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UNIQUENESS OF ENTIRE FUNCTIONS SHARING A
SMALL FUNCTION WITH ITS DERIVATIVES
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Abstract. In the paper we study the uniqueness of entire functions
sharing a small function with their derivatives. The results of the paper
improve the corresponding results of Jank, Mues and Volkman (Complex
Variables Theory Appl. 6, 1 (1986), 51–71), Zhong (Kodai Math. J. 18,
2 (1995), 250–259) and Lahiri-Ghosh (Analysis (Munich) 31, 1 (2011),
47–59).
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1. Introduction

In the paper, by meromorphic functions we shall always mean meromorphic
functions in the complex plane C. We adopt the standard notations of the
Nevanlinna theory of meromorphic functions as explained in [2]. It will be
convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a non-constant
meromorphic function h, we denote by T (r, h) any quantity satisfying S(r, h) =
o{T (r, h)}, as r → ∞ and r /∈ E.

Let f and g be two nonconstant meromorphic functions and let a be a small
function of f . We denote by E(a; f) the set of a-pionts of f , where each point
is counted according its multiplicity. We denote by E(a; f) the reduced form
of E(a; f). We say that f , g share a CM, provided that E(a; f) = E(a; g), and
we say that f and g share a IM, provided that E(a; f) = E(a; g).

2. Definitions and Results

We require the following definitions.

Definition 2.1. A meromorphic function a = a(z) is called a small function
of f if T (r, a) = S(r, f).

Definition 2.2. For two subsets A and B of C, we denote by A∆B the set
(A−B) ∪ (B −A), which is called the symmetric difference of the sets A and
B.
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In 1977, L. A. Rubel and C. C. Yang [8] first investigated the uniqueness of
entire functions, which share certain values with their derivatives. They proved
the following theorem.

Theorem 2.3. [8] Let f be a nonconstant entire function. If E(a; f) =
E(a; f (1)) and E(b; f) = E(b; f (1)), for distinct finite complex numbers a and
b, then f ≡ f (1).

In 1979, E. Mues and N. Steinmetz [7] took up the case of IM shared values
in the place of CM shared values and proved the following theorem.

Theorem 2.4. [7] Let f be a nonconstant entire function. If E(a; f) =
E(a; f (1)) and E(b; f) = E(b; f (1)), for distinct finite complex numbers a and
b, then f ≡ f (1).

Afterwards in 1986 G. Jank, E. Mues and L. Volkman [3] considered the
case of a single shared value by the first two derivatives of an entire function.
They proved the following result:

Theorem 2.5. [3] Let f be a nonconstant entire function and a( ̸= 0) be a
finite number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (2)), then f ≡ f (1).

In [11] it was observed by the following example that in Theorem C the
second derivative can not be straightway replaced by a higher order derivative.

Example 2.6. Let (k ≥ 3) be a positive integer and w( ̸= 1) be a root of
the algebraic equation wk−1 = 1. We put f = ewz + w − 1, then E(w; f) =
E(w; f (1)) = E(w; f (k)) but f ̸≡ f (1).

In this context Zhong [11] extended Theorem 2.5 to higher order derivatives
and proved the following result.

Theorem 2.7. [11] Let f be a nonconstant entire function and a( ̸= 0) be
a finite complex number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

For A ⊂ C∪{∞}, we denote by NA(r, a; f)(NA(r, a; f)) the counting func-
tion (reduced counting function) of those a− points of f which belong to A.

In 2011, I. Lahiri and G. K. Ghosh [4] improved Theorem 2.7 in the following
manner.

Theorem 2.8. [4] Let f be a nonconstant entire function and a be a nonzero
finite number. Suppose that A = E(a; f) \ E(a; f (1)) and B = E(a; f (1)) \
{E(a; f (n)) ∩ E(a; f (n+1))} for n(≥ 1). If each common zero of f − a and
f (1) − a has the same multiplicity and NA(r, a; f) + NB(r, a; f

(1)) = S(r, f),
then f = λez or f = λez + a , where λ( ̸= 0) is a constant.

