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ON SPLIT EQUALITY MINIMIZATION AND FIXED
POINT PROBLEMS

Oluwatosin Temitope Mewomo12, Ferdinard Udochukwu Ogbuisi3

and Chibueze Christian Okeke4

Abstract. In this paper, iterative algorithm for approximating a so-
lution of a split equality minimization problem and split equality fixed
point problem for demi-contractive mappings is introduced. Using our
iterative algorithm, we state and prove a strong convergence theorem
for approximating an element in the intersection of the solution set of a
split equality minimization problem (SEMP) and the solution set of split
equality fixed point problem (SEFP) for demicontractive maps. Our re-
sult do not require any compactness assumption and does not require
the prior knowledge of the operator norm. Our result complements and
extends some recent results in literature.
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1. Introduction

In this paper, we let H be a Hilbert space endowed with inner product ⟨., .⟩
and induced norm ∥.∥ and R be the set of real numbers.

Definition 1.1. Let H be a real Hilbert space and Q a nonempty, closed and
convex subset of H. A mapping T : Q → Q is said to be L-Lipschitzian (see
[24], and some of the references therein) if there exists a constant L > 0 such
that

(1.1) ∥Tx− Ty∥ ≤ L∥x− y∥, ∀ x, y ∈ Q.

If L = 1, we say that T is nonexpansive, i.e

(1.2) ∥Tx− Ty∥ ≤ ∥x− y∥, ∀ x, y ∈ Q.
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A mapping T : Q→ Q is said to be k-strictly pseudo-contractive if there exists
a constant k ∈ (0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2 ∀ x, y ∈ Q.

A mapping T : Q → Q is said to be demi-contractive if F (T ) ̸= ∅ and there
exists a constant k ∈ (0, 1) such that

∥Tx− y∥2 ≤ ∥x− y∥2 + k||x− Tx||2, ∀ x ∈ Q, y ∈ F (T ).(1.3)

In a real Hilbert space H, it is known that (1.3) is equivalent to

⟨Tx− y, x− y⟩ ≤ ∥x− y∥2 − 1− k

2
∥x− Tx∥2.(1.4)

A point x ∈ Q is called a fixed point of T if Tx = x. It is well known that if T
is demicontractive and F (T ) ̸= ∅, then F (T ) is closed and convex.

Definition 1.2. Let h : H → R be a proper, convex and lower semi-continuous
function, then the proximal map Proxh associated with h is the function
Proxh : H → H defined by

Proxh(x) = argmin
y∈H

(
h(y) +

1

2
∥x− y∥2

)
, (x ∈ H),

and the proximal operator of the scaled function τh, where τ > 0, is given
as

Proxτh(x) = argmin
y∈H

(
h(y) +

1

2τ
∥x− y∥2

)
, (x ∈ H).

Let f : H → R and g : H → R be two convex and lower semi-continuous
functions such that f is differentiable with L-Lipschitz continuous gradient and
g is ”simple” meaning that its ”proximal mapping”

x→ argmin
y∈H

(
g(y) +

∥x− y∥2

2τ

)
can easily be computed. In this paper, we shall consider the minimization
problem of the form

(1.5) min
x∈H

F (x) := f(x) + g(x),

and assume the solution of (1.5) exists, we denote this solution set by Γ. For
more on minimization problem see [18].

The proximal mapping defined in Definition 1.2 is uniquely defined and
generalizes the projection on a closed convex set to convex functions. The
proximal-gradient method [10] has been employed in solving (1.5), by generat-
ing a sequence {xn} via the following algorithm: For an initial point x1 ∈ H,

(1.6) xn+1 = (proxλngo(I − λn∇f))xn,
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where ∇f is the gradient of f and {λn} is a sequence of positive real numbers.
If Γ ̸= ∅ and the following conditions are satisfied

(1.7) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ H

and

(1.8) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

L
,

then the sequence {xn}, (see, [10, 30]) converges weakly to a point in Γ. This
proximal gradient algorithm can also be interpreted as a fixed point iteration.
A point x∗ is a solution to the problem (1.5) that is x∗ is a minimizer of
f(x) + g(x), if and only if 0 ∈ ∇f(x∗) + ∂g(x∗). For any γ > 0 this optimality
condition holds if and only if the following equivalent statements hold:

0 ∈ γ∇f(x∗) + γ∂g(x∗);

0 ∈ γ∇f(x∗)− x∗ + x∗ + γ∂g(x∗);

(I + ∂g)(x∗) ∈ (I − γ∇f)(x∗);
x∗ = (I + γ∂g)−1(I − γ∇f)(x∗);
x∗ = Proxγg(x

∗ − γ∇f(x∗)).

(1.9)

The last two expressions in (1.9) hold with equality and not just containment
because the proximal operator is single valued. The final statement says that
x∗ minimizes f + g if and only if it is a fixed point of the forward-backward
operator (I + γ∂g)−1(I − γ∇f).

