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Abstract. In this study, the notion of locally ϕ-quasiconformally
symmetric Sasakian Finsler structures on the distributions of tangent
bundles is introduced and its various geometric properties are studied
with an example in dimension 3.
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1. Introduction

Miron [5], used the vector bundle approach in Finsler geometry. Sinha and
Yadav [7], defined almost contact structures on vector bundles and studied their
integrability condition. In [8], Yaliniz and Caliskan analysed almost contact
and Sasakian Finsler structures on vector bundles and extended their charac-
teristics with curvature properties and some structure theorems. Massamba
and Mbatakou [4], approved pulled-back bundles to construct Sasakian Finsler
structures. In this paper, tangent bundle approach is chosen to clarify locally ϕ-
quasiconformal symmetry property of Sasakian Finsler structures. On the other
hand, quasiconformal curvature tensor appears in the literature with Yano and
Sawaki [9]. Also, ϕ-quasiconformal flatness and ϕ-quasiconformal symmetry
features of several manifolds, like [2, 3], are studied quite frequently. Here, we
are interested in locally ϕ-quasiconformally symmetric Sasakian Finsler struc-
tures on tangent bundles.

In this section, a brief account of Sasakian Finsler structures on tangent
bundles is given:

Let M be an m = (2n+ 1)-dimensional smooth manifold. In this manner,
TxM is denoted as the tangent space at x ∈ M where x = (x1, . . . , xm) are the
local coordinates of M and y = yi ∂

∂xi ∈ TxM . Then u = (x, y) ∈ TM where
TM is the tangent bundle.
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Definition 1.1. The function F : TM → [0,∞[, the Hessian G and the man-
ifold Fm = (M,F ) are called ”Finsler norm”, ”Finsler metric” and ”Finsler
manifold”, respectively, if the following relations hold [1]:

1. F is smooth on the slit tangent bundle TM ,

2. F (x, λy) = |λ|F (x, y), for λ ∈ R and u = (x, y) ∈ TM ,

3. gij(x, y) =
1
2 [

∂2F 2

∂yi∂yj ] is positive definite on TM .

Assume that (xi, yi) and { ∂
∂xi ,

∂
∂yi } denote the local coordinates of TM

and natural bases of TuTM , respectively. If π : TM → M is the projection
map, the differential map π∗ : TuTM → Tπ(u)M satisfies Xu ∈ π∗(Xu). So,
ker(π) = V TM .

The non-linear connection HTM = (N j
i (x, y)) is the complementary distri-

bution of V TM for TTM i.e. TTM = HTM ⊕ V TM , where N j
i = ∂Nj

∂yi are

obtained via the spray coefficients N j = 1
4g

jk( ∂2F 2

∂yk∂xh y
h − ∂F 2

∂xk ) [8].
For every u ∈ TM and X ∈ TuTM , by using non-linear connections,

X = (Xi ∂
∂xi −N j

i (x, y)X
i ∂
∂yj ) + ((N j

i (x, y)X
i +Xj) ∂

∂yj ) = XH +XV unique
decomposition is obtained as the horizontal part and the vertical part of vector
field X where XH ∈ TH

u TM and XV ∈ TV
u TM and TH

u TM and TV
u TM are

spanned by { δ
δxi } and { ∂

∂yj } respectively. In addition, their dual bases are

{dxi} and {δyj(= dyj +N j
i dx

i)}, respectively.
Similarly, for η ∈ (TuTM)∗, η = η̃idx

i+ηjδy
j = ηH +ηV is obtained where

ηH ∈ (TH
u TM)∗ and ηV ∈ (TV

u TM)∗ .
The Sasaki-Finsler metric G on TM is defined as follows:

G = GH + GV in the type of (
0 0
2 0

) and (
0 0
0 2

) on TMH and TMV ,

respectively. Thus, Sasakian Finsler metric structures (ϕH , ξH , ηH , GH) and
(ϕV , ξV , ηV , GV ) can be constructed on either TMH or TMV , respectively

where; ϕ denotes the tensor field of type (
1 1
1 1

), ξ is the structure vector

field of type (
0 0
1 1

), η is the 1-form of type (
1 1
0 0

), ▽ is the Finsler con-

nection with respect to G on TM , L is the Lie differential operator, R is the

Riemann curvature tensor field of type (
1 1
3 3

), S is the Ricci tensor field of

type (
0 0
2 2

), for XH , Y H , ξH ∈ TH
u TM and XV , Y V , ξV ∈ TV

u TM , respec-

tively. The following relations hold for m-dimensional Sasakian Finsler metric
manifolds (TMH , ϕH , ξH , ηH , GH) and (TMV , ϕV , ξV , ηV , GV ) [8]:

(1.1) ϕ.ϕ = −I + ηH ⊗ ξH + ηV ⊗ ξV

(1.2) ϕξH = 0, ϕξV = 0
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(1.3) ηH(ξH) = 1, ηV (ξV ) = 1

(1.4) ηH(ϕXH) = 0, ηV (ϕXV ) = 0, ηH(ϕXV ) = 0

Ω(XH , Y H) = 2(▽H
Xη)(Y H) = −2(▽H

Y η)(XH)

Ω(XH , Y H) = 2(▽H
Xη)(Y H) = −2(▽H

Y η)(XH)(1.5)

G(XH , Y H) = G(ϕHXH , ϕHY H) + ηH(XH)ηH(Y H)

G(XV , Y V ) = G(ϕV XV , ϕV Y V ) + ηV (XV )ηV (Y V )(1.6)

(1.7) G(XH , ξH) = ηH(XH), G(XV , ξV ) = ηV (XV )

G(ϕHXH , Y H) = −G(XH , ϕHY H)

G(ϕV XV , Y V ) = −G(XV , ϕV Y V )(1.8)

Ω(XH , Y H) = G(XH , ϕY H) = dηH(XH , Y H) = Ω(ϕXV , ϕY V )

Ω(XV , Y V ) = G(XV , ϕY V ) = dηV (XV , Y V ) = Ω(ϕXV , ϕY V )(1.9)

(1.10) Ω(XH , ξH) = Ω(XV , ξV ) = 0

(1.11) G(XH , ϕHY H) = dηH(XH , Y H), G(XV , ϕV Y V ) = dηH(XH , Y H)

(1.12) ▽H
XξH = −1

2
ϕHXH ,▽V

XξV = −1

2
ϕV XV

(▽H
XϕH)Y H =

1

2
[G(XH , Y H)ξH − ηH(Y H)XH ]

(▽V
XϕV )Y V =

1

2
[G(XV , Y V )ξV − ηV (Y V )XV ](1.13)

R(XH , Y H)ξH =
1

4
[ηH(Y H)XH − ηH(XH)Y H ]

R(XV , Y V )ξV =
1

4
[ηV (Y V )XV − ηV (XV )Y V ](1.14)

R(XH , ξH)Y H =
1

4
[ηH(Y H)XH −G(XH , Y H))ξH ]

R(XV , ξV )Y V =
1

4
[ηV (Y V )XV −G(XV , Y V )ξV ](1.15)
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(1.16) S(XH , ξH) =
n

2
ηH(XH), S(XV , ξV ) =

n

2
ηV (XV )

(1.17) S(ξH , ξH) =
n

2
, S(ξV , ξV ) =

n

2

(1.18) S(XH , Y H) = G(QXH , Y H), S(XH , Y H) = G(QXV , Y V )

(1.19) Q(XH) =

2n+1∑
i=1

R(EH
i , XH)EH

i , Q(XV ) =

2n+1∑
i=1

R(EV
i , XV )EV

i

(1.20) r =

2n+1∑
i=1

(S(EH
i , EH

i ) + S(Ev
i , E

v
i ))

Above-stated formulas can be used to construct Sasakian Finsler structures
on both TMH and TMV . But in this paper, in second and third sections,
locally ϕ-quasiconformal symmetry of TMH and 3-dimensional TMH is dis-
cussed briefly.

2. Locally ϕ-quasiconformally symmetric Sasakian Finsler
structures on TMH

Definition 2.1. Let TMHbe a Sasakian Finsler manifold, then it is locally
ϕ-symmetric if and only if

ϕ2((▽H
wR)(XH , Y H)ZH) = 0(2.1)

for all XH , Y H , ZH ,WH ∈ TH
u TM .