In the paper we extend Theorem 2.5 and Theorem 2.7 by considering shared
small function instead of value sharing also by considering a weaker kind of
sharing.

We now state the main result of the paper.
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Theorem 2.9. Let f be a nonconstant entire function and a = a(z)( ̸≡ 0,∞)
be a small function of f such that a(1) ̸≡ a. Suppose further that

(i) NA∪B(r, a; f) + NA(r, a; f
(1)) = S(r, f), where A = E(a; f)∆E(a; f (1))

and B = E(a; f) \ E(a; f (2)),

(ii) E1)(a; f) ⊂ E(a; f (1)), and

(iii) each common zero of f − a and f (1) − a has the same multiplicity.

Then f ≡ f (1).

Theorem 2.10. Let f be a nonconstant entire function and a = a(z)( ̸≡ 0,∞)
be a small function of f such that a(1) ̸≡ a. Suppose further that

(i) NA∪B(r, a; f) +NA(r, a; f
(1)) = S(r, f), where A = E(a; f)∆E(a; f (1)) ,

B = E(a; f) \ {E(a; f (n)) ∩ E(a; f (n+1))} and n ≥ 1 is an integer,

(ii) E1)(a; f) ⊂ E(a; f (1)), and

(iii) each common zero of f − a and f (1) − a has the same multiplicity.

Then f ≡ f (1) ≡ f (n).

Putting A = B = ∅ in Theorem 2.9 and Theorem 2.10 we respectively
obtain the following corollaries.

Corollary 2.11. Let f be a nonconstant entire function and a = a(z)( ̸≡ 0,∞)
be a small function of f such that a(1) ̸≡ a. If E(a; f) = E(a; f (1)) and
E(a; f) ⊂ E(a; f (2)), then f ≡ f (1).

Corollary 2.12. Let f be a nonconstant entire function and a = a(z)( ̸≡ 0,∞)
be a small function of f such that a(1) ̸≡ a. If E(a; f) = E(a; f (1)) and
E(a; f) ⊂ E(a; f (n))∩E(a; f (n+1)), n(≥ 1) is an integer, then f ≡ f (1) ≡ f (n).

We note that Corollary 2.11 is an improvement of Theorem 2.5 and Corol-
lary 2.12 is an improvement of Theorem 2.7.

3. Lemmas

In this section we need the following lemmas.

Lemma 3.1. {[1]; see also [9]} Let f be a meromorphic function and k be
a positive integer. Suppose that f is a solution of the following differential
equation: a0w

(k) + a1w
(k−1) + · · · + akw = 0, where a0( ̸= 0), a1, a2, · · · , ak

are constants. Then T (r, f) = O(r). Furthermore, if f is transcendental, then
r = O(T (r, f)).
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Lemma 3.2. [1] Let f be a meromorphic function and n be a positive integer.
If there exist meromorphic functions a0(̸≡ 0), a1, a2, · · · , an such that

a0f
n + a1f

n−1 + · · ·+ an−1f + an ≡ 0,

then

m(r, f) ≤ nT (r, a0) +

n∑
j=1

m(r, aj) + (n− 1) log 2.

Lemma 3.3. {[6]; see also p.28[10]} Let f be a nonconstant meromorphic
function. If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0fq + b1fq−1 + · · ·+ bq

is an irreducible rational function in f with the coefficients being small func-
tions of f and a0b0 ̸≡ 0, then

T (r,R(f)) = max{p, q}T (r, f) + S(r, f).

Lemma 3.4. Let f, a0, a1, a2, · · · , ap, b0, b1, b2, · · · , bq be meromorphic func-
tions. If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0fq + b1fq−1 + · · ·+ bq
(a0b0 ̸≡ 0),

then

T (r,R(f)) = O(T (r, f) +

p∑
i=0

T (r, ai) +

q∑
j=0

T (r, bj)).

Proof. The Lemma follows from the first fundamental theorem and the prop-
erties of the characteristic function.

Lemma 3.5. {p.68 [2]} Let f be a transcendental meromorphic function and
fnP (z) = Q(z), where P(z), Q(z) are differential polynomials generated by f
and the degree of Q is at most n. Then m(r, P ) = S(r, f).