The proximal gradient method repeatedly applies this operator to obtain a
fixed point and thus a solution to original problem. The condition γ ∈ (0, 1

L ],
where L is the Lipschitz constant of ∇f guarantees that the forward-backward
operator is averaged and thus the iteration converges to a fixed point (if it
exists).
The Split Feasibility Problem (SFP) introduced in 1994 by Censor and Elfving
[5] is to find a point

x ∈ C such that Ax ∈ Q,(1.10)

where C and Q are nonempty closed convex sets in Rn and Rm respectively,
and A is an m× n real matrix. The SFP has wide applications in many fields,
such as phase retrieval, medical image reconstruction, signal processing, and
radiation therapy treatment planning (for example see [3, 4, 5, 6, 11, 32] and
the references therein).

The SFP has also been studied by numerous authors in both finite and
infinite dimensional Hilbert spaces (for examples see [2, 6, 7, 12, 14, 15, 16, 21,
22, 23, 20, 26, 25, 27, 28, 31, 33]). It has been shown (see [29]) that if the SFP
(1.10) has a solution, then x∗ ∈ C solves SFP (1.10) if and only if it solves the
fixed point equation

x∗ = PC(I − γA∗(I − PQ)A)x
∗,(1.11)
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where PC and PQ are the metric projections onto C and Q respectively, γ is
any positive real number, A is a bounded linear operator and A∗ is the adjoint
of A.

Byrne [2] applied the forward-backward method, a type of projected gradi-
ent method, to introduce the so-called CQ-iterative procedure for approximat-
ing a solution of (1.10), which is defined by

xn+1 = PC(I − γA∗(I − PQ)A)xn, n ∈ N,(1.12)

where γ ∈ (0, 2
λ ) with λ being the spectral radius of the operator A∗A.

In 2009, Censor and Segal [7] introduced an important form of the SFP
called Split Common Fixed Point Problem (SCFPP), which is to find a point

x∗ ∈ F (T ) such that Ax∗ ∈ F (S),(1.13)

where T and S are some nonlinear operators on Rn and Rm respectively, A
is a real m × n matrix. Based on the properties of the operators T and S,
called directed operators, they presented the following algorithm for solving
the SCFPP:

xn+1 = T (xn + γAT (S − I)Axn), ∀n ≥ 1, x1 ∈ Rn,(1.14)

where γ ∈ (0, 2
||A||2 ). They also obtained a convergence result for this algorithm.

Motivated by the work of Censor and Segal [7], Moudafi [15] presented the
following iterative scheme which does not involve the metric projections PC

and PQ:
(1.15)
xn+1 = (1−αn) (xn + γA∗(S − I)Axn) +αnT (xn + γA∗(S − I)Axn) , n ∈ N,

for approximating a solution of the SCFPP (1.13) and obtained a weak con-
vergence results when T and S are demi-contractive.

Recently, Moudafi and Al-Shemas [17] introduced the following Split Equal-
ity Fixed Point Problem (SEFPP) which generalizes the SFP (1.10):

Find x ∈ C := F (T ), y ∈ Q := F (S) such that Ax = By,(1.16)

where A : H1 → H3, B : H2 → H3 are two bounded linear operators, F (T )
and F (S) denotes the sets of fixed points of operators T and S defined on
H1 and H2 respectively. Note that if H2 = H3 and B = I (where I is the
identity map on H2) in (1.16), then problem (1.16) reduces to problem (1.10).
Further, Moudafi and Al-Shemas presented the following algorithm for solving
the SEFPP

(1.17)

{
xn+1 = T (xn − γnA

∗(Axn −Byn));

yn+1 = S(yn + γnB
∗(Axn −Byn)), ∀n ≥ 1;

where T : H1 → H1, S : H2 → H2 are two firmly quasi-nonexpansive map-
pings, A : H1 → H3, B : H2 → H3 are two bounded linear operators, A∗ and
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B∗ are the adjoints of A and B respectively, {γn} ⊂
(
ϵ, 2

λA∗A+λB∗B
− ϵ

)
, λA∗A

and λB∗B denote the spectral radius of A∗A and B∗B, respectively. Moudafi
established the weak convergence result for problem (1.16) using algorithm
(1.17).

