metric space is complete, {yn} converges
to some element of W and hence W is approximatively compact.

The converse is obvious.

Since a proximinal convex subset of a locally uniformly convex metric space
is Chebyshev, using Theorem 2.3 and Corollary 2.9, we obtain

Corollary 3.2. Let W be a closed convex subset of a locally uniformly convex
metric space (X, d) then the following are equivalent:
(i) W is proximnal.
(ii) W is approximatively compact.
(iii) W is strongly Chebyshev.
(iv) W is Chebyshev and PW is continuous.

Remark. Theorem 3.1 extends Proposition 3 of [7] from Banach spaces to
metric spaces.

As a consequence of Theorem 3.1, we have

Theorem 3.3. Let (X, d) be an M-space then for the statements
(i) X is locally uniformly convex,
(ii) every proximinal convex subset of X is strongly Chebyshev,
(iii) closed balls in X are strongly Chebyshev,
we have (i) ⇒ (ii) ⇒ (iii).
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Proof. (i) ⇒(ii). follows from Corollary 3.2.
(ii)⇒ (iii). Since every poximinal convex subset of X is strongly Chebyshev,
it follows from Theorems 2.1 and 2.3 of [9] that the closed balls B[z, r] are
Chebyshev and convex for every z ∈ X and r > 0. Therefore, the result
follows.

Now, it is natural to ask whether all the three statements of Theorem 3.3
are equivalent? We proceed to prove that (ii) ; (i) even in Banach spaces.

Let SX(SX∗) be the unit sphere and BX(BX∗) the closed unit ball in
X(X∗). Recall that a Banach space (X, ∥.∥) is said to be
(i) strongly rotund (see [7]) if given x ∈ SX , x∗ ∈ SX∗ such that x∗(x) = 1 and
{xn} ⊆ BX a sequence in BX such that x∗(xn) → x∗(x) = 1 then {xn}n∈N is
convergent.
(ii) almost locally uniform rotund (ALUR) [1] if for every x ∈ SX , {xn} ⊆ BX

and {x∗
n} ⊆ BX∗ , the condition limm limn x

∗
m(xn+x

2 ) = 1 imply xn → x.

An x∗ ∈ SX∗ is said to be strongly exposing functional (see [3]) if x∗ ∈
NA(X) and every sequence {xn} ⊆ BX with limn→∞ x∗(xn) = 1 is convergent
where NA(X) is the set of all norm attaining functionals in X∗.

Using the above definitions, we prove the following result:

Theorem 3.4. Let X be Banach space. Then the following are equivalent:
(i) X is strongly rotund.
(ii) Every x∗ ∈ NA(X) is strongly exposing functional.
(iii) Every proximinal convex subset of X is strongly Chebyshev.
(iv) X is almost locally uniform rotund.

Proof. (i) ⇒(ii) Suppose that x∗ attains its norm at x ∈ SX , i.e., x∗(x) =
∥x∗∥ = 1. Let {xn} ⊆ BX be such that x∗(xn) → 1. Since X is strongly
rotund, {xn : n ∈ N} is convergent.
(ii) ⇒ (i) Let x ∈ SX , x∗ ∈ SX∗ be such that x∗(x) = 1 and {xn} ⊆ BX a
sequence in BX such that x∗(xn) → x∗(x) = 1. Since x∗ is norm attaining, x∗

is strongly exposing functional and so {xn} is convergent. Hence X is strongly
rotund.
(i)⇔ (iii) The proof runs on similar lines as that of Theorem 5 in Guiro and
Montesinos[7].
(ii) ⇔ (iv) follows from Corollary 4.6 of [2].

Therefore, to prove (ii) ; (i) in Theorem 3.3, it is sufficient to show that
almost locally uniformly rotund Banach space need not be locally uniformly
convex. Since this is well-known (see [1]- Proposition 11 and Corollary 12), we
obtain the desired result.

Remark. The authors do not know whether (iii)⇒ (ii) in Theorem 3.3.

We require the following lemma proved in [12] for our next theorem.

Lemma 3.5. Let W be a Chebyshev subset of an M-space (X, d) and x ∈ X.
If PW (x) = {w0}, then PW (y) = {w0} for every y ∈ [w0, x).
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Theorem 3.6. Let W be a Chebyshev subset of an M-space (X, d) and x ∈ X.
If W is strongly proximinal at x ∈ X, then W is strongly proximinal at every
point between x and PW (x).

Proof. Let ε > 0 and x ∈ X. Then there exists some y′ ∈ W such that
PW (x) = {y′}. Since W is strongly proximinal at x, there exists a δ > 0 such
that for every y ∈ PW (x, δ) there is y′ ∈ PW (x) satisfying d(y, y′) < ε.

Let z ∈ X be such that

(3.2) d(x, z) + d(z, y′) = d(x, y′).

Then using Lemma 3.5, y′ ∈ PW (z). Suppose z′ ∈ PW (z, δ). Then

(3.3) d(z, z′) < d(z, w) + δ for all w ∈ W.

We claim that z′ ∈ PW (x, δ). Consider

d(x, z′) ≤ d(x, z) + d(z, z′) < d(x, z) + d(z, w) + δ for all w ∈ W using (3.3)

i.e., d(x, z′) < d(x, z) + d(z, y′) + δ, as y′ ∈ W . Using (3.2), we obtain

d(x, z′) < d(x, y′) + δ

i.e., d(x, z′) < d(x,w) + δ for all w ∈ W , as y′ ∈ PW (x). Therefore, z′ ∈
PW (x, δ). Hence the claim holds. Since W is Chebyshev and strongly proxim-
inal at x, for y′ ∈ PW (x), we have d(z′, y′) < ε. Also y′ ∈ PW (z). Therefore,
for any z′ ∈ PW (z, δ) there exist y′ ∈ PW (z) satisfying d(z′, y′) < ε. Hence W
is strongly proximinal at z.
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