Lemma 3.6. {p.69 [2]} Let f be a nonconstant meromorphic function and

g(z) = fn(z) + Pn−1(f),

where Pn−1(f) is a differential polynomial generated by f and of degree at most
n− 1.

If N(r,∞; f) + N(r, 0; g) = S(r, f), then g(z) = hn(z), where h(z) =

f(z) + a(z)
n and hn−1(z)a(z) is obtained by substituting h(z) for f(z), h(1)(z)

for f (1)(z) etc. in the terms of degree n− 1 in Pn−1(f).
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Let us note the special case, where Pn−1(f) = a0(z)f
n−1+ terms of degree

n− 2 at most. Then hn−1(z)a(z) = a0(z)h
n−1(z) and so a(z) = a0(z). Hence

g(z) = (f(z) + a0(z)
n )n.

Lemma 3.7. {p.47 [2]} Let f be a nonconstant meromorphic function and
a1,a2,a3 be three distinct meromorphic functions satisfying T (r, aµ) = S(r, f)
for µ = 1, 2, 3. Then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

Lemma 3.8. {p.58, Remark 1 [5]} Let f be a solution of the following homo-
geneous differential equation

an(z)f
(n)(z) + an−1(z)f

(n−1)(z) + · · ·+ a1(z)f
(1)(z) + a0(z)f(z) = 0,

where the coefficients a0(z), · · · , an(z) are polynomials and are not all identi-
cally equal to zero. Then f is an entire function of finite order.

4. Proof of the theorems

Proof of Thorem 2.9. Let z0 be a zero of f − a and f (1) − a with multiplicity
q(≥ 2), since by hypotheses each common zero of f − a and f (1) − a has the
same multiplicity. Then z0 is a zero of f (1)−a(1) with multiplicity q−1. Hence
z0 is a zero of a− a(1) = (f (1) − a(1))− (f (1) − a) with multiplicity q− 1. Since
q ≤ 2(q − 1), we have

N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f).(1)

Let λ = f(1)−a
f−a and F = f − a. Then by the hypotheses we get

N(r, 0;λ) +N(r,∞;λ) ≤ NA(r, 0; f − a) +NA(r, 0; f
(1) − a)

= S(r, f).(2)

Now

F (1) = λF + a− a(1) = λF + b,(3)

where b = a− a(1). Also

F (2) = λF (1) + λ(1)F + b(1)

= λ(λF + b) + λ(1)F + b(1)

= (λ2 + d1λ)F + λb+ b(1),(4)

where d1 = λ(1)

λ and T (r, d1) = N(r, 0;λ) +N(r,∞;λ) + S(r, λ) = S(r, f) Set

τ =
(a− a(1))(f (2) − a(2))− (a− a(2))(f (1) − a(1))

f − a
.(5)
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Then by the lemma of logarithmic derivative m(r, τ) = S(r, f). Now by (1)
and by hypotheses we get N(r, τ) = S(r, f) and so T (r, τ) = S(r, f).

From (5) we get

τF = (a− a(1))F (2) − (a− a(2))F (1) = bF (2) − (b+ b(1))F (1).

Using (3) and (4) we obtain from the above equation

{bλ2 + (bd1 − b− b(1))λ− τ}F = b2(1− λ).(6)

If bλ2 + (bd1 − b− b(1))λ− τ ̸≡ 0 , then from (6) we get

F = − b2λ− b

bλ2 + (bd1 − b− b(1))λ− τ
.(7)

Then from (7) we get by Lemma 3.4, T (r, F ) = O(T (r, λ)) + S(r, f) and also
T (r, f) = T (r, F ) + S(r, f) = O(T (r, λ)) + S(r, f). This implies that S(r, f) is
replaceable by S(r, λ).

