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COUPLED COINCIDENCE POINT RESULTS IN
PARTIALLY ORDERED JS-METRIC SPACES

Narawadee Phudolsitthiphat12 and Atit Wiriyapongsanon3

Abstract. In this paper, we establish a coupled coincidence point the-
orem for some contraction type mappings in partially ordered JS-metric
spaces which generalizes the result of Kadelburg et al. (Fixed Point The-
ory Appl. 2015:27,2015). We also prove a coupled coincidence point
theorem for α-Geraghty contraction type mappings in such spaces. Fi-
nally, suitable example is presented to support our main result.
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1. Introduction

One of the most significant results in the theory of fixed point is Banach
contraction principle [2] because it can be utilized in several branches of mathe-
matics. A large number of mathematicians have been generalizing, in many dif-
ferent ways, the Banach contraction principle. One of the interesting results was
given by Geraghty [6] in the setting of complete metric spaces by considering
an auxiliary function. Let F be the family of all functions β : [0,+∞) → [0, 1)
satisfying the condition

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0 for all tn ∈ [0,+∞).

Definition 1.1. [6] Let (X, d) be a metric space. A mapping f : X → X is
called Geraghty contraction if there exits β ∈ F such that for all x, y ∈ X,

d(fx, fy) ≤ β(d(x, y))d(x, y).

The result of Geraghty has been attracting a number of authors [1, 5, 9, 10]. In
2013, Cho, Bae and Karapinar [4] defined the notion of α-Geraghty contraction
type mapping as follows:
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Definition 1.2. [4] Let (X, d) be a metric space and α : X × X → R. A
mapping f : X → X is called an α-Geraghty type contraction if there exits
β ∈ F such that for all x, y ∈ X,

α(x, y)d(fx, fy) ≤ β(M(x, y))M(x, y),

where M(x, y) = max{d(x, y), d(x, fx), d(y, fy)}.

The coupled fixed point was put into use in 1987 by Guo and Lakshmikan-
tham [7]. Later, Bhaskar and Lakshmikantham [3] defined the concept of mixed
monotone property and established the existence of a coupled fixed point un-
der the mixed monotone property and applied to a periodic boundary valued
problem. In 2008, Radenović [11] extended the results of Bhaskar and Laksh-
mikantham [3] by using monotone property. In 2015, Kadelburg et al. [9] have
studied some coupled coincidence point results for Geraghty-type contraction
mappings by using g-monotone property in complete partially ordered metric
spaces. Let Θ be the family of all functions θ : [0,+∞) × [0,+∞) → [0, 1)
satisfying the following conditions:

(θ1) θ(s, t) = θ(t, s) for all s, t ∈ [0,+∞),

(θ2) for any two sequences {sn} and {tn} of nonnegative real numbers,

lim
n→∞

θ(sn, tn) = 1 implies lim
n→∞

sn = lim
n→∞

tn = 0.

Theorem 1.3. [9] Let (X, d,≼) be a complete partially ordered metric space,
F : X ×X → X and g : X → X. Suppose that the following conditions hold:

(i) F (X2) ⊆ g(X),

(ii) F has the g-monotone property,

(iii) there exist x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and gy0 ≼ F (y0, x0),

(iv) there exists θ ∈ Θ such that

d(F (x, y), F (u, v)) ≤ θ(d(gx, gu), d(gy, gv))max{d(gx, gu), d(gy, gv)},

for all x, y, u, v ∈ X with gx ≼ gu and gy ≼ gv or gx ≽ gu and gy ≽ gv,

(v) g and F are compatible,

(vi) g is continuous and g(X) is closed,

(vii) (a) F is continuous or (b) if for an increasing sequence {xn} in X,xn →
x ∈ X as n → ∞, then xn ≼ x for all n ∈ N.

Then, g and F have a coupled coincidence point.