Definition 2.2. Let TMHbe a Sasakian Finsler manifold, then it is locally
ϕ-symmetric if and only if

ϕ2((▽H
WC∗)(XH , Y H)ZH) = 0(2.2)

for all vector fields XH , Y H , ZH ,WH ∈ TH
u TM and where the quasiconformal

curvature tensor C∗ is defined by

C∗(XH , Y H)ZH = aR(XH , Y H)ZH + b[S(Y H , ZH)XH

−S(XH , ZH)Y H +G(Y H , ZH)QXH −G(XH , ZH)QY H ]

− r

2n+ 1
(
a

2n
+ 2b)(G(Y H , ZH)XH −G(XH , ZH)Y H).(2.3)

for all XH , Y H , ZH ,WH ∈ TH
u TM and the constants a, b.

If a = 1 and b = 1
2n−1 , (2.3) can be expressed as follows:
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C∗(XH , Y H)ZH = R(XH , Y H)ZH + 1
2n−1 [S(Y

H , ZH)XH −
S(XH , ZH)Y H +G(Y H , ZH)QXH −G(XH , ZH)QY H ]−

r
(2n)(2n−1) (G(Y H , ZH)XH −G(XH , ZH)Y H) = C(XH , Y H)ZH

where C is Weyl conformal curvature tensor.

Calculating the covariant differentiation of (2.3), the following equality is
obtained:

(▽H
WC∗)(XH , Y H)ZH = a(▽H

WR)(XH , Y H)ZH + b[(▽H
WS)(Y H , ZH)XH

−(▽H
WS)(XH , ZH)Y H +G(Y H , ZH)(▽H

WQ)XH −G(XH , ZH)(▽H
WQ)Y H ]

−dr(WH)

2n+ 1
(
a

2n
+ 2b)(G(Y H , ZH)XH −G(XH , ZH)Y H).(2.4)

If S(Y H ,WH) = λG(WH , Y H) is satisfied, where λ is a constant and
XH , Y H ∈ TH

u TM , the manifold TMH is called an Einstein manifold, where
QXH = λXH .

By using (1.1); (2.2) takes the following form:

−(▽H
WC )(XH , Y H)ZH + ηH((▽H

WC )(XH , Y H)ZH)ξH = 0.

By virtue of (2.4), we obtain

0 = −a(▽H
WR)(XH , Y H)ZH − b(▽H

WS)(Y H , ZH)XH +
b(▽H

WS)(XH , ZH)Y H − bG(Y H , ZH)(▽H
WQ)XH + bG(XH , ZH)(▽H

WQ)Y H +
dr(WH)
2n+1 ( a

2n + 2b)G(Y H , ZH)XH − dr(WH)
2n+1 ( a

2n + 2b)G(XH , ZH)Y H +

aηH((▽H
WR)(XH , Y H)ZH)ξH + b(▽H

WS)(Y H , ZH)ηH(XH)ξH −
b(▽H

WS)(XH , ZH)ηH(Y H)ξH + bG(Y H , ZH)ηH((▽H
WQ)XH)ηH(UH)−

bG(XH , ZH)ηH((▽H
WQ)Y H)ξH − dr(WH)

2n+1 ( a
2n + 2b)G(Y H , ZH)ηH(XH)ξH +

dr(WH)
2n+1 ( a

2n + 2b)G(XH , ZH)ηH(Y H)ξH .

For UH ∈ TH
u TM , the last equality is expressed by

0 = −aG((▽H
WR)(XH , Y H)ZH , UH)− b(▽H

WS)(Y H , ZH)G(XH , UH) +
b(▽H

WS)(XH , ZH)G(Y H , UH)− bG(Y H , ZH)G((▽H
WQ)XH , UH) +

bG(XH , ZH)G((▽H
WQ)Y H , UH) + dr(WH)

2n+1 ( a
2n + 2b)G(Y H , ZH)G(XH , UH)−

dr(WH)
2n+1 ( a

2n + 2b)G(XH , ZH)G(Y H , UH) +

aηH((▽H
WR)(XH , Y H)ZH)ηH(UH) + b(▽H

WS)(Y H , ZH)ηH(XH)ηH(UH)−
b(▽H

WS)(XH , ZH)ηH(Y H)ηH(UH) + bG(Y H , ZH)ηH((▽H
WQ)XH)ηH(UH)−

bG(XH , ZH)ηH((▽H
WQ)Y H)ηH(UH)− dr(WH)

