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Abstract. In the present article, we define a new subclass of pseudo-
type meromorphic bi-univalent functions class Σ′ of complex order γ ∈
C\{0} and investigate the initial coefficient estimates |b0|, |b1| and |b2|.
Furthermore we mention several new or known consequences of our re-
sult.
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1. Introduction and Definitions

Let A be the class of all analytic functions of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are univalent in the open unit disc ∆ = {z : |z| < 1}. Also, let S be the
class of all functions in A which are univalent and normalized by the conditions
f(0) = 0 = f ′(0)− 1 in ∆.

An analytic function ϕ is subordinate to an analytic function ψ, written by
ϕ(z) ≺ ψ(z), provided there is an analytic function ω defined on ∆ with ω(0) =
0 and |ω(z)| < 1 satisfying ϕ(z) = ψ(ω(z)). Ma and Minda [7] unified various
subclasses of starlike and convex functions for which either of the quantity

z f ′(z)

f(z)
or 1 +

z f ′′(z)

f ′(z)

is subordinate to a more general superordinate function. For this purpose,
they considered an analytic function φ with positive real part in the unit disk
∆, φ(0) = 1, φ′(0) > 0 and φ maps ∆ onto a region starlike with respect to 1
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and symmetric with respect to the real axis. In the sequel, it is assumed that
φ is an analytic function with positive real part in the unit disk ∆, satisfying
φ(0) = 1, φ′(0) > 0 and φ(∆) is symmetric with respect to the real axis. Such
a function has a series expansion of the form

(1.2) φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , (B1 > 0).

By setting φ(z) as given below:

(1.3) φ(z) =

(
1 + z

1− z

)α
= 1 + 2αz+ 2α2z2 +

4α2 + 2α

3
z3 + · · · (0 < α ≤ 1),

we have B1 = 2α, B2 = 2α2 and B3 = 4α2+2α
3 .

On the other hand, if we take

(1.4) φ(z) =
1 + (1− 2β)z

1− z
= 1 + 2(1− β)z + 2(1− β)z2 + · · · (0 ≤ β < 1),

then B1 = B2 = B3 = 2(1− β).
Let Σ′ denote the class of all meromorphic univalent functions g of the form

(1.5) g(z) = z + b0 +

∞∑
n=1

bn
zn

defined on the domain ∆∗ = {z : 1 < |z| < ∞}. Since g ∈ Σ′ is univalent, it
has an inverse g−1 = h that satisfy

g−1(g(z)) = z, (z ∈ ∆∗)

and
g(g−1(w)) = w, (M < |w| <∞,M > 0)

where

(1.6) g−1(w) = h(w) = w +

∞∑
n=0

Cn
wn

, (M < |w| <∞).

Analogous to the bi-univalent analytic functions, a function g ∈ Σ′ is said to
be meromorphic bi-univalent if g−1 ∈ Σ′. We denote the class of all meromor-
phic bi-univalent functions by MΣ′ . Estimates on the coefficients of meromor-
phic univalent functions were widely investigated in the literature, for example,
Schiffer[10] obtained the estimate |b2| ≤ 2

3 for meromorphic univalent functions
g ∈ Σ′ with b0 = 0 and Duren [3] gave an elementary proof of the inequality
|bn| ≤ 2

(n+1) on the coefficient of meromorphic univalent functions g ∈ Σ′ with

bk = 0 for 1 ≤ k < n
2 . For the coefficient of the inverse of meromorphic univa-

lent functions h ∈ MΣ′ , Springer [12] proved that |C3| ≤ 1; |C3 + 1
2C

2
1 | ≤ 1

2

and conjectured that |C2n−1| ≤ (2n−1)!
n!(n−1)! , (n = 1, 2, ...).

In 1977, Kubota [6] has proved that the Springer’s conjecture is true for n =
3, 4, 5 and subsequently Schober [11] obtained a sharp bound for the coefficients
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C2n−1, 1 ≤ n ≤ 7 of the inverse of meromorphic univalent functions in ∆∗.
Recently, Kapoor and Mishra [5] (see [14]) found the coefficient estimates for a
class consisting of inverses of meromorphic starlike univalent functions of order
α in ∆∗.