Yaun-Fang et al. [13] presented the following algorithm for solving problem
(1.16):

(1.18)


∀x1 ∈ H1, y1 ∈ H2;

xn+1 = (1− αn)xn + αnT (xn − γnA
∗(Axn −Byn));

yn+1 = (1− αn)yn + αnS(yn + γnB
∗(Axn −Byn)), ∀n ≥ 1;

where T : H1 → H1, S : H2 → H2 are two firmly quasi-nonexpansive mappings,
A : H1 → H3, B : H2 → H3 are two bounded linear operators, A∗ and B∗

are the adjoints of A and B respectively, {γn} ⊂
(
ϵ, 2

λA∗A+λB∗B
− ϵ

)
(for ϵ

small enough), λA∗A and λB∗B denote the spectral radius of A∗A and B∗B
respectively and αn ∈ [α, 1] ( for some α > 0) and established a strong and
weak convergence results. Based on the work of Moudafi and Al-Shemas [17],
Chidume et al. [9] proposed the following algorithm for solving the SEFPP for
demi-contractive mappings:

∀x1 ∈ H1, ∀y1 ∈ H2;

xn+1 = (1− α) (xn − γA∗(Axn −Byn))

+αT (xn − γA∗(Axn −Byn)) ;

yn+1 = (1− α) (yn + γB∗(Axn −Byn))

+αS (yn + γB∗(Axn −Byn)) , ∀n ≥ 1;

(1.19)

where T : H1 → H1, S : H2 → H2 are two demi-contractive mappings.
Chidume et al. [9] proved weak and strong convergence theorems of the iterative
scheme (1.19) to a solution of the SEFPP in a real Hilbert spaces.

We now consider the following Split Equality Minimization and Fixed Point
Problem (SEMFPP).

Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 → H3

be bounded linear maps. Let f1 : H1 → R and f2 : H2 → R be differentiable
maps with L1 and L2-Lipschitz continuous gradients respectively. Let gi :
Hi → R (i = 1, 2) be ”simple” maps. The (SEMFPP) is to find x∗ ∈ F (T )
and y∗ ∈ F (S) such that

(1.20)

f1(x
∗) + g1(x

∗) = min
x∈H1

[f1(x) + g1(x)],

f2(y
∗) + g2(y

∗) = min
x∈H2

[f2(x) + g2(x)],

and Ax∗ = By∗. where T : H1 → H1 and S : H2 → H2 are two nonlinear
mappings. Assume that this problem has a solution, let’s denote the solution
set of (1.20) by Υ. Furthermore, we propose an iterative scheme and using
the iterative scheme, we state and prove a strong convergence result for the
approximation of a solution of problem (1.20).
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2. Preliminaries

We state some important results that will be needed in the proof of the
main result of this paper.

Lemma 2.1. Let H be a Hilbert space, then

2⟨x, y⟩ = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2, ∀ x, y ∈ H.

Lemma 2.2. [8] Let H be a Hilbert space, then ∀ x, y ∈ H and α ∈ (0, 1), we
have

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Lemma 2.3. (Demi-closed principle), Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let T : C → C be a nonexpansive mapping,
then I − T is demi-closed on C i.e, if xn ⇀ x ∈ C and xn − Txn → 0, then
x = Tx.

Lemma 2.4. [28] Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that
(i) Σ∞

n=0γn = ∞,
(ii) lim supn→∞ δn ≤ 0 or Σ∞

n=0|δnγn| <∞.
Then limn→∞ an = 0.

3. Main Result

Theorem 3.1. Let H1, H2, and H3 be real Hilbert spaces. Let T : H1 →
H1, S : H2 → H2 be demicontractive mappings with constants k1 and k2
respectively, such that I −S and I −T are demi-closed at 0. Let fi and gi (i =
1, 2) be two convex and lower semicontinuous functions such that f1 : H1 → R
and f2 : H2 → R are differentiable with L1 and L2- Lipschitz continuous
gradient, g1 : H1 → R and g2 : H2 → R be simple maps and A : H1 → H3, B :
H2 → H3 be bounded linear operators. Assume that the solution set Υ ̸= ∅
and let the step-size γn ∈

(
ϵ, 2||Atn−Brn||2

||A∗(Atn−Brn)||2+||B∗(Atn−Brn)||2 − ϵ
)
, n ∈ Ω.

Otherwise, γn = γ (γ being any nonnegative value), where the set of indexes
Ω = {n : Atn −Brn ̸= 0}.

Let u, x0 ∈ Q1 and v, y0 ∈ Q2 be arbitrary and the sequences {(xn, yn)} be
generated by

tn = (1− αn)xn + αnu;

rn = (1− αn)yn + αnv;

un = Proxδng1(I − δn∇f1)(tn − γnA
∗(Atn −Brn));

vn = Proxδng2(I − δn∇f2)(rn + γnB
∗(Atn −Brn));

xn+1 = (1− ζn)un + ζnTun;

yn+1 = (1− ψn)vn + ψnSvn;

(3.1)
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where {δn} is a sequence of positive real numbers and {αn}, {ζn} and {ψn}
are sequences in (0, 1), with conditions

i limn→∞ αn = 0,
∑∞

n=1 αn = ∞,

ii ζn ∈ (a, 1− k1) ⊆ (0, 1) for some a > 0,

iii ψn ∈ (b, 1− k2) ⊆ (0, 1) for some b > 0.