2n+1 ( a
2n +

2b)G(Y H , ZH)ηH(XH)ηH(UH)+ dr(WH)
2n+1 ( a

2n +2b)G(XH , ZH)ηH(Y H)ηH(UH)

Putting XH = UH = EH
i , where {EH

i }, i = 1, 2, . . . , 2n+ 1 is an orthonor-
mal basis of TH

u TM , and taking summation over i, we have
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0 = (−a− b(2n+ 1))(▽H
WS)(Y H , ZH) + b(▽H

WS)(EH
i , ZH)G(Y H , EH

i )

−G(Y H , ZH)[bG((▽H
WQ)EH

i , EH
i ) + dr(WH)(

a

2n
+ 2b)] + bG((▽H

WQ)Y H , ZH)

−dr(WH)

2n+ 1
(
a

2n
+ 2b)G(EH

i , ZH)G(Y H , EH
i )

+aηH((▽H
WR)(EH

i , Y H)ZH)ηH(EH
i )(2.5)

In (2.5) aηH((▽H
WR)(EH

i , Y H)ZH)ηH(EH
i ) is expressed by

ηH((▽H
WR)(EH

i , Y H)ZH) = G(▽H
W (R(EH

i , Y H)ξH), ξH)

−G((▽H
WEH

i , Y H)ξH , ξH)

−G(R(EH
i ,▽H

WY H)ξH , ξH)−G(R(EH
i , Y H)▽H

W ξH , ξH)(2.6)

Owing to the fact that EH
i is an orthonormal basis, it is easily seen that

▽H
WEH

i = 0.
By virtue of (1.14), it is possible to obtain below relation:

0 = G(R(EH
i ,▽H

WY H)ξH , ξH) =
1
4 [G(▽H

WY H , ξH)G(EH
i , ξH)−G(EH

i , ξH)G(▽H
WY H , ξH)]

By using these equalities, teh second and third terms of the right part of
(2.6) vanish. Thus (2.6) takes this form:

G((▽H
WR)(EH

i , Y H)ξH , ξH) = G((▽H
WR)(EH

i , Y H)ξH , ξH)

−G(R(EH
i , Y H)▽H

W ξH , ξH).(2.7)

Due to G((▽H
WR)(EH

i , Y H)ξH , ξH) + G(R(EH
i , Y H)ξH ,▽H

W ξH) = 0, (2.7)
can be expressed as follows:

0 = G((▽H
WR)(EH

i , Y H)ξH , ξH) =
−G((R)(EH

i , Y H)ξH ,▽H
W ξH) +G(R(EH

i , Y H)ξH ,▽H
W ξH)

In consequence of these calculations and by putting ZH = ξH in (2.5) we
have the following:

(−a− b(2n+ 1))(▽H
WS)(Y H , ξH) + b(▽H

WS)(ξH , ξH)ηH(Y H)

−ηH(Y H)[bG((▽H
WQ)ξH , ξH)

+dr(WH)(
a

2n
+ 2b)] + bG((▽H

WQ)Y H , ξH) = 0(2.8)

We calculate (▽H
WS)(ξH , ξH) = 0 and G((▽H

WQ)ξH , ξH) = 0 and addition-
ally G((▽H

WQ)Y H , ξH) = 0.
So, (2.8) is expressed by

(▽H
WS)(Y H , ξH) = dr(WH)(− a+ 4bn

(2n+ 1)(a+ (2n− 1)b)
)ηH(Y H)(2.9)

where a + 4bn ̸= 0. Because if a + 4bn = 0 from (2.3), we get C∗ = aC. By
putting Y H = ξH in (2.9), we find the following:
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(▽H
WS)(ξH , ξH) = dr(WH)(− a+4bn

(2n+1)(a+(2n−1)b) )

0 = dr(WH).

This implies r is constant. So we find (▽H
WS)(Y H , ξH) = 0.