A new class of generalized metric spaces is introduced by Jleli and Samet [8]
(for short JS-metric spaces). The class of such metric spaces is larger than the
class of standard metric spaces, b-metric spaces and dislocated metric spaces.
They proved Banach contraction principle and Ćirić’s fixed point theorem in
such spaces. We recall the definition of a JS-metric space.
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Definition 1.4. [8] A JS-metric on a set X is a mapping D : X×X → [0,+∞]
satisfying the following conditions: there exists K > 0 such that for every
x, y ∈ X:

(D1) if D(x, y) = 0 then x = y,

(D2) D(x, y) = D(y, x),

(D3) if {xn} is a sequence in X such that lim
n→∞

D(xn, x) = 0 then

D(x, y) ≤ K lim sup
n→∞

D(xn, y).

Then (X,D) is called a JS-metric space.

In such a space, convergence of sequences is defined in the usual way: a
sequence {xn} ∈ X is said to D-converge to x ∈ X if limn→∞ D(xn, x) = 0.
Also, a sequence is said to be Cauchy (or D-Cauchy) if limm,n→∞ D(xn, xn+m)
= 0. The space (X,D) is said to be D-complete if every D-Cauchy sequence
has a limit. It is noted in [8] that the limit of D-convergent sequence is unique.

In this work, we prove some coupled coincidence point theorems for α-
Geraghty contraction type mappings in partially ordered JS-metric spaces.
Moreover, we give an example to illustrate the main result.

2. Preliminaries

In this section, we recall the useful notations. Let X be a nonempty
set, F : X ×X → X and g : X → X. We say that an element (x, y) ∈ X ×X
is a coupled coincidence point of g and F if

gx = F (x, y) and gy = F (y, x).

We say that g and F are commuting if

gF (x, y) = F (gx, gy), for every x, y ∈ X.

For a partial order ≼, E≼ = {(x, y) ∈ X × X : x ≼ y} (see [8]). Now,
we denote the definition of ≼-g-monotone mapping which is necessary for our
main results.

Definition 2.1. Let (X,≼) be a partially ordered set, F : X × X → X and
g : X → X. Then F has the ≼-g-monotone property if and only if for every
x, y ∈ X,

x1, x2 ∈ X, (gx1, gx2) ∈ E≼ =⇒ (F (x1, y), F (x2, y)) ∈ E≼,

and

y1, y2 ∈ X, (gy1, gy2) ∈ E≼ =⇒ (F (x, y1), F (x, y2)) ∈ E≼.
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Definition 2.2. Let F : X ×X → X, g : X → X and α : X2 ×X2 → [0,+∞].
Then F and g are said to be α−admissible if

α((gx, gy), (gu, gv)) ≥ 1 implies α((F (x, y), F (y, x)), (F (u, v), F (v, u))) ≥ 1

for all x, y, u, v ∈ X.

Definition 2.3. Let F : X × X → X, g : X → X and α : X2 × X2 →
[0,+∞]. Then F and g are said to be triangular α−admissible if F and g are
α−admissible and

α((gx, gy), (gu, gv)) ≥ 1 and α((gu, gv), (F (u, v), F (v, u))) ≥ 1 imply

α((gx, gy), (F (u, v), F (v, u))) ≥ 1

for all x, y, u, v ∈ X.

3. Main results

Following Kadelburg et al. [9], let Θ′ be the family of all functions θ :
[0,+∞]× [0,+∞] → [0, 1) which satisfy the conditions (θ1) and (θ2) except the
value of θ may be infinite. Now, we present our first main result as follows.

