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ON KENMOTSU MANIFOLDS ADMITTING A
SPECIAL TYPE OF SEMI-SYMMETRIC

NON-METRIC ϕ− CONNECTION

Ajit Barman1, Uday Chand De2 and Pradip Majhi34

Abstract. The object of the present paper is to study a special type
of semi-symmetric non-metric ϕ-connection on a Kenmotsu manifold. It
is shown that if the curvature tensor of Kenmotsu manifolds admitting
a special type of semi-symmetric non-metric ϕ-connection ∇̄ vanishes,
then the Kenmotsu manifold is locally isometric to the hyperbolic space
Hn(−1). Beside these, we consider Weyl conformal curvature tensor of
a Kenmotsu manifold with respect to the semi-symmetric non-metric
ϕ-connection. Among other results, we prove that the Weyl conformal
curvature tensor with respect to the Levi-Civita connection and the semi-
symmetric non-metric ϕ-connection are equivalent. Moreover, we deal
with ϕ-Weyl semi-symmetric Kenmotsu manifolds with respect to the
semi-symmetric non-metric ϕ-connection. Finally, an illustrative exam-
ple is given to verify our result.
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1. Introduction

The product of an almost contact manifold M and the real line R carries
a natural almost complex structure. However, if one takes M to be an almost
contact metric manifold and suppose that the product metric G on M × R is
Kaehlerian, then the structure on M is cosymplectic [12] and not Sasakian.
On the other hand, Oubina [16] pointed out that if the conformally related
metric e2tG, t being the coordinates on R, is Kaehlerian, then M is Sasakian
and conversely.

In [23], Tanno classified almost contact metric manifolds whose automor-
phism group possesses the maximum dimension. For such a manifold M , the
sectional curvature of plane section containing ξ is a constant, say c. If c > 0, M
is a homogeneous Sasakian manifold of constant sectional curvature. If c = 0,
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M is the product of a line or a circle with a Kaehler manifold of constant holo-
morphic sectional curvature. If c < 0, M is a warped product space R×f Cn.
In 1972, Kenmotsu [13] abstracted the differential geometric properties of the
third case. We call it a Kenmotsu manifold. Any point of a Kenmotsu mani-
fold has a neighborhood isometric to the warped product (−ϵ, ϵ)×f V , where
(−ϵ, ϵ) is an open interval from R, f(t) = c exp t, c > 0 and V is a Kähler
manifold [13].

More recently, in [9], almost contact metric manifolds such that η is closed
and dΦ = 2η ∧ Φ were studied and they were called almost Kenmotsu mani-
foolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu mani-
fold.

In 1924, Friedmann and Schouten [10] introduced the idea of a semi-sym-

metric connection on a differentiable manifold. A linear connection ∇̃ on a
differentiable manifold M is said to be a semi-symmetric connection if the
torsion tensor T of the connection ∇̃ satisfies T (X,Y ) = u(Y )X − u(X)Y,
where u is a 1-form and ρ is a vector field defined by u(X) = g(X, ρ), for
all vector fields X,Y ∈ χ(M). Here χ(M) denotes the set of all differentiable
vector fields on M .

In 1932, Hayden [11] introduced the idea of semi-symmetric metric connec-

tions on a Riemannian manifold (M, g). A semi-symmetric connection ∇̃ is

said to be a semi-symmetric metric connection if ∇̃g = 0.
A relation between the semi-symmetric metric connection ∇̃ and the Levi-

Civita connection∇ of (M, g) was given by Yano [24]: ∇̃XY = ∇XY +u(Y )X−
g(X,Y )ρ, where u(X) = g(X, ρ).
In 1976, Yano [25] introduced the notion of semi-symmetric metric ϕ-connection
in a Sasakian manifold. Semi-symmetric connection ∇̂ satisfying ∇̂g ̸= 0,
was initiated by Prvanović [20] with the name pseudo-metric semi-symmetric
connection and was just followed by Andonie [22]. Semi-symmetric connection
∇̂ satisfying ∇̂g ̸= 0 is said to be a semi-symmetric non-metric connection.
Semi-symmetric non-metric connection have been studied by several authors
such as ([6], [21], [27]) and many others.