Recently, Babalola [1] defined a new subclass λ−pseudo starlike function of
order β (0 ≤ β < 1) satisfying the analytic condition

(1.7) <
(
z(f ′(z))λ

f(z)

)
> β, (z ∈ U, λ ≥ 1 ∈ R)

and denoted by Lλ(β). Babalola [1] remarked that though for λ > 1, these
classes of λ−pseudo starlike functions clone the analytic representation of star-
like functions. Also, when λ = 1, we have the class of starlike functions of
order β (1−pseudo starlike functions of order β) and for λ = 2, we have the
class of functions, which is a product combination of geometric expressions for
bounded turning and starlike functions.

Motivated by the earlier work of [2, 4, 5, 8, 13, 15], in the present in-
vestigation,we define a new subclass of pseudo type meromorphic bi-univalent
functions class Σ′ of complex order γ ∈ C\{0} and the estimates for the coeffi-
cients |b0|, |b1| and |b2| are investigated. Several new consequences of the new
results are also pointed out.

Definition 1.1. For 0 < λ ≤ 1 and µ ≥ 1, a function g(z) ∈ Σ′ given by (1.5)
is said to be in the class PγΣ′(λ, µ, φ) if the following conditions are satisfied:

(1.8) 1 +
1

γ

[
(1− λ)

(
g(z)

z

)µ
+ λ

(
z(g′(z))µ

g(z)

)
− 1

]
≺ φ(z)

and

(1.9) 1 +
1

γ

[
(1− λ)

(
h(w)

w

)µ
+ λ

(
w(h′(w))µ

h(w)

)
− 1

]
≺ φ(w)

where z, w ∈ ∆∗, γ ∈ C\{0} and the function h is given by (1.6).

By suitably specializing the parameter λ, we state new subclass of meromor-
phic pseudo bi-univalent functions of complex order PγΣ′(λ, µ, φ) as illustrated
in the following Examples.

Example 1.2. For λ = 1, a function g ∈ Σ′ given by (1.5) is said to be in the
class PγΣ′(1, µ, φ) ≡ PγΣ′(µ, φ) if it satisfies the following conditions:

1 +
1

γ

(
z(g′(z))µ

g(z)
− 1

)
≺ φ(z) and 1 +

1

γ

(
w(h′(w))µ

h(w)
− 1

)
≺ φ(w)

where z, w ∈ ∆∗, µ ≥ 1, γ ∈ C\{0} and the function h is given by (1.6).

Remark 1.3. We note that PγΣ′(1, 1, φ) ≡ SγΣ′(φ)
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Example 1.4. For λ = 1 and γ = 1, a function g ∈ Σ′ given by (1.5) is said to
be in the class P1

Σ′(1, µ, φ) ≡ PΣ′(µ, φ) if it satisfies the following conditions :

z(g′(z))µ

g(z)
≺ φ(z) and

w(h′(w))µ

h(w)
≺ φ(w)

where z, w ∈ ∆∗, µ ≥ 1 and the function h is given by (1.6).

Example 1.5. For λ = 0 a function g ∈ Σ′ given by (1.5) is said to be in the
class PγΣ′(1, µ, φ) ≡ RγΣ′(µ, φ) if it satisfies the following conditions :

1 +
1

γ

[(
g(z)

z

)µ
− 1

]
≺ φ(z) and 1 +

1

γ

[(
h(w)

w

)µ
− 1

]
≺ φ(w)

where z, w ∈ ∆∗, µ ≥ 1 and the function h is given by (1.6).

2. Coefficient estimates

In this section, we obtain the coefficient estimates |b0|, |b1| and |b2| for
PγΣ′(λ, µ, φ), a new subclass of meromorphic pseudo bi-univalent functions class
Σ′ of complex order γ ∈ C\{0}. In order to prove our result, we recall the
following lemma.

Lemma 2.1. [9] If Φ ∈ P, the class of all functions with < (Φ(z)) > 0, (z ∈ ∆)
then

|ck| ≤ 2, for each k,

where
Φ(z) = 1 + c1z + c2z

2 + · · · for z ∈ ∆.