Theorem 3.1. Let (X,D,≼) be a complete partially ordered JS-metric space,
and let F : X × X → X, g : X → X and α : X2 × X2 → [0,+∞]. Suppose
that the following conditions hold:

(i) F (X2) ⊆ g(X),

(ii) F is ≼-g-monotone and D-continuous,

(iii) g is D-continuous, and commutes with F ,

(iv) g and F are triangular α-admissible,

(v) there exists θ ∈ Θ′ such that

α((gx, gy), (gu, gv))D(F (x, y), F (u, v))

≤ θ(D(gx, gu),D(gy, gv))M((gx, gu), (gy, gv)),

where

M((gx, gu), (gy, gv)) =max{D(gx, gu),D(gy, gv),D(gx, F (x, y)),

D(gy, F (y, x)),D(gu, F (u, v)),D(gv, F (v, u))},

for all x, y, u, v ∈ X with (gx, gu) ∈ E≼ and (gy, gv) ∈ E≼,

(vi) there exist x0, y0 ∈ X such that

(gx0, F (x0, y0)), (gy0, F (y0, x0)) ∈ E≼, and

α((gx0, gy0), (F (x0, y0), F (y0, x0))) ≥ 1 and

α((gy0, gx0), (F (y0, x0), F (x0, y0))) ≥ 1,
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(vii) if {xn}, {yn} are sequences such that

lim
n→∞

D(gxn, gxn+1) = 0 and lim
n→∞

D(gyn, gyn+1) = 0,

then sup{D(gx0, gxn),D(gy0, gyn) : n ∈ N} < ∞.

Then, g and F have a coupled coincidence point.

Proof. Let x0, y0 be elements in X satisfying assumption (vi). Since F (X2) ⊆
g(X), we can pick x1, y1 ∈ X such that gx1 = F (x0, y0) and gy1 = F (y0, x0).
Since F (X2) ⊆ g(X) again, we can pick x2, y2 ∈ X such that gx2 = F (x1, y1)
and gy2 = F (y1, x1). Continue this procedure to obtain sequences {xn}, {yn}
in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for each n ∈ N.

If gxn0+1 = gxn0
and gyn0+1 = gyn0

for some n0 ∈ N, then (xn0
, yn0

) is a
coupled coincidence point of g and F . Therefore, in what follows, we will
assume that for each n ∈ N,

gxn+1 ̸= gxn or gyn+1 ̸= gyn.

By condition (vi),

(gx0, gx1) ∈ E≼ and (gy0, gy1) ∈ E≼.

Since F is ≼-g-monotone,

(F (x0, y0), F (x1, y1)) ∈ E≼ and (F (y0, x0), F (y1, x1)) ∈ E≼.

That is,
(gx1, gx2) ∈ E≼ and (gy1, gy2) ∈ E≼.

Continuing this method, we get that

(gxn, gxn+1) ∈ E≼ and (gyn, gyn+1) ∈ E≼ hold for all n ∈ N.

By transitivity of ≼,

(gxn, gxn+m) ∈ E≼ and (gyn, gyn+m) ∈ E≼ for all n,m ∈ N.

By assumption (vi),

α((gx0, gy0), (gx1, gy1)) = α((gx0, gy0), (F (x0, y0), F (y0, x0))) ≥ 1.

Since F and g are α-admissible, we obtain

α((gx1, gy1), (gx2, gy2)) = α((F (x0, y0), F (y0, x0)), (F (x1, y1), F (y1, x1))) ≥ 1.

Thus, by mathematical induction, we have

α((gxn, gyn), (gxn+1, gyn+1)) ≥ 1 for all n ∈ N.
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Similarily,

α((gyn, gxn), (gyn+1, gxn+1)) ≥ 1 for all n ∈ N.

Since F and g are triangular α-admissible,

α((gxn, gyn), (gxn+m, gyn+m)) ≥ 1 and

α((gyn, gxn), (gyn+m, gxn+m)) ≥ 1 for all n ∈ N.

Now, we will show that

lim
n→∞

D(gxn, gxn+1) = 0 and lim
n→∞

D(gyn, gyn+1) = 0.

By way of contradiction, suppose at least one of lim
n→∞

D(gxn, gxn+1) ̸= 0 or

lim
n→∞

D(gyn, gyn+1) ̸= 0 holds. Then there exists ε > 0 for which we can obtain

subsequence {nk} such that nk ≥ k and

ϵ ≤ max{D(gxnk
, gxnk+1),D(gynk

, gynk+1)}.