Also from (7) we see that F is a rational function in λ, which can be made
irreducible. We put

F =
Pl(λ)

Ql+1(λ)
,(8)

where Pl(λ) and Ql+1(λ) are relatively prime polynomials in λ of respective
degrees l and l+ 1. Also the coefficients of the both the polynomials are small
functions of λ. Without loss of generality we assume that Ql+1(λ) is a monic
polynomial. We further note that the counting function of the common zeros of
Pl(λ) and Ql+1(λ), if any, is S(r, λ), because Pl(λ) and Ql+1(λ) are relatively
prime and the coefficients are small functions of λ.

Since N(r,∞;F ) = S(r, f) = S(r, λ), we see from (8) that N(r, 0;Ql+1(λ))
= S(r, λ). Also by (2) we know that N(r,∞;λ) = S(r, f) = S(r, λ). So by
Lemma 3.6 we get

Ql+1(λ) = (λ+
c

l + 1
)l+1,(9)

where c is the coefficient of λl in Ql+1(λ).
If c ̸≡ 0, then by Lemma 3.7 we obtain

T (r, λ) ≤ N(r, 0;λ) +N(r,∞;λ) +N(r,− c

l + 1
;λ) + S(r, λ)

= N(r, 0;Ql+1(λ)) + S(r, λ)

= S(r, λ),

a contradiction. Therefore c ≡ 0 and we get from (8) and (9)

F =
Pl(λ)

λl+1
.(10)
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Differentiating (10) we obtain F (1) = d1
λP

(1)
l (λ)−(l+1)Pl(λ)

λl+1 . So by Lemma 3.3
we have

T (r, F (1)) = (l + 1− p)T (r, λ) + S(r, λ)(11)

for some integer p, 0 ≤ p ≤ l.
Again since F (1) = λF + b, where b = a − a(1) ̸= 0, we get by (10) F (1) =

Pl(λ)
λl + b and so by Lemma 3.3 we have

T (r, F (1)) = (l − p)T (r, λ) + S(r, λ),(12)

where p is same as in (11). Now from (11) and (12) we get T (r, λ) = S(r, λ), a
contradiction.

If bλ2 + (bd1 − b − b(1))λ − τ ≡ 0, then by (6) and b ̸≡ 0 we deduce that

λ ≡ 1. But λ = f(1)−a
f−a . Therefore, f (1) − a = f − a, that implies f ≡ f (1).

This proves the theorem.

Proof of Thorem 2.10. By the first fundamental theorem we get

T (r, f) = T (r, f − a) + S(r, f)

= T (r,
1

f − a
) + S(r, f)

= N(r, 0; f − a) +m(r, 0; f − a) + S(r, f)

≤ N(r, 0; f − a) +m(r, 0; f (1) − a(1)) + S(r, f)

= N(r, 0; f − a) + T (r, f (1))−N(r, 0; f (1) − a(1)) + S(r, f).(13)

Now by Lemma 3.7 we get
T (r, f (1)) ≤ N(r, 0; f (1) − a) +N(r, 0; f (1) − a(1)) +N(r,∞; f (1)) + S(r, f (1)).
Then from (13) we get

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f (1) − a) +N(r, 0; f (1) − a(1))

−N(r, 0; f (1) − a(1)) + S(r, f).(14)

Let us denote by Np
(k(r, 0;G) the counting function of zeros of G with mul-

tiplicities not less than k and a zero of multiplicity q(≥ k) is counted q − p
times, where p ≤ k.

Now

N(r, 0; f − a) +N(r, 0; f (1) − a(1))−N(r, 0; f (1) − a(1))

= N(r, 0; f − a) +N1
(2(r, 0; f − a)−N1

(2(r, 0; f
(1) − a(1))

= N(r, 0; f − a) +N (2(r, 0; f − a) +N2
(3(r, 0; f − a)−N1

(2(r, 0; f
(1) − a(1))

≤ N(r, 0; f − a) +N1
(2(r, 0; f

(1) − a(1))−N1
(2(r, 0; f

(1) − a(1)) + S(r, f)

= N(r, 0; f − a) + S(r, f).

