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GROUPOIDS DETERMINED BY INVOLUTIVE
AUTOMORPHISMS ON SEMILATTICES OF GROUPS

R. A. R. Monzo1

Abstract. We explore properties of groupoids (S, ·) of the form x · y =
(αx) ∗ y, for all {x, y} ⊆ S, where (S, ∗) is a semigroup and a semilattice
of groups. We require α to be an idempotent-fixed automorphism on
(S, ∗) whose square is the identity map. Several characterizations of such
groupoids are proved, using analogies of semigroup-theoretic properties
and constructions.
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1. Introduction

Groupoids S of the form xy = (αx)∗(βy), for all {x, y} ⊆ S, where α and β
are endomorphisms of a groupoid (S, ∗) are called in the literature linear over
(S, ∗) with parameters α and β cf. eg. [2]. For example, a groupoid is linear
over a semigroup (S, ∗) that is a semilattice of abelian groups with parameters
α and 1S if and only if it is a completely inverse AG**-groupoid, where 1S is
the identity mapping on S, α is an idempotent-fixed automorphism on (S, ∗)
and α2 = 1S [3]. The main result of this paper characterizes groupoids that are
linear over a semigroup (S, ∗) that is a semilattice of (not necessarily abelian)
groups, with these same parameters. In general we call a groupoid determined
by α if it is linear over a groupoid (S, ∗) with parameters α and 1S , where α is
an automorphism on (S, ∗) and α2 = 1S . We now state the main result. Any
undefined terms will be clarified in Section 2.

Main Theorem. The following statements are equivalent:

(M1) S is determined by a mapping α ∈ AUT 2
e (S, ∗) and (S, ∗) is a semigroup

that is a semilattice of groups;

(M2) S is a completely inverse groupoid, there exists α ∈ AUT 2(S) such that
for all a, b, c ∈ S, (ab)c = (αa)(bc) and E(S) is a semilattice or (ab)−1 =
(α b−1)(α a−1) for all a, b ∈ S;

(M3) S is a strongly regular groupoid, there exists α ∈ AUT 2
e (S) such that for

all a, b, c ∈ S, (ab)c = (αa)(bc) and E(S) is a semilattice;
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(M4) S is a completely inverse, generalised right Bol groupoid, α : a→ a(aa−1)
satisfies α ∈ AUT 2(S) and E(S) is a semilattice or for all a, b ∈ S,
(ab)−1 = (α b−1)(α a−1);

(M5) S is a disjoint union of groupoids S(e) (e ∈ E), with E a semilattice.
Each S(e) (e ∈ E) is determined by a mapping αe ∈ AUT 2

eG(e), with
each G(e) (e ∈ E) a group with identity e. For each e, f ∈ E with f ≥ e
there exists a homomorphism δf,e : S(f)→ S(e) such that

(1) for each e ∈ E, δe,e is the identity mapping on S(e),

(2) for e, f, g ∈ E, g ≥ f ≥ e implies δf,eδg,f = δg,e,

(3) for every b ∈ S(f) and all e ∈ E with f ≥ e we have αe(δf,eb) =
δf,e(αfb) and

(4) for a ∈ S(e) and b ∈ S(f), ab = (δe,efa)(δf,efb).

(M6) S is a semilattice E(S) of groupoids S(e) (e ∈ E), where each S(e) is
determined by a mapping αe ∈ AUT 2

eG(e) and each G(e) is a group with
identity e. Also, for all a, b, c ∈ S, (ab)c = (αa)(bc), where α =

⋃
e∈E

αe.

Note that the characterizations M2, M3 and M4 use analogies of semigroup-
theoretic properties such as inverseness, regularity etc., along with the identity
(ab)c = (αa)(bc). The characterization M5 is expressed in terms of a union-of-
subgroupoids construction, inspired by the semigroup construction theorem for
semilattices of groups. We describe this construction theorem for semilattices
of groups in Section 2, along with some well-known properties of semilattices of
groups. Finally, the characterization M6 combines the union-of-subgroupoids
construction with the identity (ab)c = (αa)(bc).

In Section 3 we prove that groupoids determined by idempotent-fixed in-
volutory automorphisms on a semigroup (S, ∗) that is a semilattice of groups,
have certain properties and we prove a number of interrelationships amongst
these properties. All Lemmas in this Section are used later to prove the Main
Theorem, in Section 5. Two Lemmas are proved in Section 4 that are also
essential to the proof of the Main Theorem. This section is separate to Section
3 because its Lemmas deal with semilattices of groupoids, each of which is
determined by an idempotent-fixed, involutive automorphism on a group.

2. Preliminary Definitions and Results

All mappings will be written on the left including the mappings δf,e of
Lemmas 11, 13 and the Main Theorem. The mappings are often written on
the right in previous publications [1, p.128].

We denote a groupoid with underlying set S as either S or (S, ∗), where
the mapping ∗ : S × S → S is the groupoid product. As a convention we may
denote the groupoid product as x ∗ y, x ◦ y or xy. As for parentheses, we use (
), (( )), [ ], [[ ]], { }, {{ }} and 〈 〉. The fact that we are dealing with groupoids,
not semigroups, necessitates such notation and hopefully assists the reader.
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Then AUT (S) or AUT (S, ∗) denotes the collection of automorphisms on S,
AUT 2(S, ∗) denotes the collection of mappings {α ∈ AUT (S, ∗) : α2 = 1S},
where 1S is the identity mapping on S, and AUT 2

e (S, ∗) denotes all idempotent-
fixed members of AUT 2(S, ∗); that is, by definition, αe = e, for e ∈ E(S) =
{x ∈ S : x2 = x}. A mapping α on a set S is called an involutive mapping if
α2 = 1S . So AUT 2(S, ∗) is the set of involutive automorphisms on (S, ∗). If a
mapping β is an isomorphism of a groupoid S and a groupoid T then we write
β : S ∼= T or simply S ∼= T .

If S is a disjoint union of sets S(e), with e ∈ E, and αe : S(e) → S(e) for
each e ∈ E , then α =

⋃
e∈E

αe : S → S denotes the mapping αa = αea, for

a ∈ S(e).
A semilattice E is a groupoid satisfying the identities xy = yx, x2 = x and

(xy)z = x(yz); that is, E is a commutative, idempotent semigroup.

Definition 1. S is determined by a mapping α ∈ AUT 2(S, ∗) if xy = (αx) ∗ y
for all x, y ∈ S.

Result 1. The following statements are equivalent:

(R1.1) S is determined by a mapping α ∈ AUT 2(S, ∗);

(R1.2) (S, ∗) is determined by a mapping α ∈ AUT 2(S).

Proof. (R1.1⇒ R1.2) By definition, for all x, y ∈ S, xy = (αx) ∗ y. Therefore,
α(xy) = α[(αx) ∗ y] and, since α ∈ AUT 2(S, ∗), α(xy) = α[(αx) ∗ y] = (ααx) ∗
αy = x ∗αy. But since xy = (αx) ∗ y for all x, y ∈ S, (αx)(αy) = (ααx) ∗αy =
x ∗ αy = α(xy). Hence, α ∈ AUT 2(S). Clearly, x ∗ y = (αx)y and so (R1.2) is
valid.