Consider

D(gxnk
, gxnk+1)

= D(F (xnk−1, ynk−1), F (xnk
, ynk

))

≤ α((gxnk−1, gynk−1), (gxnk
, gynk

))D(F (xnk−1, ynk−1), F (xnk
, ynk

))

≤ θ(D(gxnk−1, gxnk
),D(gynk−1, gynk

))M((gxnk−1, gxnk
), (gynk−1, gynk

))

(3.1)

and

D(gynk
, gynk+1)

= D(F (ynk−1, xnk−1), F (ynk
, xnk

))

≤ α((gynk−1, gxnk−1), (gynk
, gxnk

))D(F (ynk−1, xnk−1), F (ynk
, xnk

))

≤ θ(D(gynk−1, gynk
),D(gxnk−1, gxnk

))M((gynk−1, gynk
),D(gxnk−1, gxnk

)).

(3.2)

Since θ(s, t) ∈ [0, 1) for all s, t ∈ [0,+∞],

M((gxnk−1, gxnk
), (gynk−1, gynk

)) = M((gynk−1, gynk
),D(gxnk−1, gxnk

))

= max{D(gxnk−1, gxnk
),D(gynk−1, gynk

)}.
(3.3)

From (3.1), (3.2) and (3.3),

max{D(gxnk
, gxnk+1),D(gynk

, gynk+1)}
≤ θ(D(gxnk−1, gxnk

),D(gynk−1, gynk
))max{D(gxnk−1, gxnk

),D(gynk−1, gynk
)}.
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Continuing this process, we get that

max{D(gxnk
, gxnk+1),D(gynk

, gynk+1)}

≤
nk∏
i=1

θ(D(gxnk−i, gxnk+1−i),D(gynk−i, gynk+1−i))max{D(gx0, gx1),D(gy0, gy1)}.

We choose ik such that

θ(D(gxnk−ik , gxnk+1−ik),D(gynk−ik , gynk+1−ik))

= max
1≤i≤nk

{θ(D(gxnk−i, gxnk+1−i),D(gynk−i, gynk+1−i))}.

Define η := lim sup
k→∞

{θ(D(gxnk−ik , gxnk+1−ik),D(gynk−ik , gynk+1−ik))}.

If η < 1, then

lim
k→∞

max{D(gxnk
, gxnk+1),D(gynk

, gynk+1)} = 0,

which contradicts the assumption.
If η = 1, by passing to a subsequence, then we may assume that

lim
k→∞

θ(D(gxnk−ik , gxnk+1−ik),D(gynk−ik , gynk+1−ik)) = 1.

Since θ ∈ Θ′, we have

lim
k→∞

D(gxnk−ik , gxnk+1−ik) = 0 and lim
k→∞

D(gynk−ik , gynk+1−ik) = 0.

That is, there exists k0 ∈ N such that

D(gxnk0
−ik0

, gxnk0
+1−ik0

) <
ϵ

2
and D(gynk0

−ik0
, gynk0

+1 − ik0
) <

ϵ

2
.

Thus, we have

ϵ ≤ max{D(gxnk0
, gxnk0

+1),D(gynk0
, gynk0

+1)}

≤
ik0∏
j=1

θ(D(gxnk0
−j , gxnk0

+1−j),D(gynk0
−j , gynk0

+1−j))

max{D(gxnk0
−ik0

, gxnk0
+1−ik0

),D(gynk0
−ik0

, gynk0
+1−ik0

)}

<
ϵ

2
,

which is a contradiction. Therefore,

(3.4) lim
n→∞

D(gxn, gxn+1) = 0 and lim
n→∞

D(gyn, gyn+1) = 0.