Then {(xn, yn)} converges strongly to (x̄, ȳ) in Υ.

Proof. Clearly γn is well defined since for any (x, y) ∈ Υ, we have

⟨A∗(Atn −Brn), tn − x⟩ = ⟨Atn −Brn, Atn −Ax⟩(3.2)

and

⟨B∗(Atn −Brn), y − rn⟩ = ⟨Atn −Brn, By −Brn⟩.(3.3)

Adding (3.2) and (3.3) and taking into account the fact that Ax = By, we
obtain ∀n ∈ Ω,

||Atn −Brn||2 = ⟨A∗(Atn −Brn), tn − x⟩+ ⟨B∗(Atn −Brn), y − rn⟩
≤ ||A∗(Atn −Brn)||||tn − x||+ ||B∗(Atn −Brn)||||y − rn||.

Therefore, for n ∈ Ω, that is, ||Atn −Brn|| > 0, we have ||A∗(Atn −Brn)|| ̸= 0
or ||B∗(Atn −Brn)|| ̸= 0. Thus γn is well defined.

Let (p, q) ∈ Υ, we have from (3.1) that

∥un − p∥2 = ∥Proxδng1(I − δn∇f1)(tn − γnA
∗(Atn −Brn))− p∥2

≤ ∥tn − γnA
∗(Atn −Brn)− p∥2

= ∥tn − p∥2 − 2γn⟨tn − p,A∗(Atn −Brn)⟩+ γ2n∥A∗(Atn −Brn)∥2.

(3.4)

From Lemma 2.1 and noting that A∗ is adjoint of A, we have

−2⟨tn − p,A∗(Atn −Brn)⟩ = −2⟨Atn −Ap,Atn −Brn⟩

= −∥Atn −Ap∥2 − ∥Atn −Brn∥2 + ∥Brn −Ap∥2.

(3.5)

From (3.4) and (3.5), we obtain

∥un − p∥2 ≤ ∥tn − p∥2 − γn∥Atn −Ap∥2 − γn∥Atn −Brn∥2

+ γn∥Brn −Ap∥2 + γn
2∥A∗(Atn −Brn)∥2.

(3.6)

Similarly, from (3.1), we have

∥vn − q∥2 ≤ ∥rn − q∥2 − γn∥Brn −Bq∥2 − γn∥Atn −Brn∥2

+ γn∥Atn −Bq∥2 + γ2n∥B∗(Atn −Brn)∥2.
(3.7)
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Adding inequality (3.6) and (3.7), and using the fact that Ap = Bq, we obtain

∥un − p∥2 + ∥vn − q∥2 ≤ ∥tn − p∥2 + ∥rn − q∥2 − γn[2∥Atn −Brn∥2

− γn(∥A∗(Atn −Brn)∥2 + ∥B∗(Atn −Brn)∥2)]

≤ ∥tn − p∥2 + ∥rn − q∥2.

(3.8)

From (3.1) and the fact that T is demi-contractive, we obtain

∥xn+1 − p∥2

= ∥(1− ζn)un + ζnTun − p∥2

= ∥(1− ζn)(un − p) + ζn(Tun − p)∥2

= (1− ζn)
2∥un − p∥2 + ζ2n∥Tun − p∥2 + 2ζn(1− ζn)⟨un − p, Tun − p⟩

≤ (1− ζn)
2∥un − p∥2 + ζ2n[∥un − p∥2 + k1∥un − Tun∥2]

+2ζn(1− ζn)

[
∥un − p∥2 − 1− k1

2
∥un − Tun∥2

]
= (1− 2ζn + ζ2n)∥un − p∥2 + ζ2n[∥un − p∥2 + k1∥un − Tun∥2]

+2ζn∥un − p∥2 − 2ζ2n∥un − p∥2 − ζn(1− ζn)(1− k1)∥un − Tun∥2

= ∥un − p∥2 − ζn(1− ζn − k1)∥un − Tun∥2

≤ ∥un − p∥2.(3.9)

Similarly, we have that

(3.10) ∥yn+1 − q∥2 ≤ ∥vn − q∥2.

Adding (3.9) and (3.10), and using (3.8), we have

∥xn+1 − p∥2 + ∥yn+1 − q∥2 ≤ ∥un − p∥2 + ∥vn − q∥2

≤ ∥tn − p∥2 + ∥rn − q∥2.(3.11)

From (3.1), (3.11) and Lemma 2.2 we obtain

∥xn+1 − p∥2 + ∥yn+1 − q∥2

≤ ∥(1− αn)(xn − p) + αn(u− p)∥2

+∥(1− αn)(yn − q) + αn(v − q)∥2

≤ (1− αn)∥xn − p∥2 + αn∥u− p∥2 + (1− αn)∥yn − q∥2

+αn∥v − q∥2

= (1− αn)[∥xn − p∥2 + ∥yn − q∥2] + αn[∥u− p∥2 + ∥v − q∥2]
≤ max{∥xn − p∥2 + ∥yn − q∥2, ∥u− p∥2 + ∥v − q∥2}
...