(R1.2 ⇒ R1.1) By definition, for all x, y ∈ S, x ∗ y = (αx)y. Therefore,
α(x∗y) = α[(αx)y] and, since α ∈ AUT 2(S), α(x∗y) = α[(αx)∗y] = (ααx)αy =
xαy. But since x ∗ y = (αx)y for all x, y ∈ S, (αx) ∗ (αy) = (ααx)αy = xαy =
α(x ∗ y). Hence, α ∈ AUT 2(S, ∗). Clearly, xy = (αx) ∗ y and so (R1.1) is
valid.

Definition 2. S is called a generalized right-Bol groupoid if, for all x, y, z ∈ S,
[(xy)z]w = x[(yz)w].

Result 2. If S is determined by a mapping α ∈ AUT 2(S, ∗) then

(R2.1) (xy)z = (αx)(yz), for all x, y, z ∈ S if and only if (S, ∗) is a semigroup,

(R2.2) if (S, ∗) is a semigroup then S is a generalized right Bol groupoid and

(R2.3) α : (S, ∗) ∼= S if and only if x ∗ y = xy.

Proof. By definition, for all x, y, z ∈ S we have (xy)z = [α(αx ∗ y)] ∗ z. Then,
since α ∈ AUT 2(S, ∗), (xy)z = [α(αx∗y)]∗z = (x∗αy)∗z. Then x∗ (αy ∗z) =
(αx)[(ααy)z] = (αx)(yz). So if (S, ∗) is a semigroup then (xy)z = (x∗αy)∗z =
x ∗ (αy ∗ z) = (αx)(yz). Conversely, (xy)z = (αx)(yz) for all x, y, z ∈ S implies
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(x ∗αy) ∗ z = x ∗ (αy ∗ z) for all x, y, z ∈ S. For any q ∈ S, setting y−αq gives
(x ∗ q) ∗ z = x ∗ (q ∗ z) and so S is a semigroup. Hence, (R2.1) is valid. Then,
using (R2.1) we have [(xy)z]w = [(αx)(yz)]w = (ααx)[(yz)w] = x[(yz)w] and
so S is a generalized right-Bol groupoid. This proves (R2.2).

Suppose α : (S, ∗) ∼= S. Then, for any x, y ∈ S, x ∗ y = ααx ∗ ααy.
Since α ∈ AUT 2(S, ∗) and α : S ∼= (S, ∗), x ∗ y = ααx ∗ ααy = α(αx ∗
αy) = (ααx)(ααy) = xy. Conversely, if x ∗ y = xy then, since by Result 1
α ∈ AUT 2(S), α(x ∗ y) = α(xy) = (αx)(αy) and so α : (S, ∗) ∼= S and (R2.3)
is valid.

Definition 3. S is an inverse groupoid if for every x ∈ S there exists a unique
element x−1 ∈ S such that (xx−1)x = x and (x−1x)x−1 = x−1. An inverse
groupoid S is called a completely inverse groupoid if xx−1 = x−1x ∈ E(S) for
all x ∈ S.

Definition 4. S is called strongly regular if for all a ∈ S there exists x ∈ S
such that a = (ax)a and ax = xa ∈ E(S).

Definition 5. If E is a semilattice and {e, f} ⊆ E then we define e ≤ f if
e = ef(= fe) and e < f (or f > e) if e ≤ f and e 6= f .

Definition 6. We say that the groupoid S is a semilattice E = E(S) of sub-
groupoids S(e) (e ∈ E) if S is a disjoint union of the sub-groupoids S(e) (e ∈ E)
and the product S(e)S(f) ⊆ S(ef) for all e, f ∈ E. In the case that S is a
semigroup, each S(e) (e ∈ E) is a semigroup.

We now list some properties of semigroups that are semilattices of groups,
properties well-known to semigroup theorists. These semigroups are also de-
scribed as unions of groups in which the idempotents commute, or inverse semi-
groups that are unions of groups [1, page 128]. In these semigroups idempotents
are in the centre; that is, ex = xe for every idempotent e ∈ E(S) and every
x ∈ S [1, Lemma 4.8]. Since semilattices of groups are inverse semigroups, each
element has a unique inverse, with which it commutes. Also, (xy)−1 = y−1x−1

for every x, y ∈ S. Note also that in a semigroup that is a semilattice E of
groups we can identify E with E(S), the semilattice of idempotents of S [1,
page 127]. These facts will be used in Section 3.

We now state the structure theorem for semigroups S that are a semilattice
E = E(S) of groups for reference later in the paper, as well as for comparison
with M5.

Theorem. [1, Theorem 4.11] A semigroup S is a semilattice E of groups if
and only if there are pairwise disjoint groups G(e) (e ∈ E) and, for each pair
of elements e, f ∈ E with e < f , a homomorphism δf,e : G(f) → G(e) such
that e < f < g implies δf,eδg,f = δg,e, e ∈ E implies δe,e = 1G(e), S =

⋃
G(e)

(e ∈ E) and aebf = (δe,efae)(δf,efbf ) for all ae ∈ G(e) and bf ∈ G(f).

3. Groupoids determined by semilattices of groups

Lemma 1. If S is determined by a mapping α ∈ AUT 2
e (S, ∗) and (S, ∗) is a

semigroup that is a semilattice E of groups then:
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(1.1) S is a completely inverse groupoid;

(1.2) E(S) = E(S, ∗) is a semilattice and

(1.3) α ∈ AUT 2
e S.

Furthermore, for all a, b, c, d ∈ S

(1.4) αa = a(a−1a) = a(aa−1),

(1.5) (ab)−1 = (αb−1)(αa−1),

(1.6) (ab)c = (αa)(bc),

(1.7) a2a−1 = a,

(1.8) (αa)−1 = αa−1,

(1.9) S is a generalized right-Bol groupoid; that is, a[(bc)d] = [(ab)c]d,

(1.10) ea = (αa)e and ae = e(αa), for all e ∈ E(S),

(1.11) e(ab) = (ea)(eb), for all e ∈ E(S),

(1.12) (ab)(ab)−1 = (aa−1)(bb−1) = (b−1a−1)(b−1a−1)−1 and

(1.13) aa−1 = (a∗a−1), where a−1 is the (unique) inverse of a in (S, ∗).

Proof. Let a ∈ S and define a−1 = the (unique) inverse of a in (S, ∗). Then,
[a(αa−1)]a = [(αa)∗ (αa−1)]a = {α[(αa)∗ (αa−1)]}∗a = (a∗a−1)∗a = a. Also,
[(αa−1)a](αa−1) = [α(a−1 ∗ a)] ∗ (αa−1) and, since α ∈ AUT 2

e (S, ∗),

[(αa−1)a](αa−1) = [α(a−1 ∗ a)] ∗ (αa−1) = α[(a−1 ∗ a) ∗ a−1] = αa−1.

Hence, a and αa−1 are inverses of each other in S. We proceed to show that
αa−1 is the unique inverse of a in S. That is, αa−1 = a−1.