Therefore from (14) we get

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f (1) − a) + S(r, f).(15)
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Since

N(r, 0; f (1) − a) ≤ N(r, 0; f − a) +NA(r, 0; f
(1) − a)

= N(r, 0; f − a) + S(r, f).(16)

Then from (15) and (16) we get

T (r, f) ≤ 2N(r, 0; f − a) + S(r, f).(17)

Since we have

λ =
f (1) − a

f − a
.(18)

Then f (1) − a = λf − λa, so

F (1) = λ1F + µ1,(19)

where F = f − a, λ1 = λ and µ1 = a− a(1) = b, say. Taking the derivatives of
(19) and using (19) repeatedly we get

F (k) = λkF + µk,(20)

where λk+1 = λ
(1)
k + λ1λk and µk+1 = µ

(1)
k + µ1λk for k = 1, 2, . . ..

Now we shall prove that T (r, λ) = S(r, f). If λ is constant, then obviously
T (r, λ) = S(r, f). So we suppose that λ is nonconstant. From the hypotheses
we get

N(r, 0;λ) +N(r,∞;λ) ≤ NA(r, 0; f − a) +NA(r, 0; f
(1) − a)

= S(r, f).(21)

Put k = 1 in λk+1 = λ
(1)
k + λ1λk we get λ2 = λ2 + d1λ where d1 = λ(1)

λ .

Again putting k = 2 in λk+1 = λ
(1)
k + λ1λk we get λ3 = λ

(1)
2 + λ1λ2, so

λ3 = λ3 + 3d1λ
2 + d2λ, where d2 = d21 + d

(1)
1 . Similarly λ4 = λ

(1)
3 + λ1λ3 =

λ4 + 6d1λ
3 + (6d21 + 3d

(1)
1 + d2)λ

2 + (d
(1)
2 + d1d2)λ. Therefore, in general, we

get for k ≥ 2

λk = λk +

k−1∑
j=1

αjλ
j ,(22)

where T (r, αj) = O(N(r, 0;λ) +N(r,∞;λ)) + S(r, λ) = S(r, f) for
j = 1, · · · , k − 1.

Again put k = 1 in µk+1 = µ
(1)
k + µ1λk and we get µ2 = µ

(1)
1 + µ1λ1 =

bλ + b(1). Also putting k = 2 in µk+1 = µ
(1)
k + µ1λk, we obtain by (22)

µ3 = µ
(1)
2 +µ1λ2 = bλ(1)+b(1)λ+b(2)+b(λ2+d1λ) = bλ2+(b(1)+bd1+b)λ+b(2).

Similarly µ4 = bλ3 + (5bd1 + b(1))λ2 + (b(2) + 2bd1 + 2bd21 + 2bd
(1)
1 + b(1)d1 +
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b(1))λ+ b(3).
Therefore, in general, for k ≥ 2

µk =

k−1∑
j=1

βjλ
j + b(k−1),(23)

where T (r, βj) = O(N(r, 0;λ) +N(r,∞;λ)) + S(r, λ) = S(r, f) for
j = 1, · · · , k − 1 and βk−1 = b.

Let

Ψ =
(a− a(n+1))(f (n) − a(n))− (a− a(n))(f (n+1) − a(n+1))

f − a
.(24)

Then clearlym(r,Ψ) = S(r, f). Now by (1) and by hypotheses we getN(r,Ψ) ≤
N(2(r, a; f) +NA∪B(r, a; f) + S(r, f) = S(r, f) and so T (r,Ψ) = S(r, f). Using

(20),(22),(23) and (24) we get ΨF + (a − a(n))F (n+1) + (a(n+1) − a)F (n) ≡ 0
i.e.,

{Ψ+ (a− a(n))λn+1 + (a(n+1) − a+ αna− αna
(n))λn

+(a(n+1) − a(n))

n−1∑
j=1

αjλ
j}F

+b(n−1)(a(n+1) − a) + b(n)(a− a(n)) + (a− a(n))βnλ
n

+(a(n+1) − a(n))

n−1∑
j=1

βjλ
j ≡ 0.