By the virtue of (1.5) and (1.9), from (2.9) we have

S(Y H , ϕWH) = n
2G(WH , ϕY H)

By putting ϕWH instead of WH , we find S(Y H ,WH) = n
2G(WH , Y H). If we

get n
2 = λ this means that a ϕ-quasiconformally symmetric manifold TMH is

an Einstein manifold. Then it is possible to have the following theorem:

Theorem 2.3. If a Sasakian Finsler manifold TMH is locally ϕ-quasiconfor-
mally symmetric, then it is an Einstein manifold.

If we get S(XH , Y H) = λG(XH , Y H) in (2.3), the below relation is found.

C∗(XH , Y H)ZH = (a+ 4bn

− 4r

2n+ 1
(
a

2n
+ 2b))R(XH , Y H)ZH(2.10)

From (2.2), it is possible to say that TMH is locally ϕ-quasiconformally
symmetric because C∗ satisfies ϕ2(▽H

WC∗(XH , Y H)ZH) = 0 for all vector fields
XH , Y H , ZH ∈ TH

u TM . Also ϕ2(▽H
wR)(XH , Y H)ZH = 0 implies that TMH

is locally ϕ-symmetric. So, it enables to state the following corollary:

Corollary 2.4. Let TMH be locally ϕ-quasiconformally symmetric. Then it
is locally ϕ-symmetric.

3. Locally ϕ-quasiconformally symmetric Sasakian Finsler
structures on 3-dimensional TMH

In a 3-dimensional TMH , due to C = 0 [6], we have

R(XH , Y H)ZH = [S(Y H , ZH)XH − S(XH , ZH)Y H +G(Y H , ZH)QXH

−G(XH , ZH)QY H ]− r

2
(G(Y H , ZH)XH −G(XH , ZH)Y H)(3.1)

Putting ZH = ξH in(3.1), by the virtue of (1.14) and (1.16), we find

(
1

4
− r

2
)[ηH(Y H)XH − ηH(XH)Y H ] = [ηH(XH)QY H

−ηH(Y H)QXH ].(3.2)

Changing Y H = ξH in (3.2), we get



68 A. F. Saglamer and N. Caliskan

QXH = (
r

2
− 1

4
)XH + (

3

4
− r

2
)ηH(XH)ξH .(3.3)

By using(3.3), we have

S(XH , Y H) = (
r

2
− 1

4
)G(XH , Y H) + (

3

4
− r

2
)ηH(XH)ηH(Y H).(3.4)

Writing(3.3) and (3.4) in (3.1), we get the following:

R(XH , Y H)ZH = (
r

2
− 1

2
)(G(Y H , ZH)XH −G(XH , ZH)Y H)

+(
3

4
− r

2
)[ηH(Y H)ηH(ZH)XH − ηH(XH)ηH(ZH)Y H

+G(Y H , ZH)ηH(XH)ξH −G(XH , ZH)ηH(Y H)ξH ].(3.5)

Using (3.3), (3.4) and (3.5) in (2.3), we obtain

C∗(XH , Y H)ZH = [
(a+ b)r

3
− 1

2
(a+ b)](G(Y H , ZH)XH −G(XH , ZH)Y H)

+(
3

4
− r

2
)(a+ b)[G(Y H , ZH)ηH(XH)ξH −G(XH , ZH)ηH(Y H)ξH

+ηH(Y H)ηH(ZH)XH − ηH(XH)ηH(ZH)Y H ].(3.6)

By calculating covariant differentiation of both sizes of (3.6)

(▽H
WC∗)(XH , Y H)ZH = (a+b

3 )dr(WH)(G(Y H , ZH)XH −G(XH , ZH)Y H) +

[r(a+b
3 )− 1

2 (a+ b)]▽H
W (G(Y H , ZH)XH −G(XH , ZH)Y H)− dr(WH)

2 (a+
b)[G(Y H , ZH)ηH(XH)ξH −G(XH , ZH)ηH(Y H)ξH + ηH(Y H)ηH(ZH)XH −

ηH(XH)ηH(ZH)Y H ] + ( 34 − r
2 )(a+ b)[▽H

W (G(Y H , ZH)ηH(XH)ξH)−
▽H

W (G(XH , ZH)ηH(Y H)ξH) + ▽H
W (ηH(Y H)ηH(ZH)XH)−

▽H
W (ηH(XH)ηH(ZH)Y H)].