Suppose that (ax)a = a and (xa)x = x. Then a = (ax)a = {α[(αa) ∗
x]} ∗ a = a ∗ (αx) ∗ a. Hence, αa = (αa) ∗ x ∗ (αa). Also, x = (xa)x =
{α[(αx)∗a]}∗x = x∗ (αa)∗x. So x and αa are inverses of each other in (S, ∗).
Since α ∈ AUT (S, ∗), αx and a are inverses of each other in (S, ∗). That is,
αx = a−1 and so x = ααx = αa−1. So S is an inverse groupoid.

Now, using the fact that a∗a−1 = a−1∗a for every a ∈ (S, ∗), we have aa−1 =
(αa)∗(αa−1) = α(a∗a−1) = a∗a−1 = a−1∗a = (ααa−1)∗a = (αa−1)a = a−1a.
Finally, (aa−1)(aa−1) = [α(aa−1)] ∗ (aa−1) = [α(a ∗ a−1)] ∗ (a ∗ a−1) and, since
α ∈ AUT 2

e (S, ∗) and a ∗ a−1 ∈ E(S, ∗), (aa−1)(aa−1) = (a ∗ a−1) ∗ (a ∗ a−1) =
a ∗ a−1 = aa−1 ∈ E(S). Hence, S is a completely inverse groupoid and (1.1) is
valid.

Suppose that e ∈ E(S). Then e = e2 = (αe) ∗ e and, since α ∈ AUT 2
e (S, ∗),

αe = α[(αe)∗e] = e∗(αe). This implies e = (αe)∗e = [e∗(αe)]∗e = e∗[(αe)∗e] =
e ∗ e ∈ E(S, ∗). Hence, E(S) ⊆ E(S, ∗) and, therefore, αe = e. If e ∈ E(S, ∗)
then αe = e and e2 = (αe) ∗ e = e ∗ e = e and so E(S, ∗) ⊆ E(S) ⊆ E(S, ∗).
Therefore, E(S) = E(S, ∗) and αe = e for all e ∈ E(S). If {e, f} ⊆ E(S) then



6 R. A. R. Monzo

ef = (αe) ∗ f = e ∗ f = f ∗ e = (αf) ∗ e = fe and (ef)g = [α(ef)] ∗ g =
[α(αe ∗ f)] ∗ g = (e ∗ αf) ∗ g = e ∗ (αf ∗ g) = e ∗ (fg) = (αe) ∗ (fg) = e(fg).
Thus, E(S) is a semilattice and (1.2) is valid. Since we have already proved
that αe = e for all e ∈ E(S), by Result 1, α ∈ AUT 2

e S and (1.3) is valid.
Now a(aa−1) = a(a−1a) = (αa)∗a−1∗a = (αa)∗α(a−1∗a) = α(a∗a−1∗a) =

αa and so (1.4) is valid.
Recall that, for a ∈ S, a−1 = the (unique) inverse of a in (S, ∗). Let x

be the inverse of ab in (S, ∗). Then, from the proof of (1.1), (ab)−1 = αx,
where x is the inverse of ab in (S, ∗). Since ab = (αa) ∗ b, the inverse of ab in
(S, ∗) is equal to b−1 ∗ (αa)−1 = b−1 ∗ (αa−1) and so the inverse of ab in S
is α[b−1 ∗ (αa−1)] = (αb−1) ∗ a−1 = b−1a−1, which proves that (1.5) is valid.
Note that (1.6) and (1.9) follow from Result 2, (R2.1) and (R2.2), respectively.

Now a2a−1 = {α[(αa) ∗ a]} ∗ (αa−1) = a ∗ (αa) ∗ (αa−1) = a ∗ [α(a ∗ a−1)] =
a ∗ a ∗ a−1 = a ∗ a−1 ∗ a = a, so (1.7) is valid.

Also, (αa)−1 = α(αa−1) = a−1 = αa−1 and so (1.8) is valid.
Using the fact that idempotents are central in a semilattice of groups [1,

Lemma 4.8], if e ∈ E(S) and a ∈ S then ea = (αe) ∗ a = e ∗ a = a ∗ e = (αa)e.
Substituting αa for a gives e(αa) = ae, which proves that (1.10) is valid.

If e ∈ E(S) and a, b ∈ S then, using (1.6) and (1.10),

(ea)(eb) = [(αa)e][(αb)e] = {[a(αe)](αb)}e = [(ae)(αb)]e =

{[e(αa)](αb)}e = {(αe)[(αa)(αb)]}e = {e[(αa)(αb)]}e =

{e[α(ab)]}e = [(ab)e]e = [α(ab)]e = e(ab),

which proves (1.11).
Now using (1.5) and the fact that (a−1)−1 = a in any inverse groupoid,

(b−1a−1)−1 = (αa)(αb) = α(ab). Now

(ab)(ab)−1 = (ab)[(αb−1)(αa−1)] = {α[(ab)b−1]}(αa−1) =

α{[(ab)b−1]a−1} = α{[α(ab)](b−1a−1)} = α[(b−1a−1)−1(b−1a−1)].

Since, from (1.1), S is a completely inverse groupoid, and from (1.3), α ∈
AUT 2

e S,
(ab)(ab)−1 = α[(b−1a−1)−1(b−1a−1)] =

(b−1a−1)−1(b−1a−1) = (b−1a−1)(b−1a−1)−1.

Using (1.5) and (1.6),

(ab)(ab)−1 = (ab)−1(ab) = [α(b−1a−1)](ab) =

[(b−1a−1)a]b = {[α(b−1)](aa−1)}b = b−1[(aa−1)b],

which by (1.10) equals

b−1[(αb)(aa−1)] = [(αb−1)(αb)](aa−1) =

[α(b−1b)](aa−1) = (b−1b)(aa−1) = (aa−1)(b−1b) = (aa−1)(bb−1),

which proves (1.12).
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Now we have seen in the proof of (1.1) that a−1 = αa−1, where a−1 is the
(unique) inverse of a in (S, ∗). Thus, aa−1 = (αa) ∗ (αa−1) = α(a ∗ a−1) =
a ∗ a−1, which proves (1.13).

Lemma 1 has established properties of groupoids that are determined by an
involutive, idempotent-fixed automorphism on a semigroup that is a semilattice
of groups. It will be relied on heavily to prove the Main Theorem in Section 5.

We now prove several inter-relationships among the properties (1.1) through
(1.13). The following Lemmas will also be used in the proof of the Main
Theorem. Lemma 2 establishes conditions under which (1.2) and (1.3) are
equivalent.

Lemma 2. If S is an inverse groupoid determined by a mapping α : S 7→ S
such that α ∈ AUT 2(S, ∗), (S, ∗) is a semigroup and aa−1 ∈ E(S) for all a ∈ S,
then α ∈ AUT 2

e S if and only if αa = a(a−1a) for all a ∈ S.

Proof. (⇒) For a ∈ S, αa = [(αa)(αa)−1](αa). By Result 2, (xy)z = (αx)(yz),
for all x, y, z ∈ S and so αa = [(αa)(αa)−1](αa) = (ααa)[(αa)−1(αa)] =
a[α(a−1a)] = a(a−1a).