≤ max{∥x0 − p∥2 + ∥y0 − q∥2, ∥u− p∥2 + ∥v − q∥2}.
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Hence, {∥xn − p∥2 + ∥yn − q∥2} is bounded. Consequently {xn}, {yn}, {tn},
{rn}, {un}, {vn}, {Axn}, {Byn} are bounded. From (3.8), we obtain

∥xn+1 − p∥2 + ∥yn+1 − q∥2

≤ ∥tn − p∥2 + ∥rn − q∥2 − γn[2∥Atn −Brn∥2

−γn(∥A∗(Atn −Brn)∥2 + ∥B∗(Atn −Brn)∥2)]
≤ (1− αn)[∥xn − p∥2 + ∥yn − q∥2] + αn[∥u− p∥2 + ∥v − q∥2]

−γn[2∥Atn −Brn∥2 − γn(∥A∗(Atn −Brn)∥2

+∥B∗(Atn −Brn)∥2)],

which implies

ϵ2
(
||A∗(Atn −Brn)||2 + ||B∗(Atn −Brn)||2

)
≤ (1− αn)

[
||xn − p||2 + ||yn − q||2

]
+αn

[
||u− p||2 + ||v − q||2

]
−
[
||xn+1 − p||2 + ||yn+1 − q||2

]
.(3.12)

We divided the remaining part of the proof into two cases to establish strong
convergence.

Case 1: Assume that
{
||xn − p||2 + ||yn − q||2

}
is monotone decreasing,

then
{
||xn − p||2 + ||yn − q||2

}
is convergent, thus

lim
n→∞

[(
||xn+1 − p||2 + ||yn+1 − q||2

)
−
(
||xn − p||2 + ||yn − q||2

)]
= 0.

It follows from (3.12) that
(
||A∗(Atn −Brn)||2 + ||B∗(Atn −Brn)||2

)
→ 0, as

n→ ∞.

Since Atn −Brn = 0, if n /∈ Ω, we have

lim
n→∞

||A∗(Atn −Brn)||2 = lim
n→∞

||B∗(Atn −Brn)||2 = 0.(3.13)

From (3.1), we have

||tn − xn||2 = ||(1− αn)xn + αnu− xn||2

= α2
n||u− xn||2 → 0, as n→ ∞.

=⇒ lim
n→∞

||tn − xn||2 = 0.(3.14)

Similarly, we have

lim
n→∞

||rn − yn||2 = 0.(3.15)
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Also, from (3.1), Lemma 2.1 and Lemma 2.2, we have that

||un − p||2

= ||Proxδng1(I − δn∇f1)(tn − γnA
∗(Atn −Brn))− p||2

≤ ⟨un − p, tn − γnA
∗(Atn −Brn)− p⟩

=
1

2
[||un − p||2 + ||tn − γnA

∗(Atn −Brn)− p||2

−||un − p− (tn − γnA
∗(Atn −Brn)− p)||2]

≤ 1

2
[||un − p||2 + ||tn − p||2 + γ2n||A∗(Atn −Brn)||2

+2γn||tn − p||||A∗(Atn −Brn)||
−(||un − tn||2 + γ2n||A∗(Atn −Brn)||2 − 2γn⟨un − tn, A

∗(Atn −Brn)⟩])

=
1

2
[||un − p||2 + ||tn − p||2 + 2γn||tn − p||||A∗(Atn −Brn)||

−||un − tn||2 + 2γn⟨un − tn, A
∗(Atn −Brn)⟩]

≤ 1

2
[||un − p||2 + ||tn − p||2 + 2γn||tn − p||||A∗(Atn −Brn)||

−||un − tn||2 + 2γn||un − tn||||A∗(Atn −Brn)||]

≤ 1

2
[||un − p||2 + (1− αn)||xn − p||2 + αn||u− p||2

+2γn||tn − p||||A∗(Atn −Brn)|| − ||un − tn||2

+2γn||un − tn||||A∗(Atn −Brn)||]

≤ 1

2
[||un − p||2 + ||xn − p||2 + αn||u− p||2

+2γn||tn − p||||A∗(Atn −Brn)||
−||un − tn||2 + 2γn||un − tn||||A∗(Atn −Brn)||],(3.16)

which implies

||un − p||2 ≤ ||xn − p||2 + αn||u− p||2 + 2γn||wn − p||||A∗(Atn −Brn)||
−||un − tn||2 + 2γn||un − tn||||A∗(Atn −Brn)||.(3.17)