Let
∆1 = b(n−1)(a(n+1) − a+ b(n)(a− a(n)) + (a− a(n))βnλ

n

+ (a(n+1) − a(n))
n−1∑
j=1

βjλ
j and

∆2 = Ψ+ (a− a(n))λn+1 + (a(n+1) − a+ αna− αna
(n))λn

+ (a(n+1) − a(n))
n−1∑
j=1

αjλ
j . Then

∆2F +∆1 ≡ 0(25)

If ∆2 ≡ 0
i.e.,

Ψ+(a−a(n))λn+1+(a(n+1)−a+αna−αna
(n))λn+(a(n+1)−a(n))

n−1∑
j=1

αjλ
j ≡ 0,

then by Lemma 3.2 we get m(r, λ) = S(r, f). If a−a(n) ≡ 0, then we can show
that the coefficient of λ(n) = a(n+1) − a + αna − αna

(n) = (a(n))(1) − a +
αn(a − a(n)) = a(1) − a ̸= 0(since by hypothesis a ̸≡ a(1)), then also we can
apply Lemma3.2 and we get m(r, λ) = S(r, f). Therefore by (21) we have
T (r, λ) = S(r, f).
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Next suppose that

∆2 ̸≡ 0.

Then from (25) we get

F = −∆1

∆2
.(26)

Following the similar argument of the Theorem 2.9 and using (26) we can show
that T (r, λ) = S(r, λ), a contradiction. Therefore we establish that T (r, λ) =
S(r, f).

Since T (r, λ) = S(r, f), we see that T (r, λk) + T (r, µk) = S(r, f) for k =
1, 2, . . ., where λk and µk are defined in (20). Let z0 be a zero of F = f − a
such that z0 ̸∈ A ∪B. For k = n we have from (20) F (n) = λnF + µn and so,

f (n) − a(n) = λn(f − a) + µn.(27)

Now at the point z0 we get f (n)(z0) − a(n)(z0) = λn(z0)(f − a)(z0) + µn(z0)
then by hypotheses we get, a(z0) = a(n)(z0)+µn(z0). If a(z) ̸≡ a(n)(z)+µn(z),
we get

N(r, a; f) ≤ NA∪B(r, 0; f − a) +N(r, 0; a− a(n) − µn) + S(r, f)

= S(r, f).

Which contradicts (17).
Therefore

a(z) ≡ a(n)(z) + µn(z).(28)

Again differentiate (27) and we get f (n+1) − a(n+1) = λ
(1)
n (f − a) + λn(f

(1) −
a(1))+µ

(1)
n . Now at the point z0 we get f (n+1)(z0)− a(n+1)(z0) = λ

(1)
n (z0)(f −

a)(z0)+λn(z0)(f
(1)−a(1))(z0)+µ

(1)
n (z0) then by hypotheses a(z0) = a(n+1)(z0)+

λn(z0)(a(z0)−a(1)(z0))+µ
(1)
n (z0). If a(z) ̸≡ a(n+1)(z)+λn(z)(a(z)−a(1)(z))+

µ
(1)
n (z), we get

N(r, a; f) ≤ NA∪B(r, 0; f − a) +N(r, 0; a− a(n+1) − λn(a− a(1))− µ(1)
n )

+ S(r, f)

= S(r, f)

which contradicts (17).
Therefore

a(z) ≡ a(n+1)(z) + λn(z)(a(z)− a(1)(z)) + µ(1)
n (z).(29)

Differentiate (28) and we get

a(1)(z) ≡ a(n+1)(z) + µ(1)
n (z).(30)
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From (29) and (30) we get a(z)− a(1)(z) = λn(z)(a(z)− a(1)(z)) since a(z)−
a(1)(z) ̸≡ 0 then from the above we get λn(z) ≡ 1. Putting the value of
λn(z) ≡ 1 and µn(z) = a(z)− a(n)(z) in (27) we get

f ≡ f (n).(31)

Equation (3.22) can be written in the form

λk = λk + Pk−1[λ](32)

where Pk−1[λ] is a differential polynomial in λ with constant coefficients having
degree at most k − 1 and weight at most k. Also we note that each term of
Pk−1[λ] contains some derivative of λ.