(⇐) Let e ∈ E(S). Then αe = e(e−1e) = e. Hence, α ∈ AUT 2
e S.

An inverse groupoid with the generalized right-Bol property and that sat-
isfies (1.3) and (1.5) also satisfies (1.2), as we now prove.

Lemma 3. If S is an inverse, generalized right-Bol groupoid, α ∈ AUT 2
e S and

(ab)−1 = (αb−1)(αa−1) for all {a, b} ⊆ S then E(S) is a semilattice.

Proof. Let {e, f, g} ⊆ E(S). Then (ef)−1 = (αf−1)(αe−1) = (αf)(αe) = fe
and so

(1) (ef)−1 = fe.

Since S is a generalized right-Bol groupoid, [(ef)f ]f = e[(ff)f ] = ef =
[(ee)e]f = e[(ee)f ] = e(ef) and so

(2) [(ef)f ]f = ef = e(ef).

Also (ef)(fe) = (ef)[(ff)e] = {[(ef)f ]f}e = (ef)e and so

(3) (ef)(fe) = (ef)e.

Also
fe = (ef)−1 = [e(ef)]−1 = {α[(ef)−1]}(αe−1) =

[α(fe)](αe) = [(αf)(αe)](αe) = (fe)e

and so

(4) fe = (fe)e.



8 R. A. R. Monzo

Using (1), (2), (3) and (4) we have

(ef)(ef) = (ef)[e(ef)] = (ef)[(ee)(ef)] = {[(ef)e]e}(ef) =

{[(ef)(fe)]e}(ef) = (ef){[(fe)e](ef)} = (ef)[(fe)(ef)] =

{[(ef)f ]e}(ef) = [(ef)e](ef) = [(ef)(fe)](ef) = ef ∈ E(S).

Hence, ef = (ef)−1 = fe. Since [(ef)g] = [g(ef)] = [g(fe)] = g[(ff)e] =
[(gf)f ]e = (gf)e = e(gf) = e(fg), E(S) is a semilattice.

If an inverse groupoid S satisfies aa−1 ∈ E(S) for all a ∈ S, and if it has
an involutive automorphism α satisfying (1.6), then S satisfies (1.3) and (1.4).
This is proved in Lemma 4, which also establishes conditions under which (1.2)
is equivalent to (1.5).

Lemma 4. If S is an inverse groupoid, aa−1 ∈ E(S) for all a ∈ S, α ∈
AUT 2(S) and (ab)c = (αa)(bc) for all {a, b, c} ⊆ S then

(4.1) α ∈ AUT 2
e (S),

(4.2) αa = a(a−1a) for all a ∈ S and

(4.3) E(S) is a semilattice if and only if (ab)−1 = (αb−1)(αa−1) for all a, b ∈ S.

Proof. Let e ∈ E(S). Then since αe = [(αe)(αe)−1](αe) = e[(αe)−1(αe)] =
e[(αe−1)(αe)] = eα(e−1e) = e(αe). Since α ∈ AUT 2(S), e = (αe)e. Hence,
[e(αe)]e = (αe)e = e and [(αe)e](αe) = e(αe) = αe. Therefore, αe = e−1 = e
and α ∈ AUT 2

e (S), proving (4.1).
Since α ∈ AUT 2

e (S),

a(a−1a) = a[α(a−1a)] = a[α(a−1)(αa)] = [(αa)α(a−1)](αa) = α[(aa−1)a] = αa

and so (4.2) is valid.
Suppose that E(S) is a semilattice. Let a, b ∈ S. So, using (4.1) and the

fact that (ab)c = (αa)(bc) for all {a, b, c} ⊆ S,

{(ab)[α(b−1a−1)]}(ab) = [α(ab)]{[α(b−1a−1)](ab)} =

[α(ab)]{[(b−1a−1)a]b} = [α(ab)]{[(αb−1)(a−1a)]b} =

[(αa)(αb)]{b−1[(a−1a)b]} = a
[
(αb){b−1[(a−1a)b]}

]
= a{(bb−1)[(a−1a)b]} =

a
[
{[α(bb−1)](a−1a)}b

]
= a{[(bb−1)(a−1a)]b} = a{[(a−1a)(bb−1)]b} =

a{[α(a−1a)][(bb−1)b]} = a[(a−1a)b] = [(αa)(a−1a)]b = [(aa−1)a]b = ab. So

(1) {(ab)[α(b−1a−1)]}(ab) = ab

Using (4.1), (4.2) and the hypotheses of Lemma 4, we prove that

{[α(b−1a−1)](ab)}[α(b−1a−1)] = α(b−1a−1).
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Firstly,

{[α(b−1a−1)](ab)}[α(b−1a−1)] = (b−1a−1){(ab)[α(b−1a−1)]} =

(b−1a−1){(ab)[(αb−1)(αa−1)]} = (b−1a−1)
{(

[α(ab)][αb−1]
)
(αa−1)

}
={

α(b−1a−1)
[
{[α(ab)][αb−1]}

]}
(αa−1) =

{
α
(
[b−1a−1][(ab)b−1]

)}
(αa−1) =

= α
{(

[b−1a−1][(ab)b−1]
)
a−1

}
, so

(2) {[α(b−1a−1)](ab)}[α(b−1a−1)] = α
{(

[b−1a−1][(ab)b−1]
)
a−1

}
But

{[b−1a−1][(ab)b−1]}a−1 = [α(b−1a−1)]{[(ab)b−1]a−1} =

[α(b−1a−1)]{[α(ab)](b−1a−1)} = {(b−1a−1)[α(ab)]}(b−1a−1),

and so by (1),

(3) {[b−1a−1][(ab)b−1]}a−1 = b−1a−1.

So (2) and (3) imply {[α(b−1a−1)](ab)}[α(b−1a−1)] = α(b−1a−1), which,
together with (1), implies that (ab)−1 = α(b−1a−1) for all a, b ∈ S.

Conversely, if (ab)−1 = α(b−1a−1) for all a, b ∈ S then, since (ab)c =
(αa)(bc) for all {a, b, c} ⊆ S implies that S is a generalized right-Bol groupoid
and since α ∈ AUT 2

e (S), by Lemma 3, E(S) is a semilattice. Therefore (4.3)
is valid.

The following Lemma gives a characterization of groupoids that are deter-
mined by involutive, idempotent-fixed automorphisms on semigroups that are
semilattices of groups.

Lemma 5. S is determined by a mapping α ∈ AUT 2
e (S, ∗) and (S, ∗) is semi-

group that is a semilattice E of groups if and only if

(5.1) S is a completely inverse groupoid,

(5.2) there exists α ∈ AUT 2(S) such that for all a, b, c ∈ S, (ab)c = (αa)(bc)
and

(5.3) E(S) is a semilattice or (ab)−1 = (αb−1)(αa−1) for all a, b ∈ S.