Next, we will show that {gxn} and {gyn} are D-Cauchy sequences. By
contradiction, suppose that at least one of {gxn} or {gyn} is not a D-Cauchy
sequences. Then there exists ϵ′ > 0 for which we can obtain subsequences {nk},



180 Narawadee Phudolsitthiphat, Atit Wiriyapongsanon

{mk} such that nk,mk ≥ k and ϵ′ ≤ max{Dg(xnk
, gxnk+mk

),D(gynk
, gynk+mk

)}.
Consider

D(gxnk
, gxnk+mk

)

= D(F (xnk−1, ynk−1), F (xnk+mk−1, ynk+mk−1))

≤ α((gxnk−1, gynk−1), (gxnk+mk−1, gynk+mk−1))

D(F (xnk−1, ynk−1), F (xnk−1, ynk−1))

≤ θ(D(gxnk−1, gxnk+mk−1)),D(gynk−1, gynk+mk−1))

M((gxnk−1, gxnk+mk−1), (gynk−1, gynk+mk−1))

(3.5)

and

D(gynk
, gynk+mk

)

= D(F (ynk−1, xnk−1), F (ynk+mk−1, xnk+mk−1))

≤ α((gynk−1, gxnk−1), (gynk+mk−1, gxnk+mk−1))

D(F (ynk−1, xnk−1), F (ynk+mk−1, xnk+mk−1))

≤ θ(D(gxnk−1, gxnk+mk−1),D(gynk−1, gynk+mk−1))

M((gxnk−1, gxnk+mk−1), (gynk−1, gynk+mk−1)).

(3.6)

From (3.4),

M((gxnk−1, gxnk+mk−1), (gynk−1, gynk+mk−1))

= M((gynk−1, gynk+mk−1), (gxnk−1, gxnk+mk−1))

= max{D(gxnk−1, gxnk+mk−1),D(gynk−1, gynk+mk−1)}.
(3.7)

From (3.5), (3.6) and (3.7),

max{D(gxnk
, gxnk+mk

),D(gynk
, gynk+mk

)}
≤ θ(D(gxnk−1, gxnk+mk−1),D(gynk−1, gynk+mk−1))

max{D(gxnk−1, gxnk+mk−1),D(gynk−1, gynk+mk−1)}.

Continuing this process, we get that

max{D(gxnk
,gxnk+mk

),D(gynk
, gynk+mk

)}

≤
nk∏
i=1

θ(D(gxnk−i, gxnk+mk−i),D(gynk−i, gynk+mk−i))

max{D(gx0, gxmk
),D(gy0, gymk

)}.

We choose ik such that

θ(D(gxnk−ik , gxnk+mk−ik),D(gynk−ik , gynk+mk−ik))

= max
1≤i≤nk

{θ(D(gxnk−i, gxnk+mk−i),D(gynk−i, gynk+mk−i))}.
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Define η := lim sup
k→∞

{θ(D(gxnk−ik , gxnk+mk−ik),D(gynk−ik , gynk+mk−ik))}.

If η < 1, then lim
k→∞

max{D(gxnk
, gxnk+mk

),D(gynk
, gynk+mk

)} = 0, which

contradicts the assumption.
If η = 1, by passing through a subsequence, then we may assume that

lim
k→∞

θ(D(gxnk−ik , gxnk+mk−ik),D(gynk−ik , gynk+mk−ik)) = 1.

Since θ ∈ Θ′ and (3.4), we have

lim
k→∞

D(gxnk−ik , gxnk+mk−ik) = 0 and lim
k→∞

D(gynk−ik , gynk+mk−ik) = 0.

Then there exists k0 ∈ N such that

D(gxnk0
−ik0

, gxnk0
+mk0

−ik0
) <

ϵ′

2
and D(gynk0

−ik0
, gynk0

+mk0
−ik0

) <
ϵ′

2
.