In 1992, Agashe and Chafle [1] studied a semi-symmetric non-metric con-
nection ∇̂, whose torsion tensor T satisfies T (X,Y ) = u(Y )X − u(X)Y and
(∇̂Xg)(Y, Z) = −u(Y )g(X,Z) − u(Z)g(X,Y ). In [15] Barua and Mukhopad-
hyay studied a type of semi-symmetric connection ∇̂ which satisfies (∇̂Xg)(Y, Z)
= 2u(X)g(Y, Z) − u(Y )g(X,Z) − u(Z)g(X,Y ). Since ∇̂g ̸= 0, this is another
type of semi-symmetric non-metric connection. However, the authors preferred
the name semi-symmetric semimetric connection.

In 1994, Liang [14] studied another type of semi-symmetric non-metric con-
nection ∇̂ for which we have (∇̂Xg)(Y, Z) = 2u(X)g(Y, Z), where u is a non-
zero 1-form and he called this a semi-symmetric recurrent metric connection.
In this paper we introduce a new type of semi-symmetric non-metric ϕ-conne-
ction in a Kenmotsu manifold. The paper is organized as follows:

After introduction, in Section 2, we give a brief account of Kenmotsu man-
ifolds. In Section 3, we define a special type of semi-symmetric non-metric
ϕ-connection on Kenmotsu manifolds. In section 4 we establish the relation
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between the curvature tensors with respect to the special type of the semi-
symmetric non-metric ϕ-connection and the Levi-Civita connection and prove
that if the curvature tensor with respect to the semi-symmetric non-metric ϕ-
connection ∇̄ vanishes, then the Kenmotsu manifold is locally isometric to the
hyperbolic space Hn(−1). In Section 5 we consider Weyl conformal curvature
tensor of a Kenmotsu manifold with respect to the semi-symmetric non-metric
ϕ-connection. Among others we prove that theWeyl conformal curvature tensor
with respect to the Levi-Civita connection and the semi-symmetric non-metric
ϕ-connection are equivalent. Moreover, Section 6 deals with a ϕ-Weyl semi-
symmetric Kenmotsu manifold with respect to the semi-symmetric non-metric
ϕ-connection. Finally, an illustrative example is given to verify our result.

2. Kenmotsu Manifolds

Let M be an (2n+ 1)-dimensional almost contact metric manifold with an
almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field ϕ,
a vector field ξ, a 1-form η and the Riemannian metric g on M satisfying ([4],
[5])

(2.1) η(ξ) = 1, ϕ(ξ) = 0, η(ϕ(X)) = 0, g(X, ξ) = η(X),

(2.2) ϕ2(X) = −X + η(X)ξ,

(2.3) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X ,Y on χ(M). A manifold with the almost contact metric
structure (ϕ, ξ, η, g) is an almost Kenmotsu manifold if the following conditions
are satisfied

dη = 0; dΩ = 2η ∧ Ω,

where Ω is the 2-form defined by Ω(X,Y ) = g(X,ϕY ). Any normal almost Ken-
motsu manifold is a Kenmotsu manifold. An almost contact metric structure
(ϕ, ξ, η, g) is a Kenmotsu manifold [13] if and only if

(2.4) (∇Xϕ)(Y ) = g(ϕX, Y )ξ − η(Y )ϕX.

Hereafter we denote the Kenmotsu manifold of dimension (2n+1) by M . From
the above relations, it follows that

(2.5) ∇Xξ = X − η(X)ξ,

(2.6) (∇Xη)(Y ) = g(X,Y )− η(X)η(Y ),

(2.7) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.8) R(ξ,X)Y = η(Y )X − g(X,Y )ξ,
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(2.9) η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X),

(2.10) S(X, ξ) = −2nη(X),

where R and S denote the curvature tensor and the Ricci tensor of M, respec-
tively, with respect to the Levi-Civita connection.