Then we can write the following relation:

(▽H
WC )(XH , Y H)ZH = (a+b

3 )dr(WH)(G(Y H , ZH)XH −G(XH , ZH)Y H) +
( 34 − r

2 )(a+ b)[G(Y H , ZH)▽H
W (ηH(XH))ξH −G(XH , ZH)▽H

W (ηH(XH))ξH ].

Because XH , Y H , ZH ∈ TH
u TM are orthogonal to ξH , by using (1.1) we

get ϕ2(▽H
WC (XH , Y H)ZH) = −▽H

WC (XH , Y H)ZH + ηH(▽H
WC (XH , Y H)ZH)

from which we have

ϕ2(▽H
WC (XH , Y H)ZH) = −(

a+ b

3
)dr(WH)[G(Y H , ZH)XH

−G(XH , ZH)Y H ](3.7)

Due to ϕ2(▽H
WC (XH , Y H)ZH) = 0 if we take a+b = 0 and a = −b in (2.4),

we have C (XH , Y H)ZH = aC(XH , Y H)ZH . Because of C = 0, in (3.7)we find
dr(WH) = 0. This means that the curvature r is constant. Then it is possible
to state the following theorem:
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Theorem 3.1. Let TMH be a 3-dimensional Sasakian Finsler manifold. A
necessary and sufficient condition to be locally ϕ-quasiconformally symmetric
is that r is constant.

Corollary 3.2. Let TMH be a 3-dimensional Sasakian Finsler manifold. A
necessary and sufficient condition to be ϕ-symmetric is that r is constant.

Corollary 3.3. Let TMH be a 3-dimensional Sasakian Finsler manifold. A
necessary and sufficient condition to be locally ϕ-quasiconformally symmetric
is to be locally ϕ-symmetric.

Example 3.4. Suppose T (TM) = {TM, π,M} is the tangent bundle with
M = R3, where u ∈ TM is defined by (x1, x2, x3, y1, y2, y3). Assume the
adapted local frames of TH

u TM and TV
u TM are ( δ

δx1 ,
δ

δx2 ,
δ

δx3 ) and ( ∂
∂y1 ,

∂
∂y2 ,

∂
∂y3 ),

respectively. Then the orthonormal frame of TuTM is

Ej = Ei
j

δ
δxi + Ei

j
∂

∂yi = E1
j

δ
δx1 + E2

j
δ

δx2 + E3
j

δ
δx3 + Ẽ1

j
∂

∂y1 + Ẽ2
j

∂
∂y2 + Ẽ3

j
∂

∂y3

where

E1 = − δ
δx1 − ∂

∂y1=EH
1 + EV

1 ,

E2 = −(x2)2 δ
δx2 + x1 δ

δx3 − (y2)2 ∂
∂y1 + y1 ∂

∂y3=EH
2 + EV

2 ,

E3 = δ
δx3 + ∂

∂y3=EH
3 + EV

3 = ξ.

Let η = η̃idx
i + ηaδy

a = η1dx
1 + η2dx

2 + η3dx
3 + η̃1δy

1 + η̃2δy
2 + η̃3δy

3 =

ηH + ηV be defined by η = x1

(x2)2 dx
2 + dx3 − y1

(y2)2 δy
2 + δy3.

Suppose that ϕ = ϕH + ϕV is a tensor field such that its coefficients are
tensor fields ϕHand ϕV with the type of (1, 1). Their matrix forms are:

ϕH =

 0 − 1
(x2)2 0

(x2)2 0 0
−x1 0 0

 and ϕV =

 0 − 1
(y2)2 0

(y2)2 0 0
−y1 0 0

.
The Sasaki-Finsler metric is defined by the matrix forms:

GH =

1 0 0

0 1+(x1)2

(x2)4
x1

(x2)2

0 x1

(x2)2 1

 and GV =

1 0 0

0 1+(y1)2

(y2)4
y1

(y2)2

0 y1

(y2)2 1

 .