Proof. (⇒) (5.1), (5.2) and (5.3) follow from Lemma 1.
(⇐) Assume that (5.1), (5.2) and (5.3) are valid. By Lemma 4, E(S) is a

semilattice and (ab)−1 = (αb−1)(αa−1) for all a, b ∈ S. We define (S, ∗) as
follows: for a, b ∈ S, a ∗ b = (αa)b. Then (a ∗ b) ∗ c = [(αa)b] ∗ c = [a(αb)]c =
(αa)[(αb)c] = a ∗ (b ∗ c) and so (S, ∗) is a semigroup. Note that by Lemma 4,
αa = a(a−1a) for all a ∈ S and so (a ∗ a) ∗ (αa−1) = [(αa)a] ∗ (αa−1) =
[a(αa)](αa−1) = (αa)[(αa)(αa−1)] = (αa)[(αa−1)(αa)] = α[a(a−1a)] = ααa =
a. Also, Lemma 4 implies α ∈ AUT 2

e (S) and so (αa−1) ∗ (a ∗ a) = (αa−1) ∗
[(αa)a] = a−1[(αa)a] = [(αa−1)(αa)]a = [α(a−1a)]a = (a−1a)a = (aa−1)a = a.
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So we have proved that a ∈ (S ∗ a2) ∩ (a2 ∗ S). By [1, Theorem 4.3], (S, ∗)
is a union of groups.

Suppose that e, f ∈ E(S, ∗). Then e = e ∗ e = (αe)e and so e−1 =
[(αe)e]−1 = (αe−1)[α(αe)−1] = (αe−1)[α(αe−1)] = (αe−1)e−1. Then

e = (ee−1)e = {e[(αe−1)e−1]}e = {[(αe)(αe−1)]e−1}e =

{[α(ee−1)]e−1}e = [(ee−1)e−1]e = [(e−1e)e−1]e = e−1e

and e−1 = (e−1e)e−1 = ee−1 = e−1e = e. Therefore ee = e−1e = e ∈ E(S).
Hence, αe = e. So then e ∗ f = (αe)f = ef = fe = (αf)e = f ∗ e and so
E(S, ∗) is a semilattice. By [1, Theorem 4.11], (S, ∗) is a semilattice of groups.
Also ab = (αa) ∗ b. Using Lemma 4, S is determined by α ∈ AUT 2

e (S, ∗) and
the semigroup (S, ∗) is a semilattice of groups.

The next Lemma shows that a strongly regular groupoid satisfying (1.2),
(1.3) and (1.6) is completely inverse. This allow us to prove a different charac-
terization in Lemma 7, of groupoids determined by idempotent-fixed, involutive
automorphisms on semigroups that are semilattices of groups, with condition
(5.1) weakened from completely inverse to strongly regular, as long as α is
idempotent-fixed.

Lemma 6. Suppose that in a strongly regular groupoid S in which E(S) is a
semilattice and there exists α ∈ AUT 2

e (S) such that for all x, y, z ∈ S, (xy)z =
(αx)(yz). Then S is a completely inverse groupoid.

Proof. Note that, as in the proof of Result 2, (xy)z = (αx)(yz) for all x, y, z ∈ S
implies that S is a right-Bol groupoid. For each a ∈ S there exists x ∈ S such
that a = (ax)a and ax = xa ∈ E(S). Now, a[(xa)x] = [(ax)a]x = ax = xa =
x[(ax)a] = [(xa)x]a. Then {a[(xa)x]}a = (ax)a = a and {[(xa)x]a}[(xa)x] =
(xa)[(xa)x] = {[(xa)x]a}x = (xa)x.

So we have proved that a and (xa)x are inverses and that a[(xa)x] =
[(xa)x]a = ax = xa ∈ E(S). We need only therefore show that (xa)x is
the unique inverse of a. Suppose that y is an inverse of a. We prove that
y = (xa)x.

We have (ya)y = y and (ay)a = a. Now, ax = [(ay)a]x = [α(ay)](ax) and
ay = [(ax)a]y = [α(ax)](ay) = (ax)(ay). But then (ay)2 = (ay)[(ax)(ay)] =
{[(ay)a]x}(ay) = (ax)(ay) = ay ∈ E(S) and so ax = [α(ay)](ax) = (ay)(ax).
Since E(S) is a semilattice, xa = ax = (ay)(ax) = (ax)(ay) = ay.

Since S is strongly regular we can choose w ∈ S such that y = (yw)y and
yw = wy ∈ E(S). Then ya = [(yw)y]a = [α(yw)](ya) = (yw)(ya) and so
(ya)2 = (ya)[(yw)(ya)] = {[α(ya)](yw)}(ya) = {[(ya)y]w}(ya) = (yw)(ya) =
ya and so ya ∈ E(S) and α(ya) = ya. Then xa = x[(ay)a] = [(xa)y]a =
[α(xa)](ya) = (xa)(ya) and ya = y[(ax)a] = y[(αa)(xa)] = [(αy)(αa)](xa) =
[α(ya)](xa) = (ya)(xa) = (xa)(ya) = xa = ax = ay = ya. Then, y = (ya)y =
(αy)(ay) = (αy)(ax) = (ya)x = (xa)x, which is what we needed to prove.

Lemma 7. S is determined by a mapping α ∈ AUT 2
e (S, ∗) and (S, ∗) is a

semigroup that is a semilattice E of groups if and only if
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(7.1) S is a strongly regular groupoid,

(7.2) there exists α ∈ AUT 2
e (S) such that (ab)c = (αa)(bc) for all a, b, c ∈ S

and

(7.3) E(S) is a semilattice.

Proof. (⇒) (7.1), (7.2) and (7.3) follow from Lemma 1, (1.1), (1.2), (1.3) and
(1.6).

(⇐) Assume that (7.1), (7.2) and (7.3) are valid. By Lemma 6, S is
completely inverse. Then, by Lemma 5, S is determined by a mapping α ∈
AUT 2

e (S, ∗) and (S, ∗) is semigroup that is a semilattice E of groups.

Lemma 8. If S is a completely inverse groupoid satisfying

(A) α : a 7→ a(aa−1) satisfies α ∈ AUT 2(S) and

(B) E(S) is a semilattice or (ab)−1 = (αb−1)(αa−1) for all a, b ∈ S

then (ab)c = (αa)(bc) for all a, b, c ∈ S, if and only if S is a generalized right-
Bol groupoid.

Proof. (⇒) If (ab)c = (αa)(bc) for all a, b, c ∈ S then, as in the proof of Result 2,
S is a generalized right-Bol groupoid.

(⇐) Note that for e ∈ E(S), αe = e(ee−1) = e and so α ∈ AUT 2
e (S).

Also, if (ab)−1 = (αb−1)(αa−1) for all a, b ∈ S then, by Lemma 3, E(S) is a
semilattice. So (B) implies that E(S) is a semilattice.