From (3.9) and (3.17), we have

||xn+1 − p||2 ≤ ||xn − p||2 + αn||u− p||2 + 2γn||tn − x∗||||A∗(Atn −Brn)||
−||un − tn||2 + 2γn||un − tn||||A∗(Atn −Brn)||.(3.18)

Similarly, we have

||yn+1 − q||2 ≤ ||yn − q||2 + αn||v − q||2 + 2γn||rn − q||||B∗(Atn −Brn)||
−||vn − rn||2 + 2γn||vn − rn||||B∗(Atn −Brn)||.(3.19)
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Adding (3.18) and (3.19), we have

||xn+1 − p||2 + ||yn+1 − q||2

≤ ||xn − p||2 + ||yn − q||2 + αn[||u− p||2 + ||v − q||2]
+2γn[||tn − x∗||||A∗(Atn −Brn)||
+||rn − y∗||||B∗(Atn −Brn)||]
−[||un − tn||2 + ||vn − rn||2]
+2γn[||un − tn||||A∗(Atn −Brn)||
+||vn − rn||||B∗(Atn −Brn)||].(3.20)

Using (3.13) together with the fact that αn → 0, as n→ ∞ in (3.20), we have

lim
n→∞

[
||un − tn||2 + ||vn − rn||2

]
= 0,

which implies

lim
n→∞

||un − tn||2 = 0(3.21)

and

lim
n→∞

||vn − rn||2 = 0.(3.22)

Observe that since T is demicontractive and p ∈ F (T ), so we have

||Tx− p||2 ≤ ||x− p||2 + k1||x− Tx||2

=⇒ ⟨Tx− p, Tx− p⟩ ≤ ⟨x− p, x− p⟩+ k1||x− Tx||2

=⇒ ⟨Tx− p, Tx− x⟩+ ⟨Tx− p, x− p⟩ ≤ ⟨x− p, x− p⟩+ k1||x− Tx||2

=⇒ ⟨Tx− p, Tx− x⟩ ≤ ⟨x− Tx, x− p⟩+ k1||x− Tx||2

=⇒ ⟨Tx− x, Tx− x⟩+ ⟨x− p, Tx− x⟩ ≤ ⟨x− Tx, x− p⟩+ k1||x− Tx||2

||Tx− x||2 ≤ ⟨x− p, x− Tx⟩ − ⟨x− p, Tx− x⟩
+k1||x− Tx||2

=⇒ (1− k1)||Tx− x||2 ≤ 2⟨x− p, x− Tx⟩.(3.23)

From (3.1) and (3.23), we have

||xn+1 − p||2

= ||(1− ζn)un + ζnTun − p||2

= ||un − p+ ζn(Tun − un)||2

= ||un − p||2 + ζ2n||Tun − un||2 − 2ζn⟨un − p, un − Tun⟩
≤ ||un − p||2 + ζ2n||Tun − un||2 − (1− k1)ζn||Tun − un||2

= ||un − p||2 + ζn(ζn − (1− k1))||un − Tun||2.(3.24)

Similarly, we have that

(3.25) ||yn+1 − q||2 ≤ ||vn − q||2 + ψn(ψn − (1− k2))||vn − Svn||2.
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Adding (3.24) and (3.25), we have

||xn+1 − p||2 + ||yn+1 − q||2

≤ ||un − p||2 + ||vn − q||2 + ζn(ζn − (1− k1))||Tun − un||2

+ψn(ψn(1− k2))||vn − Svn||2

≤ ||tn − p||+ ||rn − q||2 + ζn(ζn − (1− k1))||Tun − un||2

+ψn(ψn − (1− k2))||vn − Svn||2

≤ (1− αn)
[
||xn − p||2 + ||yn − q||2

]
+ αn

[
||u− p||2 + ||v − q||2

]
+ζn(ζn − (1− k1))||un − Tun||2

+ψn(ψn − (1− k2))||vn − Svn||2.(3.26)

Let Kn = ζn((1− k1)− ζn)||un − Tun||2 + ψn((1− k2)− ψn)||vn − Svn||2,
then

Kn

≤ (1− αn)
[
||xn − p||2 + ||yn − q||2

]
−
[
||xn+1 − p||2 + ||yn+1 − q||2

]
+αn

[
||u− p||2 + ||v − q||2

]
→ 0, as n→ ∞,

which implies

||un − Tun||2 + ||vn − Svn||2 → 0, n→ ∞.