Kenmotsu manifolds were studied by many authors such as Pitis [19], De
and Pathak [8], Binh et al. [3], Ozgur ([18], [17]) and many others.

Let M be a Kenmotsu manifold. M is said to be an η-Einstein manifold
if there exist real valued functions α, β such that S(X,Y ) = αg(X,Y ) +
βη(X)η(Y ). For β = 0, the manifold M is an Einstein manifold.

Now we state the following:

Lemma 2.1. [13] Let M be an η-Einstein Kenmotsu manifold of the form
S(X,Y ) = αg(X,Y ) + βη(X)η(Y ). If α = constant (or β = constant), then
M is an Einstein one.

3. Semi-symmetric non-metric ϕ-connection on Kenmotsu
manifolds

This section deals with a special type of semi-symmetric non-metric ϕ-
connection on a Kenmotsu manifold. Let (M2n+1, g) be a Kenmotsu Manifold
with the Levi-Civita connection ∇ and we define a linear connection ∇̄ on M
by

(3.1) ∇̄XY = ∇XY − η(Y )X − 2η(X)Y + g(X,Y )ξ.

Using (3.1), the torsion tensor T of M with respect to the connection ∇̄ is
given by

T (X,Y ) = ∇̄XY − ∇̄Y X − [X,Y ] = η(Y )X − η(X)Y.(3.2)

The linear connection ∇̄ satisfying (3.2) is a semi-symmetric connection.
So the equation (3.1) turns into

(∇̄Xg)(Y, Z) = ∇̄Xg(Y, Z)− g(∇̄XY, Z)− g(Y, ∇̄XZ)

= 4η(X)g(Y, Z) ̸= 0.(3.3)

The linear connection ∇̄ satisfying (3.2) and (3.3) is called a semi-symmetric
non-metric connection.

By making use of (2.1), (2.4) and (3.1), it is obvious that

(∇̄Xϕ)(Y ) = ∇̄XϕY − ϕ(∇̄XY ) = 0.(3.4)
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The linear connection ∇̄ defined by (3.1) satisfying (3.2), (3.3) and (3.4) is
a special type of semi-symmetric non-metric ϕ-connection on Kenmotsu mani-
folds.

Conversely, we show that a linear connection ∇̄ defined on M satisfying
(3.2), (3.3) and (3.4) is given by (3.1). Let H be a tensor field of type (1, 2)
and

(3.5) ∇̄XY = ∇XY +H(X,Y ).

Then we conclude that

(3.6) T (X,Y ) = H(X,Y )−H(Y,X).

Further using (3.5), it follows that

(∇̄Xg)(Y, Z) = ∇̄Xg(Y, Z)− g(∇̄XY, Z)− g(Y, ∇̄XZ) = −g(H(X,Y ), Z)

−g(Y,H(X,Z)).(3.7)

In view of (3.3) and (3.7) yields

(3.8) g(H(X,Y ), Z) + g(Y,H(X,Z)) = −4η(X)g(Y, Z).

Also using (3.8) and (3.6), we derive that

g(T (X,Y ), Z)+g(T (Z,X), Y )+g(T (Z, Y ), X) = 2g(H(X,Y ), Z)+4η(X)g(Y, Z)

−4η(Y )g(X,Z)− 4η(Z)g(X,Y ).

The above equation yields

g(H(X,Y ), Z) =
1

2
[g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X)]

−2η(X)g(Y, Z) + 2η(Y )g(X,Z) + 2η(Z)g(X,Y ).(3.9)

Let T ′ be a tensor field of type (1, 2) given by

(3.10) g(T ′(X,Y ), Z) = g(T (Z,X), Y ).

Adding (2.1), (3.2) and (3.10), we obtain

(3.11) T ′(X,Y ) = η(X)Y − g(X,Y )ξ.