By hypothesis, S is a generalized right-Bol groupoid and we will use that
fact, and the fact that E(S) is a semilattice, without mention throughout the
remainder of the proof. We now prove that (ab)−1 = (αb−1)(αa−1) for all
a, b ∈ S. Firstly,

{(ab) [(αb−1)(αa−1)]} (ab) =[
(ab) {[b−1(b−1b)] [a−1(a−1a)]}

]
(ab) =(

{[(ab)b−1] (b−1b)} [a−1(a−1a)]
)

(ab) =

[(ab)b−1]
[
{(b−1b) [a−1(a−1a)]} (ab)

]
=

[(ab)b−1]
{ [

(b−1b) {[(a−1a)a−1] (a−1a)}
]

(ab)
}

=

[(ab)b−1] 〈 [[ {[(b−1b)(a−1a)]a−1} (a−1a) ]] (ab) 〉 =

= [(ab)b−1] 〈 [(b−1b) (a−1a)] {[a−1(a−1a)] (ab)} 〉

so

(1) {(ab) [(αb−1)(αa−1)]} (ab) = [(ab)b−1] 〈 [(b−1b)(a−1a)] {[a−1(a−1a)](ab)} 〉

Note that a = ααa = α[a(aa−1)] = (αa)[α(aa−1)] = [a(aa−1)](aa−1). There-
fore,

(2) a−1 = [a−1(a−1a)](a−1a).
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Then
(ab) = [a−1(a−1a)]{[(aa−1)a]b} =

[[ {[(a−1(a−1a)] (aa−1)}a ]]b = (a−1a)b = (a−1a)2b.

So

(3) [a−1(a−1a)](ab) = (a−1a)b = (a−1a)2b

By (3),
[a−1(a−1a)](ab) = (a−1a)b = (a−1a)[(bb−1)2b] =

{[(a−1a)(b−1b)](bb−1)}b = [(a−1a)(b−1b)]b, so

(4) [a−1(a−1a)](ab) = [(a−1a)(b−1b)]b

By (3) and (4), we get

(5)
[(b−1b)(a−1a)] {[a−1(a−1a)](ab)} = [(b−1b)(a−1a)] [(a−1a)2b] =

[(b−1b)(a−1a)]b = [(a−1a)(b−1b)]b.

Using (1), (4) and (5) we have that

{(ab)[(αb−1)(αa−1)]}(ab) = [(ab)b−1] {[(a−1a)](b−1b)]b} =

a [[ (bb−1) {[(a−1a)](b−1b)]b} ]] = a{[(a−1a)(b−1b)]b} =

a{(a−1a)b} = a
[
(aa−1)2b

]
=
{

[a(aa−1)](aa−1)
}
b.

and so, by (2), {(ab)[(αb−1)(αa−1)]}(ab) = ab.
Note that (a−1a)[a−1(a−1a)] = [α(a−1a)](αa−1) = α[(a−1a)a−1] = αa−1 =

a−1(a−1a) and so

(6) (a−1a)[a−1(a−1a)] = a−1(a−1a)

Note that

(a−1a)b = (a−1a)[(b−1b)2b] = {[(a−1a)(b−1b)](b−1b)}b = [(a−1a)(b−1b)]b

and so

(7) (a−1a)b = [(a−1a)(b−1b)]b = [(b−1b)(a−1a)]b.

We wish to show that {[(αb−1)(αa−1)](ab)}[(αb−1)(αa−1)] = (αb−1)(αa−1).
Now

{[(αb−1)(αa−1)](ab)} [(αb−1)(αa−1)] =

〈 {[b−1(b−1b)] [a−1(a−1a)]} {[(aa−1)a]b} 〉 {[b−1(b−1b)] [a−1(a−1a)]} =

〈
[ (
{[b−1(b−1b)] [a−1(a−1a)]} (aa−1)

)
a
]
b 〉 {[b−1(b−1b)] [a−1(a−1a)]} =

〈
{

[b−1(b−1b)]
[
{[a−1(a−1a)](aa−1)}a

] }
b 〉 {[b−1(b−1b)] [a−1(a−1a)]},
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which by (2) equals

〈 {[b−1(b−1b)] (a−1a)} b 〉 {[b−1(b−1b)] [a−1(a−1a)]} =

〈 b−1{[(b−1b)(a−1a)]b} 〉 {[b−1(b−1b)] [a−1(a−1a)]},

which by (7) equals

{b−1[(a−1a)b]} {[b−1(b−1b)] [a−1(a−1a)]} =

〈
[
{b−1[(a−1a)b]} b−1

]
(b−1b) 〉 [a−1(a−1a)] =

〈 b−1
[
{[(a−1a)b]b−1} (b−1b)

]
〉 [a−1(a−1a)] =

〈 b−1{(a−1a) [(b−1b)(b−1b)]} 〉 [a−1(a−1a)] =

{b−1 [(b−1b)2 (a−1a)]} [a−1(a−1a)] =

〈 {[b−1(b−1b)](b−1b)} (a−1a) 〉 [a−1(a−1a)] =

[b−1(b−1b)] {[(b−1b)(a−1a)] [a−1(a−1a)]} =

[b−1(b−1b)] 〈 (b−1b)2 {(a−1a)2 [a−1(a−1a)]} 〉 =

〈 {[b−1(b−1b)] (b−1b)} (b−1b) 〉 {(a−1a)2 [a−1(a−1a)]},

which by (2) and (6) equals

[b−1(b−1b)] [a−1(a−1a)] = (αb−1)(αa−1).

So we have proved that (ab)−1 = [b(b−1b)][a(a−1a)] = (αb−1)(αa−1) for all
a, b ∈ S and so E(S) is a semilattice and (ab)−1 = (αb−1)(αa−1) for all
a, b ∈ S.

We now want to prove that (ab)c = (αa)(bc) for all a, b, c ∈ S. Recall that,
from (2) and (6), a = [a(aa−1)](aa−1) = (αa)(aa−1) and (aa−1)(αa) = αa.
Now

(αa)(bc) = (αa){[(αb)(bb−1)]c} = {[(αa)(αb)](bb−1)}c =

{[(αa)(αb)][α(bb−1)]}c = {α[(ab)(bb−1)]}c.

So we need only prove that (ab)(bb−1) = α(ab), for then (αa)(bc) = [αα(ab)]c =
(ab)c. To prove this we now use the facts that E(S) is a semilattice and
(ab)−1 = (αb−1)(αa−1) for all a, b ∈ S. We have that

[(ab)−1(ab)](bb−1) = (bb−1)[(ab)−1(ab)] = (bb−1){[(αb−1)(αa−1)](ab)} =

{[(bb−1)(αb−1)](αa−1)]}(ab) = [(αb−1)(αa−1)](ab) = (ab)−1(ab).

Therefore,

(ab)(bb−1) = {[(ab)(ab)−1](ab)}(bb−1) = (ab){[(ab)−1(ab)](bb−1)} =

(ab)[(ab)−1(ab)] = (ab)[(ab)(ab)−1] = α(ab).

This completes the proof of (⇐) and therefore completes the proof of Lemma 8.
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Lemma 9. S is determined by a mapping α ∈ AUT 2
e (S, ∗) and (S, ∗) is a

semigroup that is a semilattice E of groups if and only if

(9.1) S is a completely inverse, generalized right-Bol groupoid,

(9.2) α : a 7→ a(aa−1) satisfies α ∈ AUT 2(S) and

(9.3) E(S) is a semilattice or (ab)−1 = (αb−1)(αa−1) for all a, b ∈ S.