That is

lim
n→∞

||un − Tun||2 = 0,(3.27)

and

lim
n→∞

||vn − Svn||2 = 0.(3.28)

From (3.27), we have

lim
n→∞

||xn+1 − un|| = lim
n→∞

ζn||un − Tun|| = 0.(3.29)

Similarly, from (3.28), we have

lim
n→∞

||yn+1 − vn|| = lim
n→∞

ψn||vn − Svn|| = 0.(3.30)

From (3.14) and (3.21), we have ||xn−un|| ≤ ||xn−tn||+ ||tn−un|| → 0, which
implies that

lim
n→∞

||xn − un|| = 0.(3.31)

Similarly, from (3.15) and (3.22), we have

lim
n→∞

||yn − vn|| = 0.(3.32)
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Also, from (3.29) and (3.31), we have

||xn+1 − xn|| ≤ ||xn+1 − un||+ ||un − xn|| → 0, as n→ ∞,

which implies that

lim
n→∞

||xn+1 − xn|| = 0.(3.33)

Similarly, from (3.30) and (3.32), we have

lim
n→∞

||yn+1 − yn|| = 0.(3.34)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that

{xnk
} converges weakly to x̄ ∈ H1. By (3.31) and (3.14), we have that {un} and

{tn} converges weakly to x̄ and by the demi-closeness of I−T at 0 and (3.27), we
have that x̄ ∈ F (T ). Since {yn} is bounded, there exists a subsequence {ynk

}
of {yn} such that {ynk

} converges weakly to ȳ ∈ H2. By (3.32) and (3.15), we
have that {vn} and {rn} converges weakly to ȳ and by the demi-closeness of
I − S at 0 and (3.28), we have that ȳ ∈ F (S).

Also, since A and B are bounded linear operators, we have that {Atn}
converges weakly to Ax̄ and {Brn} converges weakly to Bȳ.

Next, we show that Ax̄ = Bȳ.

||Ax̄−Bȳ||2

= ⟨Ax̄−Bȳ,Ax̄−Bȳ⟩
= ⟨Ax̄−Bȳ,Ax̄−Bȳ +Atn −Atn +Brn −Brn⟩
= ⟨Ax̄−Bȳ,Ax̄−Atn⟩+ ⟨Ax̄−Bȳ,Atn −Brn⟩+ ⟨Ax̄−Bȳ,Brn −Bȳ⟩
= ⟨Ax̄−Bȳ,Ax̄−Atn⟩+ ⟨Ax̄,Atn −Brn⟩ − ⟨Bȳ,Atn −Brn⟩

+⟨Ax̄−Bȳ,Brn −Bȳ⟩
= ⟨Ax̄−Bȳ,Ax̄−Atn⟩+ ⟨x̄, A∗(Atn −Brn)⟩ − ⟨ȳ, B∗(Atn −Brn)⟩

+⟨Ax̄−Bȳ,Brn −Bȳ⟩
≤ ⟨Ax̄−Bȳ,Ax̄−Atn⟩+ ||x̄||||A∗(Atn −Brn)||+ ||ȳ||||B∗(Atn −Brn)||
+ ⟨Ax̄−Bȳ,Brn −Bȳ⟩ → 0, n→ ∞,

which implies that ||Ax̄−Bȳ|| = 0. Hence Ax̄ = Bȳ.
Let pn = tn − γnA

∗(Atn −Brn).

Then ∥pn − tn∥2 = γn
2∥A∗(Atn −Brn)∥2 → 0 as n→ ∞, and

(3.35) ∥un − pn∥ ≤ ∥un − tn∥+ ∥tn − pn∥ → 0 as n→ ∞.

We get from (3.35) that

(3.36) ∥proxδng1(pn − δn∇f1(pn))− pn∥ → 0.

Similarly, if we let an = rn + γnB
∗(Atn −Brn), we obtain

(3.37) ∥proxδng2(an − δn∇f2(an))− an∥ → 0.
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Hence by Lemma 2.3 (demiclosedness principle) we have wω(pn) = wω(xn) ⊂
Υ. There exists a subsequence {xnk

} of {xn} such that xnk
⇀ x̄, for some

x̄ ∈ Υ. By similar argument, we get ȳ ∈ Υ. Hence (x̄, ȳ) ∈ Υ.
Next, we show that ({xn}, {yn}) converges strongly to (x̄, ȳ).
From (3.11), we have

||xn+1 − x̄||2 + ||yn+1 − ȳ||2

≤ ||tn − x̄||2 + ||rn − ȳ||2

= (1− αn)
2||xn − x̄||2 + α2

n||u− x̄||2

+2(1− αn)αn⟨xn − x̄, u− x̄⟩
+(1− αn)

2||yn − ȳ||2 + α2
n||v − ȳ||2

+2(1− αn)αn⟨yn − ȳ, v − ȳ⟩
≤ (1− αn)

2
[
||xn − x̄||2 + ||yn − ȳ||2

]
+ αn

[
αn||u− x̄||2

+2(1− αn)⟨xn − x̄, u− x̄⟩+ αn||v − ȳ||2

+2(1− αn)⟨yn − ȳ, v − ȳ⟩
]
.(3.38)

Applying Lemma (2.4) to (3.38), we have that ({xn}, {yn}) converges strongly
to (x̄, ȳ).