From (3.9) we have by using (3.10) and (3.11)
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g(H(X,Y ), Z) =
1

2
[g(T (X,Y ), Z) + g(T ′(X,Y ), Z) + g(T ′(Y,X), Z)]

−2η(X)g(Y, Z) + 2η(Y )g(X,Z) + 2η(Z)g(X,Y ) = −η(Y )g(X,Z)

−2η(X)g(Y, Z) + η(Z)g(X,Y ).(3.12)

Now contracting Z in (3.12) and using (2.1), we obtain that

H(X,Y ) = −η(Y )X − 2η(X)Y + g(X,Y )ξ.(3.13)

Combining (3.5) and (3.13), it follows that

∇̄XY = ∇XY − η(Y )X − 2η(X)Y + g(X,Y )ξ.

From the above discussions we conclude the following:

Theorem 3.1. The linear connection ∇̄XY = ∇XY − η(Y )X − 2η(X)Y +
g(X,Y )ξ is a special type of semi-symmetric non-metric ϕ-connection on a
Kenmotsu manifold.

4. Curvature tensor of a Kenmotsu manifold with respect
to the semi-symmetric non-metric ϕ-connection

In this section we obtain the expressions of the curvature tensor, Ricci tensor
and scalar curvature of M with respect to the semi-symmetric non-metric ϕ-
connection defined by (3.1).

Analogous to the definitions of the curvature tensor of M with respect to
the Levi-Civita connection ∇, we define the curvature tensor R̄ of M with
respect to the semi-symmetric non-metric ϕ-connection ∇̄ by

(4.1) R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z,

where X,Y, Z ∈ χ(M), the set of all differentiable vector fields on M .
Using (2.1), (2.2) and (3.1) in (4.1), we obtain

R̄(X,Y )Z = R(X,Y )Z + (∇Y η)(Z)X − (∇Xη)(Z)Y + η(Y )η(Z)X

−η(X)η(Z)Y.(4.2)

By making use of (2.4) and (2.6) in (4.2), we have

(4.3) R̄(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y.

So the equation (4.3) turns into

(4.4) R̄(X,Y )Z = −R̄(Y,X)Z,
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and

(4.5) R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0.

We call (4.5) the first Bianchi identity with respect to ∇̄ on Kenmotsu mani-
folds.

Taking the inner product of (4.3) with U, it follows that

(4.6) ˜̄R(X,Y, Z, U) = R̃(X,Y, Z, U) + g(Y, Z)g(X,U)− g(X,Z)g(Y, U),

where U ∈ χ(M), ˜̄R(X,Y, Z, U) = g(R̄(X,Y )Z,U) and

R̃(X,Y, Z, U) = g(R(X,Y )Z,U).
Equation (4.6) yields

˜̄R(X,Y, Z, U) = − ˜̄R(X,Y, U, Z).

Let {e1, ..., e2n+1} be a local orthonormal basis of the tangent space at a
point of the manifold M . Then by putting X = U = ei in (4.6) and taking
summation over i, 1 ≤ i ≤ 2n+ 1 and also using (2.1), we get

(4.7) S̄(Y, Z) = S(Y, Z) + 2ng(Y, Z),

where S̄ and S denote the Ricci tensor of M with respect to ∇̄ and ∇,
respectively.

Equation (4.7) implies that

S̄(Y, Z) = S̄(Z, Y ).

Let r̄ and r denote the scalar curvature of M with respect to ∇̄ and ∇,
respectively, i.e., r̄ =

∑2n+1
i=1 S̄(ei, ei) and r =

∑2n+1
i=1 S(ei, ei).

Again let {e1, ..., e2n+1} be a local orthonormal basis of vector fields in
M . Then by putting Y = Z = ei in (4.7) and taking summation over i,
1 ≤ i ≤ 2n+ 1 and also using (2.1), it follows that

r̄ = r + 2n(2n+ 1).