It is possible to construct Sasakian Finsler manifolds on both horizontal and
vertical distributions. In this example, it is shown that 3-dimensional TMH

admits the Sasakian Finsler structure (ϕH , ξH , ηH , GH).
We calculate

ϕH(ξH) = 0, ϕH(EH
1 ) = −EH

2 , ϕH(EH
2 ) = EH

1 ,

so relation (1.2) is satisfied. Similarly, (1.3) holds. Also it is possible to see
that
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ϕH(ϕH(ZH) = −a1E
H
1 − b1E

H
2 = −ZH + ηH(ZH)ξH ,

for any ZH = a1E
H
1 + b1E

H
2 + c1E

H
3 ∈ TH

u TM . Hence, it is shown that (1.1)
is true.

If ηH(ϕZH) = 0, then (1.4) is satisfied. Thus, (ϕH , ξH , ηH) is an almost
contact Finsler structure on TMH .

Due to

ηH(ZH) = c1 = GH(ZH , ξH)

for any ZH ∈ TH
u TM , thus (1.7) holds.

Because of

GH(ϕZH , ϕWH) = a1a2 + b1b2 = GH(ZH ,WH)− ηH(ZH)ηH(WH),

it can be seen that (1.6) holds. This implies (ϕH , ξH , ηH , GH) is an almost
contact Finsler metric structure.

On the other hand,

[EH
1 , EH

2 ] = −EH
3 , [EH

1 , EH
3 ] = 0, [EH

2 , EH
3 ] = 0.

Finsler connection ▽ = ▽H +▽V of metric G = GH +GV can be expressed
by the Koszul formula:

2GH(▽H
XY H , ZH)=XHGH(Y H , ZH)+Y HGH(ZH , XH)−ZHGH(XH , Y H)−

GH(XH , [Y H , ZH ])−GH(Y H , [XH , ZH ]) +GH(ZH , [XH , Y H ]). This yields

▽H
EH

1
EH

3 = 1
2E

H
2 ,▽H

EH
1
EH

2 = − 1
2E

H
3 ,▽H

EH
1
EH

1 = 0,

▽H
EH

2
EH

3 = − 1
2E

H
1 ,▽H

EH
2
EH

2 = 0,▽H
EH

2
EH

1 = 1
2E

H
3 ,

▽H
EH

3
EH

3 = 0,▽H
EH

3
EH

2 = − 1
2E

H
1 ,▽H

EH
3
EH

1 = 1
2E

H
2 .

In consequence of these calculations,

▽H
Z ξH = − 1

2 (−a1E
H
2 + b1E

H
1 ) = − 1

2ϕZ
H

is satisfied, so (1.12) holds.
Due to

(▽H
Z ϕ)WH = 1

2{−a1c2E
H
1 − b1c2E

H
2 + (a1a2 + b1b2)E

H
3 } =

1
2 [G

H(ZH ,WH)ξH − ηH(WH)ZH ],

it can be seen that (1.13) holds.
Because of

▽H
Z ηH(WH) = 1

2 (a1b2 − b1a2) =
1
2G

H(ZH , ϕWH),

(1.5) and (1.8) hold. Hence, (ϕH , ξH , ηH , GH) is a Sasakian Finsler structure
on TMH .

We can verify the following results:
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R(EH
1 , EH

2 )EH
1 = 3

4E
H
2 , R(EH

1 , EH
2 )EH

2 = − 3
4E

H
1 ,

R(EH
1 , EH

2 )EH
3 = 0, R(EH

3 , EH
1 )EH

1 = 1
4E

H
3 ,

R(EH
1 , EH

3 )EH
2 = 0, R(EH

1 , EH
3 )EH

3 = 1
4E

H
1 , R(EH

2 , EH
3 )EH

1 = 0,

R(EH
2 , EH

3 )EH
2 = − 1

4E
H
3 , R(EH

2 , EH
3 )EH

3 = 1
4E

H
2

and

S(EH
1 , EH

1 ) = − 1
2 , S(E

H
2 , EH

2 ) = − 1
2 , S(E

H
3 , EH

3 ) = 1
2

and also (1.17) holds and we get r = − 1
2 .

Consequently, the scalar curvature r is constant and by virtue of Corollary
3.2 and Corollary 3.3, TMH is locally ϕ-quasiconformally symmetric. It is
possible to verify that TMV is locally ϕ-quasiconformally symmetric, similarly.
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