Define the functions p and q in P given by

p(z) =
1 + u(z)

1− u(z)
= 1 +

p1

z
+
p2

z2
+ · · ·

and

q(z) =
1 + v(z)

1− v(z)
= 1 +

q1

z
+
q2

z2
+ · · · .

It follows that

u(z) =
p(z)− 1

p(z) + 1
=

1

2

[
p1

z
+

(
p2 −

p2
1

2

)
1

z2
+ · · ·

]
and

v(z) =
q(z)− 1

q(z) + 1
=

1

2

[
q1

z
+

(
q2 −

q2
1

2

)
1

z2
+ · · ·

]
.

Note that for the functions p(z), q(z) ∈ P, we have

|pi| ≤ 2 and |qi| ≤ 2 for each i.
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Theorem 2.2. Let g be given by (1.5) in the class PγΣ′(λ, µ, φ). Then

(2.1) |b0| ≤
|γ||B1|

|µ− µλ− λ|
,

(2.2) |b1| ≤
|γ|

2|µ− λ− 2µλ|

(
4|(B1 −B2)2|+ 4|B2

1 |+ 8|B1(B1 −B2)|

+
|µ(µ− 1)(1− λ) + 2λ|2|γ2B4

1 |
|µ− µλ− λ|4

) 1
2

and

(2.3) |b2| ≤
|γ|

2|µ− λ− 3µλ|

(
2|B1|+ 4|B2 −B1|+ 2|B1 − 2B2 +B3|

+
|µ(µ− 1)(µ− 2)(1− λ)− 6λ||γ|2|B1|3

3|λ|3

)
where γ ∈ C\{0}, 0 < λ ≤ 1, µ ≥ 1 and z, w ∈ ∆∗.

Proof. It follows from (1.8) and (1.9) that

(2.4) 1 +
1

γ

[
(1− λ)

(
g(z)

z

)µ
+ λ

(
z(g′(z))µ

g(z)

)
− 1

]
= φ(u(z))

and

(2.5) 1 +
1

γ

[
(1− λ)

(
h(w)

w

)µ
+ λ

(
w(h′(w))µ

h(w)

)
− 1

]
= φ(v(w)).

In light of (1.5), (1.6), (1.8) and (1.9), we have

(2.6) 1 +
1

γ

[
(1− λ)

(
g(z)

z

)µ
+ λ

(
z(g′(z))µ

g(z)

)
− 1

]
= 1 +B1p1

1

2z
+

[
1

2
B1

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1

]
1

z2

+

[
B1

2

(
p3 − p1p2 +

p3
1

4

)
+
B2

2

(
p1p2 −

p3
1

2

)
+B3

p3
1

8

]
1

z3
...

and

(2.7) 1 +
1

γ

[
(1− λ)

(
h(w)

w

)µ
+ λ

(
w(h′(w))µ

h(w)

)
− 1

]
= 1 +B1q1

1

2w
+

[
1

2
B1

(
q2 −

q2
1

2

)
+

1

4
B2q

2
1

]
1

w2

+

[
B1

2

(
q3 − q1q2 +

q3
1

4

)
+
B2

2

(
q1q2 −

q3
1

2

)
+B3

q3
1

8

]
1

w3
...
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Now, equating the coefficients in (2.6) and (2.7), we get

(2.8)
(µ− µλ− λ)

γ
b0 =

1

2
B1p1,

(2.9)
1

2γ

[(
µ(µ−1)(1−λ)+2λ

)
b20+2(µ−λ−2λµ)b1

]
=

1

2
B1

(
p2−

p2
1

2

)
+

1

4
B2p

2
1,

(2.10)
1

6γ

[(
µ(µ− 1)(µ− 2)(1− λ)− 6λ

)
b30 + 6

(
µ(µ− 1)(1− λ) + 2λ+ λµ

)
b0b1

+6(µ−λ−3λµ)b2

]
=

[
B1

2

(
p3 − p1p2 +

p3
1

4

)
+
B2

2

(
p1p2 −

p3
1

2

)
+B3

p3
1

8

]
,

(2.11)
−(µ− µλ− λ)