Summing up all of the above equations, we can state the following proposi-
tion:

Proposition 4.1. For a Kenmotsu manifold M with respect to a special type
of semi-symmetric non-metric ϕ-connection ∇̄

(i) The curvature tensor R̄ is given by

R̄(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y,

(ii) The Ricci tensor S̄ is given by

S̄(Y, Z) = S(Y, Z) + 2ng(Y, Z),
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(iii) The scalar curvature r̄ is given by

r̄ = r + 2n(2n+ 1),

(iv)R̄(X,Y )Z = −R̄(Y,X)Z,
(v)R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0,
(vi) The Ricci tensor S̄ is symmetric,

(vii) ˜̄R(X,Y, Z, U) = − ˜̄R(X,Y, U, Z).

Definition 4.2. A Kenmotsu manifold with respect to the Levi-Civita con-
nection is of constant curvature if its curvature tensor R is of the form

g(R(X,Y )Z,U) = k[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)],

where k is a constant.

If ˜̄R = 0, then the equation (4.6) turns into

(4.8) R̃(X,Y, Z, U) = g(X,Z)g(Y, U)− g(Y, Z)g(X,U).

Therefore, g(R(X,Y )Z,U) = k[g(Y, Z)g(X,U) − g(X,Z)g(Y, U)], where k =
−1. From which it follows that the Kenmotsu manifold with respect to the
Levi-Civita connection is of constant curvature −1.

This leads to the following theorem:

Theorem 4.3. If the curvature tensor of ∇̄ in a Kenmotsu manifold vanishes,
then the Kenmotsu manifold is locally isometric to the hyperbolic space Hn(−1).

Definition 4.4. For each plane p in the tangent space Tx(M), the sectional

curvature K(p) is defined by K(p) = R̃(X,Y,X,Y )

g(X,X)g(Y,Y )−g(X,Y )2
, where {X,Y } is

orthonormal basis for p. Clearly K(p) is the independent of the choice of the
orthonormal basis {X,Y } [2].

Putting Z = X, U = Y in (4.8), we get

R̃(X,Y,X, Y ) = [g(X,X)g(Y, Y )− g(X,Y )g(X,Y )].

Then from the above equation we conclude that

K(p) =
R̃(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )
2 = −1.

Summing up, we can state the following theorem :

Theorem 4.5. If in a Kenmotsu manifold the curvature tensor of a special
type of semi-symmetric non-metric ϕ-connection ∇̄ vanishes, then the sectional
curvature of the plane determined by two vectors X,Y ∈ ξ⊥ is −1.

Lemma 4.6. [19] The Kenmotsu manifold M has constant sectional curvature
−1 if and only if M is obtained by a concircular structure transformation from
Cn × R endowed with the canonical cosymplectic structure.
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Therefore from Theorem 4.5 and Lemma 4.6 we can state the following
theorem:

Theorem 4.7. If in a Kenmotsu manifold the curvature tensor of the spe-
cial type of semi-symmetric non-metric ϕ-connection ∇̄ vanishes, then the
Kenmotsu manifold is obtained by a concircular structure transformation from
Cn × R endowed with the canonical cosymplectic structure.

5. Weyl conformal curvature tensor of a Kenmotsu man-
ifold with respect to the semi-symmetric non-metric
ϕ-connection

In a Riemannian manifold Weyl conformal curvature tensor C is defined as
follows:

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

−g(X,Z)QY ] +
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ],(5.1)

where R is the Riemannian curvature tensor of type (1, 3), the Ricci operator
Q is defined by g(QX,Y ) = S(X,Y ), S is the Ricci tensor of type (0, 2) and r
denotes the scalar curvature.
Let C̄ be the conformal curvature tensor of M with respect to the semi-
symmetric non-metric ϕ-connection ∇̄. Then