Let (32) be true. Then

λk+1 = λ
(1)
k + λ1λk

= (λk + Pk−1[λ])
(1) + λ(λk + Pk−1[λ])

= λk+1 + kλk−1λ(1) + (Pk−1[λ])
(1) + λPk−1[λ]

= λk+1 + Pk[λ],

noting that differentiation does not increase the degree of a differential polyno-
mial but increases its weight by 1. So (32) is verified by mathematical induction.

Since λn = 1, we get from (32) for k = n

λn + Pn−1[λ] ≡ 1.(33)

By hypotheses we see that λ has no simple pole. If z1 is a pole of λ with
multiplicity p(≥ 2), then z1 is a pole of Pn−1[λ] with multiplicity not exceeding
(n − 1)p + 1. Since np > (n − 1)p + 1, it follows that z1 is a pole of the
left hand side of (33) with multiplicity np, which is impossible. So λ is an
entire function. If λ is transcendental, then by Lemma 3.5 we get from (33)
that T (r, λ) = S(r, λ), a contradiction. If λ is a polynomial of degree d(≥ 1),
then the left hand side of (33) is a polynomial of degree nd, which is also a
contradiction. Therefore λ is a constant. Hence from (32) we obtain λk = λk

for k = 1, 2, . . .. Since λn ≡ 1, so λn ≡ 1.
We suppose that λ ̸≡ 1. Since f ≡ f (n) then by Lemma 3.1 we get T (r, f) =

O(r) but we have T (r, a) = S(r, f) = o(T (r, f)) = o(r). Since λ is a constant,

by a simple calculation we get µk =
k−1∑
j=0

b(k−1−j)λj for k = 1, 2, . . .. Put

µn =
n−1∑
j=0

b(n−1−j)λj in (28) we get

a− a(n) =

n−1∑
j=0

b(n−1−j)λj .(34)

From (34) we get

(1− λ)a(n−1) + (λ− λ2)a(n−2) + · · ·+ (λn−1 − 1)a ≡ 0.(35)
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Since λ ̸≡ 1, by applying the conclusion of Lemma 3.8 to (35) we conclude that
a = a(z) is an entire function of finite order. But we have T (r, a) = o(r), by
Lemma 3.1 we observe that a = a(z) is a polynomial of degree q, say. Now
from (18) we get

f (1) = λf + (1− λ)a.(36)

Differentiating (36) q + 1 times, we get f (q+2) = λf (q+1) and so

f (q+1) = ceλz,(37)

where c(̸= 0) is a constant.
If q + 1 > n and since f (n) ≡ f then from (37) we have

f (q+1) = (f (n))(q+1−n) = ceλz, and so f (q+1−n) ≡ ceλz. This implies
(f (n))(q+1−2n) = ceλz which, in turn, implies f (q+1−2n) ≡ ceλz where c(̸= 0)
is a constant. This process will continue untill q + 1 − rn < n where r is
a positive integer. Suppose q + 1 − rn = m(< n) then f (m) = ceλz. Now
differentiate this (n−m) times. We get f (n) = λ(n−m)ceλz. Since f (n) ≡ f we
get f = λ(n−m)ceλz and f (1) = λ(n−m+1)ceλz. Put these values of f and f (1)

in (36), we get λ(n−m+1)ceλz = λ(n−m+1)ceλz + (1 − λ)a, which is impossible
as λ ̸= 1 and a ̸= 0.

If q + 1 < n then differentiate (37) n − q − 1 times and we get f (n) =
λ(n−q−1)ceλz and since f (n) ≡ f we get f = λ(n−q−1)ceλz. Then from (36) we
get λ(n−q)ceλz = λ(n−q)ceλz+(1−λ)a, which is impossible as λ ̸= 1 and a ̸= 0.

Last of all, if q+1 = n then from (37), we get f (n) = ceλz and since f (n) ≡ f
we get f = ceλz. Then from (36) we arrive at a contradiction. Hence λ ≡ 1
and from (18) we get f (1) − a = f − a implies f ≡ f (1). This completes the
proof of the theorem.
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