Thus, we have

ϵ′ ≤ max{D(gxnk0
, gxnk0

+mk0
),D(gynk0

, gynk0
+mk0

)}

≤
ik0∏
j=1

θ(D(gxnk0
−j , gxnk0

+mk0
−j),D(gynk0

−j , gynk0
+mk0

−j))

max{D(gxnk0
−ik0

, gxnk0
+mk0

−ik0
),Dg(ynk0

−ik0
, gynk0

+mk0
−ik0

)}

<
ϵ′

2
,

which is a contradiction. Therefore, {gxn} and {gyn} are D-Cauchy sequences.
By completeness of (X,D), there exist some ω, ω′ ∈ X such that

lim
n→∞

D(F (xn, yn), ω) = lim
n→∞

D(gxn, ω) = 0 and

lim
n→∞

D(F (yn, xn), ω
′) = lim

n→∞
D(gyn, ω

′) = 0.

By the continuity of g,

lim
n→∞

D(g(F (xn, yn)), gω) = 0 and lim
n→∞

D(g(F (yn, xn)), gω
′) = 0.

By the continuity of F ,

lim
n→∞

D(F (gxn, gyn), F (ω, ω′)) = 0 and lim
n→∞

D(F (gyn, gxn), F (ω′, ω)) = 0.

Since g and F commute and by the uniqueness of the limit, gω = F (ω, ω′) and
g(ω′) = F (ω′, ω). Therefore, (ω, ω′) ∈ X ×X is a coupled coincidence point of
g and F .

In our second main result, we obtain a coupled coincidence result for α-
Geraghty contraction type in JS-metric spaces. Let F ′ be the family of all
functions β : [0,+∞] → [0, 1) satisfying the condition

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0 for all tn ∈ [0,+∞].
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Theorem 3.2. Let (X,D,≼) be a complete partially ordered JS-metric space,
and let F : X × X → X, g : X → X and α : X2 × X2 → [0,+∞]. Suppose
that the following conditions hold:

(i) F (X2) ⊆ g(X),

(ii) F is ≼-g-monotone,

(iii) g is D-continuous, and commutes with F ,

(iv) g and F are triangular α-admissible,

(v) there exists β ∈ F ′ such that for all x, y, u, v ∈ X satisfying (gx, gu) ∈ E≼
and (gy, gv) ∈ E≼,

α((gx, gy), (gu, gv))D(F (x, y), F (u, v))

≤ β(M((gx, gu), (gy, gv)))M((gx, gu), (gy, gv)),

where

M((gx, gu), (gy, gv)) =max{D(gx, gu),D(gy, gv),D(gx, F (x, y)),

D(gy, F (y, x)),D(gu, F (u, v)),D(gv, F (v, u))},

(vi) there exist x0, y0 ∈ X such that

(gx0, F (x0, y0)), (gy0, F (y0, x0)) ∈ E≼,

α((gx0, gy0), (F (x0, y0), F (y0, x0))) ≥ 1 and

α((gy0, gx0), (F (y0, x0), F (x0, y0))) ≥ 1,

(vii) if {xn}, {yn} are sequences such that

lim
n→∞

D(gxn, gxn+1) = 0 and lim
n→∞

D(gyn, gyn+1) = 0,

then sup{D(gx0, gxn),D(gy0, gyn) : n ∈ N} < ∞,

(viii) (a) F is D-continuous or (b) for {xn} and {yn} are sequences in X such
that

(gxn, gxn+1), (gyn, gyn+1) ∈ E≼,

α((gxn, gyn), (gxn+1, gyn+1)) ≥ 1,

α((gyn, gxn), (gyn+1, gxn+1)) ≥ 1 for all N

and
lim
n→∞

D(gxn, ω) = 0 and lim
n→∞

D(gyn, ω
′) = 0,

we have

(gxn, gω), (gyn, gω
′) ∈ E≼,

α((gxn, gyn), (gω, gω
′)) ≥ 1,

α((gyn, gxn), (gω
′, gω)) ≥ 1 for all N.
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Then g and F have a coupled coincidence point.

Proof. Using similar idea as in the proof of Theorem 3.1, we can construct
Cauchy sequences {gxn} and {gyn} in complete JS-metric space (X,D). Then
there exist ω, ω′ ∈ X such that

lim
n→∞

D(F (xn, yn), ω) = lim
n→∞

D(gxn, ω) = 0 and

lim
n→∞

D(F (yn, xn), ω
′) = lim

n→∞
D(gyn, ω

′) = 0.