Proof. (⇒) This follows from Lemma 1.
(⇐) Assume that (9.1), (9.2) and (9.3) are valid. It follows from Lemma 8

that (ab)c = (αa)(bc) for all a, b, c ∈ S. Also, (9.2) implies that αe = e(ee−1) =
e and so α ∈ AUT 2

e (S). Then it follows from Lemma 7 that S is determined
by α ∈ AUT 2

e (S, ∗), with (S, ∗) a semilattice of groups. This completes the
proof of Lemma 9.

The next Lemma establishes conditions under which (1.4) and (1.6) are
equivalent.

Lemma 10. If S is a completely inverse, generalized right-Bol groupoid, α ∈
AUT 2

e (S) and either E(S) is a semilattice or (ab)−1 = (αb−1)(αa−1) for all
a, b ∈ S then α : a 7→ a(aa−1) for all a ∈ S if and only if (ab)c = (αa)(bc) for
all a, b, c ∈ S.

Proof. (⇒) Lemma 9 implies that S is determined by α ∈ AUT 2
e (S, ∗) and

the semigroup (S, ∗) is a semilattice of groups. Then Lemma 1 implies that
(ab)c = (αa)(bc) for all a, b, cS.

(⇐) Lemma 4 implies that E(S) is a semilattice. So Lemma 7 implies that
S is determined by α ∈ AUT 2

e (S, ∗), with the semigroup (S, ∗) a semilattice of
groups. Then Lemma 1 implies that α : a 7→ a(aa−1) for all a ∈ S.

4. Semilattices of groupoids determined by groups

Lemma 11. Let E be any semilattice, and to each e ∈ E assign a groupoid
S(e), where S(e) is determined by an involutive, idempotent-fixed mapping αe

on G(e), with each G(e) (e ∈ E) a group and such that G(e) and G(f) are
disjoint if e 6= f in E. To each pair of elements f, e of E such that f ≥ e,
assign a homomorphism δf,e : S(f)→ S(e) such that if g ≥ f ≥ e then

(A) δf,eδg,f = δg,e

Assume that δe,e is the identity automorphism of S(e). Assume also that,
for b ∈ S(f) and all e ∈ E such that e ≤ f ,

(B) αe(δf,eb) = δf,e(αfb)

Let S be the union of all the S(e), (e ∈ E), and define the product of any
two elements a ∈ S(e) and b ∈ S(f) as

(C) ab = (δe,efa)(δf,efb).

Then
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(11.1) Each δf,e is a group homomorphism from G(f) to G(e);

(11.2) The union G of all the groups G(e), (e ∈ E), is a semilattice E of groups
if we define a product ∗ of any two elements a ∈ G(e) and b ∈ G(f) as

(D) a ∗ b = (δe,efa) ◦ (δf,efb),

where the product ◦ is the product in the group G(ef);

(11.3) S is determined by the mapping α ∈ AUT 2
e (G, ∗), where α =

⋃
e∈E

αe, that

is, αa = αea, (a ∈ G(e)), and (G, ∗) is a semilattice E of groups.

Proof. Let f ≥ e for some e, f ∈ E. By definition, G(f) = S(f), G(ef) =
S(ef) = G(e) and δf,e : S(f)→ S(e). Hence, δf,e : G(f)→ G(ef) = G(e). Let
+ denote the product in G(f) and let ◦ denote the product in G(ef) = G(e)
and let a, b ∈ G(f). Then δf,e(a + b) = δf,e[(αfa)b] = [δf,e(αfa)](δf,eb) =
{αe[δf,e(αfa)]} ◦ (δf,eb). Using (B), δf,e(a + b) = {αe[δf,e(αfa)]} ◦ (δf,eb) =
[δf,e(αfαfa)] ◦ (δf,eb) = (δf,ea) ◦ (δf,eb) and so δf,e : G(f) → G(e) is a homo-
morphism. This proves (11.1).

Now (11.2) is a consequence of (11.1), (A) and [1, Theorem 4.11].
Let a ∈ S(e) and b ∈ S(f), for any e, f ∈ E. Let ◦ denote the product

in G(ef). Then, by the definition of the product in S and using (B), ab =
(δe,efa)(δf,efb) = [αef (δe,efa)] ◦ (δf,efb) = [δe,ef (αea))] ◦ (δf,efb) = (αea) ∗ b =
(αa) ∗ b. We need only prove that α ∈ AUT 2

e (G, ∗). We have that α(a ∗ b) =
α[(δe,efa) ◦ (δf,efb)] = αef [(δe,efa) ◦ (δf,efb)] = [αef (δe,efa)] ◦ [αef (δf,efb)] =
[δe,ef (αea)] ◦ [δf,ef (αfb)] = [δe,ef (αa)] ◦ [δf,ef (αb)] = (αa) ∗ (αb) and so α is
a homomorphism. Finally, ααa = α(αea) = αe(αea) = a and so α is an
automorphism. Clearly it is E-fixed. Hence, α ∈ AUT 2

e (G, ∗). This proves
(11.3) and completes the proof of Lemma 11.

Note that in Lemma 11 if a = aa in S, where S has the product defined in
(C), then a is an identity element of a group G(e) for some e ∈ E. Conversely,
every identity of a group G(e) (e ∈ E) is an idempotent of the groupoid S.
Hence, there is a natural bijection between E and E(S) under which, in fact,
E ∼= E(S). Therefore, we have proved the first part of Corollary 12.

Corollary 12. The groupoid S in Lemma 11, with product defined as in (C),
is a semilattice of groupoids S(e) e ∈ E(S), each of which is determined by an
involutive, idempotent-fixed mapping αe on a group G(e).

S itself is determined by the involutive, idempotent-fixed mapping α =⋃
e∈E(S)

αe on the semigroup (G, ∗) of Lemma 11, which is a semilattice of groups.

S satisfies the identity (ab)c = (αa)(bc).

Proof. The second part of the Corollary follows from (11.3) and Result 2.

Lemma 13. If S is determined by a mapping α ∈ AUT 2
e (S,⊗) and (S,⊗) is

a semigroup that is a semilattice E of groups then S can be constructed as in
Lemma 11 above.
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Proof. Let the groupoid S be determined by a mapping α ∈ AUT 2
e (S,⊗), with

(S,⊗) a semigroup and a semilattice E of groups. So (1.1) through (1.13)
apply. Recall that we can consider E = E(S).

First we define, for e ∈ E, S(e) = {a ∈ S : aa−1 = e} where juxtaposition
denotes product in the groupoid S and where, as in the proof of (1.1), a−1 =
αa−1, where a−1 is the (unique) inverse of a in (S,⊗). Define G(e) to be the
maximal subgroup of (S,⊗) with identity element e cf. [1, Theorem 1.11].
Thus, G(e) = {a ∈ S : a⊗ a−1 = e}. By (1.13), S(e) = G(e), for e ∈ E.

We show that S(e) is determined by (G(e),⊗) and αe = α|G(e), the restric-
tion of α to G(e). Since, for a, b ∈ S(e) = G(e), ab = (αa) ⊗ b = (αea) ⊗ b.
Clearly, αe ∈ AUT 2

eG(e). Therefore

(1) Each S(e) is determined by (G(e),⊗) and αe = α|G(e) ∈ AUT 2
eG(e).