γ
b0 =

1

2
B1q1,

(2.12)
1

2γ

[(
µ(µ−1)(1−λ)+2λ

)
b20+2(λ−µ+2λµ)b1

]
=

1

2
B1

(
q2−

q2
1

2

)
+

1

4
B2q

2
1

and

(2.13)
1

6γ

[(
6λ− µ(µ− 1)(µ− 2)(1− λ)

)
b30

+ 6
(
µ(µ− 1)(1− λ)− µ(1− λ) + 3λ+ 3λµ

)
b0b1 + 6(λ− µ+ 3λµ)b2

]
=

[
B1

2

(
q3 − q1q2 +

q3
1

4

)
+
B2

2

(
q1q2 −

q3
1

2

)
+B3

q3
1

8

]
From (2.8) and (2.11), we get

(2.14) p1 = −q1

and

(2.15) b20 =
γ2B2

1

8(µ− µλ− λ)2
(p2

1 + q2
1).

Applying Lemma (2.1) for the coefficients p1 and q1, we have

|b0| ≤
|γ||B1|

|µ− µλ− λ|
.

Next, in order to find the bound on |b1| from (2.9), (2.12), (2.14) and (2.15),
we obtain

(2.16) 2(µ− λ− 2λµ)2 b21
γ2

+ [µ(µ− 1)(1− λ) + 2λ]2
b40

2γ2

= (B1 −B2)2 p4
1

8
+
B2

1

4
(p2

2 + q2
2) +B1(B2 −B1)

(p2
1p2 + q2

1q2)

4
.
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Using (2.15) and applying Lemma (2.1) once again for the coefficients p1, p2

and q2, we get

|b1|2 ≤
|γ2|

4|µ− λ− 2λµ|2
×(

4|(B1 −B2)2|+ 4|B1|2 + 8|B1(B1 −B2)|+ |µ(µ− 1)(1− λ) + 2λ|2|γ2B4
1 |

|µ− µλ− λ|4

)
.

That is,

|b1| ≤
|γ|

2|µ− λ− 2λµ|
×√

4|(B1 −B2)2|+ 4|B1|2 + 8|B1(B1 −B2)|+ |µ(µ− 1)(1− λ) + 2λ|2|γ2B4
1 |

|µ− µλ− λ|4
.

In order to find the estimate |b2|, consider the sum of (2.10) and (2.13) with
p1 = −q1, we have

(2.17)
1

γ
b0b1 =

B1[p3 + q3] + (B2 −B1)p1[p2 − q2]

2[2µ(µ− 1)(1− λ)− (1− λ)µ+ 5λ+ 4λµ]
.

Subtracting (2.13) from (2.10) and using p1 = −q1 we have

(2.18) 2(µ− λ− 3λµ)
b2
γ

= −(µ− λ− 3µλ)
b0b1
γ
− [µ(µ− 1)(µ− 2)(1− λ)− 6λ]

b30
3γ

+
B1

2
(p3 − q3)

+
B2 −B1

2
(p2 + q2)p1 +

B1 − 2B2 +B3

4
p3

1.

Substituting for b0b1
γ and

b30
γ in (2.18), simple computation yields,

b2
γ

=
−B1

2(µ− λ− 3λµ)

(
µ− 3λ− 4λµ− µ(µ− 1)(1− λ)

2µ(µ− 1)(1− λ)− µ+ 5λ+ 5λµ
p3

+
2λ+ λµ+ µ(µ− 1)(1− λ)

2µ(µ− 1)(1− λ)− µ+ 5λ+ 5λµ
q3

)
− (B2 −B1)p1

2(µ− λ− 3λµ)

(
µ− 3λ− 4λµ− µ(µ− 1)(1− λ)

2µ(µ− 1)(1− λ)− µ+ 5λ+ 5λµ
p2

− 2λ+ λµ+ µ(µ− 1)(1− λ)

2µ(µ− 1)(1− λ)− µ+ 5λ+ 5λµ
q2

)
+
B1 − 2B2 +B3

8(µ− λ− 3λµ)
p3

1 −
(µ(µ− 1)(µ− 2)(1− λ)− 6λ)γ2 B3

1

48(µ− λ− 3λµ)λ3
p3

1.
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Applying Lemma 2.1 in the above equation yields,

(2.19) |b2| ≤
|γ|

2|µ− λ− 3λµ|
×(

2|B1|+ 4|B2 −B1|+ 2|B1 − 2B2 +B3|

+
|µ(µ− 1)(µ− 2)(1− λ)− 6λ||γ|2|B1|3

3|λ|3

)

By taking λ = 1, we state the following.