C̄(X,Y )Z = R̄(X,Y )Z − 1

2n− 1
[S̄(Y, Z)X − S̄(X,Z)Y + g(Y, Z)Q̄X

−g(X,Z)Q̄Y ] +
r̄

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ],(5.2)

where R̄ is the Riemannian curvature tensor of type (1, 3), the Ricci operator
Q̄ is defined by g(Q̄X, Y ) = S̄(X,Y ), S̄ is the Ricci tensor of type (0, 2) and
r̄ denotes the scalar curvature with respect to semi-symmetric non-metric ϕ-
connection ∇̄.
An application of Proposition 4.1 in (5.2) yields

C̄(X,Y )Z = C(X,Y )Z,(5.3)

for all X, Y , Z. Thus the Weyl conformal curvature tensor with respect to the
Levi-Civita connection and the semi-symmetric non-metric ϕ-connection are
equivalent. Therefore, we conclude the following:

Theorem 5.1. The Weyl conformal curvature tensor with respect to the Levi-
Civita connection and the semi-symmetric non-metric ϕ-connection are equiv-
alent.

In [3], Binh et al. proved the following:
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Proposition 5.2. Let M be a Kenmotsu manifold. Then the following asser-
tions are equivalent:
(a) M has constant sectional curvature -1;
(b) M is conformally flat;
(c) M is conformally symmetric;
(d) M is conformally semi-symmetric (i. e. R.C = 0);
(e) R(X, ξ).C = 0 for any X.

Suppose R̄ = 0, then from Proposition 4.1 we getR(X,Y )Z = −{g(Y, Z)X−
g(X,Z)Y }. It follows that M is a manifold of constant curvature −1 with
respect to the Levi-Civita connection. Then from Proposition 5.2 we con-
clude that M is conformally flat. Since C̄ = C, then M is conformally flat
with respect to the semi-symmetric non-metric ϕ-connection. Conversely, if
C̄ = 0, then C = 0. Hence by Proposition 5.2 M is a manifold of constant
curvature −1 with respect to the Levi-Civita connection, i.e., R(X,Y )Z =
−{g(Y, Z)X − g(X,Z)Y }. Again in view of Proposition 4.1 we have R̄ = 0.
Thus we conclude that C = 0, C̄ = 0 and R̄ = 0 are equivalent. Thus we can
state the following:

Theorem 5.3. Let M be a Kenmotsu manifold. Then with respect to the semi-
symmetric non-metric ϕ-connection the following assertions are equivalent:
(a) M has constant sectional curvature -1;
(b) M is conformally flat (C̄ = 0);
(c) M is conformally symmetric (∇̄C̄ = 0);
(d) M is conformally semi-symmetric (i. e. R̄.C̄ = 0);
(e) R̄(X, ξ).C̄ = 0 for any X.

6. ϕ-Weyl semisymmetric Kenmotsu manifold with re-
spect to the semi-symmetric non-metric ϕ-connection

Definition 6.1. [26] A Riemannian manifold (M2n+1, g), n > 1 is said to be
ϕ-Weyl semisymmetric if C(X,Y ).ϕ = 0 holds on M .

First we consider ϕ-Weyl semisymmetric Kenmotsu manifolds. Then

(6.1) (C(X,Y ).ϕ)Z = 0,

for all X, Y, Z. Putting Z = ξ in (6.1) we have

(6.2) ϕ(C(X,Y )ξ) = 0.

Using (5.1) in (6.2) we get

−(1 +
r

2n
){η(X)ϕY − η(Y )ϕX} = η(Y )ϕQX − η(X)ϕQY.(6.3)

Putting X = ξ in the above equation we get

S(X,Y ) = −(1 +
r

2n
)g(X,Y )− (2n− 1− r

2n
)η(X)η(Y ).(6.4)

Thus in view of the above we can state the following:
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Proposition 6.2. A ϕ-Weyl semi-symmetric Kenmotsu manifold (M2n+1, g),
n > 1 is an η-Einstein manifold.