Note that since for a ∈ S(e), (αa)(αa)−1 = (αa)(αa−1) = α(aa−1) =
aa−1 = e, αa ∈ S(e) and so αS(e) ⊆ S(e). Also, a = ααa ∈ S(e), so
αS(e) ⊆ S(e) ⊆ αS(e) and hence we have proved that

(2) αS(e) = S(e). Also a ∈ S(e) if and only if αa ∈ S(e).

Note also that for a ∈ S(e), ea = (aa−1)a = a and, by (1.10), ae = e(αa) =
α(ea) = αa. We have proved

(3) if a ∈ S(e) then ea = a and ae = αa.

Now let a ∈ S(e) and b ∈ S(f), for some e, f ∈ E. Then, using (3), (1.6)
and (1.10), we have that

(af)(be) = [f(αa)][e(αb)] = (αf){(αa)[e(αb)]} = f{(αa)[e(αb)]} =

f [(ae)(αb)] = f [(αa)(αb)] = f [α(ab)] = (ab)f = (αa)(bf) = (αa)(αb) = α(ab).

Therefore,

ab = αα(ab) = α[(af)(be)] = [α(af)][α(be)] =

[(αa)(αf)][(αb)(αe)] = [(αa)f ][(αb)e] = (fa)(eb).

We have proved that

(4)
if a ∈ S(e) and b ∈ S(f), for some e, f ∈ E then

ab = (fa)(eb).

To each pair {f, e} ⊆ E such that f ≥ e, define δf,e : S(f) → S(e) as
δf,eb = eb (b ∈ S(f)). Then δf,e is well defined, as a consequence of (1.12),
since (eb)(eb)−1 = (ee−1)(bb−1) = ef ∈ S(ef) = S(e).

Now if a ∈ S(f) and b ∈ S(f) then, by (1.11), for any e ∈ E such that
f ≥ e, (ea)(eb) = e(ab) and so, (δf,ea)(δf,eb) = (ea)(eb) = e(ab) = δf,e(ab).
We have proved that

(5) Each δf,e : S(f)→ S(e) is a homomorphism.
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If g ≥ f ≥ e (e, f, g ∈ E) and a ∈ S(g) then δf,eδg,fa = δf,e(fa) = e(fa) =
[(αe)f ]a = (ef)a = ea = δg,ea and so

(6) if g ≥ f ≥ e (e, f, g ∈ E) then δf,eδg,f = δg,e.

Also, from (3) and (4), if a ∈ S(e) and b ∈ S(f), for some e, f ∈ E then
ab = (fa)(eb). But (ef)a = (fe)a = (αf)(ea) = fa and (ef)b = (αe)(fb) = eb
and so, ab = (δe,efa)(δf,efb); that is,

(7)
if a ∈ S(e) and b ∈ S(f), for some e, f ∈ E then

ab = (δe,efa)(δf,efb).

In addition, if b ∈ S(f) and f ≥ e for some e, f ∈ E then αe(δf,eb) =
αe(eb) = α(eb) = (αe)(αb) = e(αb) = δf,e(αb) = δf,e(αfb), which proves that

(8)
if b ∈ S(f) and f > e for some e, f ∈ E then

αe(δf,eb) = δf,e(αfb).

Now, consider the groupoids S(e) (e ∈ E), each of which - by (1) - is
determined by αe = α|G(e) ∈ AUT 2

eG(e). As a consequence of (5), (6), (7) and
(8), we also have a collection of homomorphisms δf,e : S(f) → S(e) (f ≥ e in
E) that satisfy (A), (B) and (C) of the first part of Lemma 11. Therefore, as
in the proof of Lemma 11, (11.1), (11.2), (D) and (11.3) are valid. Hence, the
union S of the S(e) (e ∈ E), with product

ab = (δe,efa)(δf,efb) = [α(δe,efa)] ◦ (δf,efb) = [δe,ef (αea))](δf,efb)

for a ∈ S(e) and b ∈ S(f),

is determined by α ∈ AUT 2
e (G, ∗), with the semigroup (G, ∗) a semilattice E of

the groups G(e) (e ∈ E), and where a ∗ b = (δe,efa) ◦ (δf,efb) and α =
⋃

e∈E
αe.

That is, ab = (αea) ∗ b = (αa) ∗ b.
Now, by the hypothesis of Lemma 13, a ⊗ b = (αa)b = a ∗ b. This assures

that the groupoid S in Lemma 13 can be constructed as required.

Lemma 14. If S is a semilattice E of groupoids S(e) (e ∈ E), where each
S(e) is determined by a mapping αe ∈ AUT 2

eG(e) and each G(e) (e ∈ E) is a
group with identity e, then S is a completely inverse groupoid.

Proof. Let e ∈ E(S) and a ∈ S(e). Then, as in the proof of Lemma 1, x = αa−1

is the unique inverse of a in the completely inverse groupoid S(e), where a−1 is
the unique inverse of a in the groupG(e). If y ∈ S(f) is an inverse of a in S then,
since S is a semilattice E(S) of groupoids S(e) (e ∈ E), {a, y} ⊆ S(ef) = S(e)
and so y = x. Then, since by Lemma 1 each S(e) is completely inverse, so is
S.
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5. Proof of the Main Theorem

Proof. As a consequence of Lemma 1, (M1) implies (M2), (M3) and (M4).
By Lemma 5, (M2) implies (M1). By Lemma 7, (M3) implies (M1). By
Lemma 9, (M4) implies (M1). Hence, conditions (M1), (M2), (M3) and (M4)
are equivalent.

By Lemmas 11 and 13, (M1) and (M5) are equivalent. By Lemma 13 and
the proof of Lemma 11 and Corollary 12, (M1) implies (M6).

We now prove that (M6) implies (M1). Using Lemma 14, S in (M6) is
completely inverse. Since (M1) and (M2) are equivalent statements, we need
only prove that α ∈ AUT 2(S), as the hypotheses of (M6) state that E(S) is
a semilattice. Firstly, we prove that αe = e, for all e ∈ E(S). Since e =
(ee)e = (αe)(ee) = (αe)e and since αe = αee ∈ S(e), αe = αee = αe[(αe)e] =
αe[(αee)e] = [αe(αee)](αee) = e(αe) = [(αe)e](αe) and [e(αe)]e = (αe)e = e.
So

(1) αe = e−1 = e.

Then for any a ∈ S(e), a = (aa−1)a = (αa)(a−1a) = (αa)(e) = (αa)(ee) =
(ae)e and so

(2) a = (αa)e = (ae)e, for any a ∈ S(e).

Then from (2),

αa = αe[(ae)e] = [αe(ae)](αee) = [(αea)(αee)]e = [(αea)e)]e = [(αa)e]e = ae

and so

(3) αa = ae.

Now let a ∈ S(e) and b ∈ S(f) for any e, f ∈ E(S). Then, using (2)
and (3), (αa)(αb) = (αa)(bf) = (ab)f = [αefαef (ab)]f = {[(ab)(ef)](ef)}f =
{[α(ab)](ef)}f = (ab)[(ef)f ] = (ab)(ef) = α(ab), proving that α ∈ AUT 2(S).

Hence, (M6) implies (M1) and the proof of the Main Theorem is complete.
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