Theorem 2.3. Let g be given by (1.5) in the class PγΣ′(µ, φ). Then

(2.20) |b0| ≤ |γ| |B1|,

(2.21) |b1| ≤
|γ|
|1 + µ|

√
|(B1 −B2)2|+ |B2

1 |+ 2|B1(B1 −B2)|+ |γ|2 |B4
1 |

and

(2.22) |b2| ≤
|γ|

|1 + 2µ|
(
|B1|+ 2|B2 −B1|+ |B1 − 2B2 +B3|+ |γ|2 |B1|3

)
where γ ∈ C\{0}, µ ≥ 1 and z, w ∈ ∆∗.

By taking λ = 1 and γ = 1, we state the following results.

Theorem 2.4. Let g be given by (1.5) in the class PΣ′(µ, φ). Then

|b0| ≤ |B1|,

|b1| ≤
1

|1 + µ|

√
|(B1 −B2)2|+ |B2

1 |+ 2|B1(B1 −B2)|+ |B4
1 |

and

|b2| ≤
1

|1 + 2µ|
(
|B1|+ 2|B2 −B1|+ |B1 − 2B2 +B3|+ |B1|3

)
where µ ≥ 1, z, w ∈ ∆∗.

3. Corollaries and concluding Remarks

For functions g be given by (1.5) and g ∈ PγΣ′

(
λ, µ,

(
1+z
1−z

)α)
≡ PγΣ′(λ, µ, α)

by setting B1 = 2α, B2 = 2α2 and B3 = 4α2+2α
3 and similarly, for g ∈

PγΣ′

(
λ, µ, 1+(1−2β)z

1−z

)
≡ PγΣ′(λ, µ, β) by setting B1 = B2 = B3 = 2(1 − β) one

can easily derive the results corresponding to Theorems 2.2, 2.3 and 2.4.
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Corollary 3.1. Let g be given by (1.5) in the class PγΣ′ (λ, µ, α) . Then

(3.1) |b0| ≤
2|γ|α

|µ− µλ− λ|
,

(3.2) |b1| ≤
2|γ|α

|µ− λ− 2λµ|

√
(α− 2)2 +

|µ(µ− 1)(1− λ) + 2λ|2|γ2|
|µ− µλ− λ|4

α2

and

(3.3) |b2| ≤
2|γ|α

|µ− λ− 3λµ|

(
3− 2α+

(
4− 6α+ 2α2

3

)
+

2|γ|2α2|µ(µ− 1)(µ− 2)(1− λ)− 6λ|
3|λ|3

)
where γ ∈ C\{0}, 0 < λ ≤ 1, µ ≥ 1 and z, w ∈ ∆∗.

Corollary 3.2. Let g be given by (1.5) in the class PγΣ′(λ, µ, β). Then

(3.4) |b0| ≤
2|γ|(1− β)

|µ− µλ− λ|
,

(3.5) |b1| ≤
2|γ|(1− β)

|µ− λ− 2λµ|

√
1 +
|µ(µ− 1)(1− λ) + 2λ|2|γ2|

|µ− µλ− λ|4
(1− β)2

and

(3.6) |b2| ≤
2|γ|(1− β)

|µ− λ− 3λµ|

(
1 +

2|γ|2(1− β)2|µ(µ− 1)(µ− 2)(1− λ)− 6λ|
3|λ|3

)
where γ ∈ C\{0}, 0 < λ ≤ 1, µ ≥ 1 and z, w ∈ ∆∗.

Concluding Remarks: We remark that, when λ = 1 and µ = 1, we can
easily obtain the coefficient estimates b0, b1 and b2 for SγΣ′(φ), which leads to
the results discussed in Theorem 2.3 of [8]. Also, we can obtain the initial
coefficient estimates for function g given by (1.5) in the subclass SγΣ′(φ) by
taking φ(z) given in (1.3) and (1.4) respectively.

Acknowledgement: We thank the referees for their valuable suggestions.
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