By the continuity of g,

lim
n→∞

D(gF (xn, yn), gω) = lim
n→∞

D(ggxn, gω) = 0 and

lim
n→∞

D(gF (yn, xn), gω
′) = lim

n→∞
D(ggyn, gω

′) = 0.

If F is D-continuous, it is easy to show that g and F have a coupled coincidence
point. Otherwise, By assumption (v), (vii), we have

D(F (gxn, gyn), F (ω, ω′))

≤ α((ggxn, ggyn), (gω, gω
′))D(F (gxn, gyn), F (ω, ω′))

≤ β(M((ggxn, gω), (ggyn, gω
′)))M((ggxn, gω), (ggyn, gω

′))

(3.8)

and

D(F (gyn, gxn), F (ω′, ω))

≤ α((ggyn, ggxn), (gω
′, gω))D(F (gyn, gxn), F (ω′, ω))

≤ β(M((ggyn, gω
′), (ggxn, gω)))M((ggyn, gω

′), (ggxn, gω)),

(3.9)

where

M((ggxn, gω), (ggyn, gω
′))

= M((ggyn, gω
′), (ggxn, gω))

= max{D(ggxn, gω),D(ggyn, gω
′),D(ggxn, F (gxn, gyn)),

D(ggyn, F (gyn, gxn)),D(gω, F (ω, ω′),D(gω′, F (ω′, ω)}.
(3.10)

Suppose gω ̸= F (ω, ω′) or gω′ ̸= F (ω′, ω), that is,

D := max{D(gω, F (ω, ω′)),D(gω′, F (ω′, ω))} > 0.

Letting n → ∞ in (3.10), we have

(3.11) lim
n→∞

M((ggxn, gω), (ggyn, gω
′)) = D.
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From (3.8), (3.9),

max{D(F (gxn, gyn), F (ω, ω′)),D(F (gyn, gxn), F (ω′, ω))}
M((ggxn, gω), (ggyn, gω′))

≤ β(M((ggxn, gω), (ggyn, gω
′))).

Taking limit on both sides of above inequalities, we have

lim
n→∞

β(M((ggxn, gω), (ggyn, gω
′))) = 1.

This implies lim
n→∞

M((ggxn, gω), (ggyn, gω
′)) = 0 which contradicts equation

(3.11). Therefore, gω = F (ω, ω′) and g(ω′) = F (ω′, ω), that is, (ω, ω′) ∈ X×X
is a coupled coincidence point of g and F .

Example 3.3. Let X = [0,+∞], D(x, y) = max{x, y} for all x, y ∈ X. Define
mappings F : X ×X → X and g : X → X by

F (x, y) =


x+ y

6
, if x, y ∈ [0,+∞),

+∞, otherwise,
gx =

{
2x, if x ∈ [0,+∞),

+∞, otherwise.

A mapping α : X2 ×X2 → [0,+∞] is given by

α((x, y), (u, v)) =

{
1, if x ≤ y and u ≤ v,

0, otherwise.

Let x ≤ u and y ≤ v. If x > y or u > v, then it is obvious that the assumption
(v) of Theorem 3.1 holds. Otherwise,

α((gx, gy), (gu, gv))D(F (x, y), F (u, v)) = max{x+ y

6
,
u+ v

6
} =

u+ v

6
≤ 2v

6

=
1

6
M((gx, gu), (gy, gv)).

Thus, the assumption (v) of Theorem 3.1 holds for θ(s, t) =
1

6
for all s, t ∈

[0,+∞]. We can easily check that all conditions of Theorem 3.1 hold. There-
fore, g and F have coupled coincidence point which is (0, 0). However, we
cannot apply Theorem 1.3 to show the existence of a coupled coincidence point
for g and F .
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