Since C̄ = C, then (C(X,Y ).ϕ)Z = 0 and (C̄(X,Y ).ϕ)Z = 0 are equivalent.
Thus we can state the following:

Theorem 6.3. A ϕ-Weyl semi-symmetric Kenmotsu manifold (M2n+1, g),
n > 1 with respect to the semi-symmetric non-metric ϕ-connection is an η-
Einstein manifold.

7. Example of a 5-dimensional Kenmotsu manifold with
respect to the semi-symmetric non-metric ϕ-connection

We consider the 5-dimensional smooth manifold M = {(x, y, z, u, v) ∈ R5},
where (x, y, z, u, v) are the standard coordinates in R5.
We choose the vector fields

e1 = e−v ∂

∂x
, e2 = e−v ∂

∂y
, e3 = e−v ∂

∂z
, e4 = e−v ∂

∂u
, e5 =

∂

∂v
,

which are linearly independent at each point of M [7].
Let g be the Riemannian metric defined by

g(ei, ej) = 0, i ̸= j, i, j = 1, 2, 3, 4, 5

and
g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.

Let η be the 1-form defined by

η(Z) = g(Z, e5),

for any Z ∈ χ(M).
Let ϕ be the (1, 1)-tensor field defined by

ϕe1 = e3, ϕe2 = e4, ϕe3 = −e1, ϕe4 = −e2, ϕe5 = 0.

Using the linearity of ϕ and g, we have

η(e5) = 1,

ϕ2(Z) = −Z + η(Z)e5

and
g(ϕZ, ϕU) = g(Z,U)− η(Z)η(U),

for any U,Z ∈ χ(M). Thus, for e5 = ξ, M(ϕ, ξ, η, g) defines an almost contact
metric manifold. The 1-form η is closed.

We have

Ω(
∂

∂x
,
∂

∂z
) = g(

∂

∂x
, ϕ

∂

∂z
) = g(

∂

∂x
,− ∂

∂x
) = −e2v.
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Hence, we obtain Ω = −e2vdx ∧ dz. Thus, dΩ = −2e2vdv ∧ dx ∧ dz = 2η ∧ Ω.
Therefore, M(ϕ, ξ, η, g) is an almost Kenmotsu manifold. It can be seen that
M(ϕ, ξ, η, g) is normal. So, it is a Kenmotsu manifold.

Then we have

[e1, e2] = [e1, e3] = [e1, e4] = [e2, e3] = 0, [e1, e5] = e1,

[e4, e5] = e4, [e2, e4] = [e3, e4] = 0, [e2, e5] = e2, [e3, e5] = e3.

The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s
formula which is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Taking e5 = ξ and using the above formula we obtain the following:

∇e1e1 = −e5, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = e1,

∇e2e1 = 0, ∇e2e2 = −e5, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e5, ∇e3e4 = 0, ∇e3e5 = e3,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e5, ∇e4e5 = e4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

Further we obtain the following:

∇̄eiej = 0, i, j = 1, 2, 3, 4, 5.

and hence
(∇̄eiϕ)ej = 0, i, j = 1, 2, 3, 4, 5.

By the above results, we can easily obtain the non-vanishing components
of the curvature tensors as follows:

R(e1, e2)e2 = R(e1, e3)e3 = R(e1, e4)e4 = R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = R(e5, e3)e5 = R(e2, e3)e2 = e3,

R(e2, e3)e3 = R(e2, e4)e4 = R(e2, e5)e5 = −e2,R(e3, e4)e4 = −e3,

R(e2, e5)e2 = R(e1, e5)e1 = R(e4, e5)e4 = R(e3, e5)e3 = e5,

R(e1, e4)e1 = R(e2, e4)e2 = R(e3, e4)e3 = R(e5, e4)e5 = e4

and
R̄(ei, ej)ek = 0, i, j, k = 1, 2, 3, 4, 5.

From the components of the curvature tensor of the Kenmotsu manifold it
can be easily seen that the manifold is of constant curvature −1. Therefore
Theorem 5.1 is verified.
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