Case 2. Assume that {||xn−p||2+ ||yn− q||2} is not monotone decreasing.
Set Γn = ||xn − p||2 + ||yn − q||2 and let τ : N → N be a mapping defined for
all n ≥ n0 (for some large n0) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Clearly, τ is a non-decreasing sequence such that τ(n) → ∞, as n→ ∞ and

Γτ(n) ≤ Γτ(n)+1,∀n ≥ n0.

From (3.12), we have

ϵ2(||A∗(Atτ(n) −Brτ(n))||2 + ||B∗(Atτ(n) −Brτ(n))||2

≤ (1− ατ(n))[||xτ(n) − p||2

+||yτ(n) − q||2]− [||xτ(n)+1 − p||2

+||yτ(n)+1 − q||2] + ατ(n)[||u− p||2 + ||v − p||2]
≤ ατ(n)[||u− p||2 + ||v − q||2].(3.39)

Therefore,(
||A∗(Atτ(n) −Brτ(n))||2 + ||B∗(Atτ(n) −Brτ(n))||2

)
→ 0, as n→ ∞.

Note that Atτ(n) −Brτ(n) = 0, if τ(n) ̸∈ Ω. Hence,

lim
n→∞

||A∗(Atτ(n) −Brτ(n))||2 = 0,(3.40)

and

lim
n→∞

||B∗(Atτ(n) −Brτ(n))||2 = 0.(3.41)
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Using the same argument as in case 1, we have ({xτ(n)}, {yτ(n)}) converges
weakly to (x̄, ȳ) ∈ Γ.

Now for all n ≥ n0,

0 ≤ [||xτ(n)+1 − p||2 + ||yτ(n)+1 − q||2]− [||xτ(n) − p||2 + ||yτ(n) − q||2]
≤ (1− ατ(n))[||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2]− [||xτ(n) − p||2 + ||yτ(n) − q||2]

+ατ(n)[ατ(n)[||u− x̄||2 + ||v − ȳ||2] + 2(1− ατ(n))(⟨xτ(n) − x̄, u− x̄⟩
+⟨yτ(n) − ȳ, v − ȳ⟩)],

which implies

||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2

≤ ατ(n)[||u− x̄||2 + ||v − ȳ||2]
+2(1− ατ(n))(⟨xτ(n)
−x̄, u− x̄⟩+ ⟨yτ(n) − ȳ, v − ȳ⟩) → 0.

Hence

lim
n→∞

(||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2) = 0.

Therefore,

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0.

Moreover, for n ≥ n0, it is clear that Γτ(n) ≤ Γτ(n)+1 if n ̸= τ(n) (that is
τ(n) < n) because Γj > Γj+1 for τ(n) + 1 ≤ j ≤ n.

Consequently for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Thus, limn→∞ Γn = 0. That is {(xn, yn)} converges strongly to (x̄, ȳ).

Corollary 3.2. Let H1, H2, and H3 be real Hilbert spaces Let T : H1 →
H1, S : H2 → H2 be two nonexpansive mappings such that I − S and I − T
are demi-closed at 0. Let fi and gi (i = 1, 2) be two convex and lower semi-
continuous functions such that f1 : H1 → R and f2 : H2 → R are differ-
entiable with L1- and L2- Lipschitz continuous gradient, g1 : H1 → R and
g2 : H2 → R be simple maps and A : H1 → H3, B : H2 → H3 be bounded
linear operators. Assume that the solution set Υ ̸= ∅ and let the step-size

γn ∈
(
ϵ, 2||Atn−Brn||2

||A∗(Atn−Brn)||2+||B∗(Atn−Brn)||2 − ϵ
)
, n ∈ Ω

q otherwise, γn = γ (γ being any nonegative value), where the set of indexes
Ω = {n : Atn −Brn ̸= 0}.

Let u, x0 ∈ Q1 and v, y0 ∈ Q2 be arbitrary and the sequences {(xn, , yn)} be
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generated by

tn = (1− αn)xn + αnu

rn = (1− αn)yn + αnv

un = Proxδng1(I − δn∇f1)(tn − γnA
∗(Atn −Brn))

vn = Proxδng2(I − δn∇f2)(rn + γnB
∗(Atn −Brn))

xn+1 = (1− ζn)un + ζnTun

yn+1 = (1− ψn)vn + ψnSvn

(3.42)

where {δn} is a sequence of positive real numbers and {αn}, {ζn} and {ψn}
are sequences in (0, 1), with conditions

i limn→∞ αn = 0,
∑∞

n=1 αn = ∞,

ii ζn ∈ (a, 1− k1) ⊆ (0, 1) for some a > 0,

iii ψn ∈ (b, 1− k2) ⊆ (0, 1) for some b > 0.

Then {(xn, yn)} converges strongly to (x̄, ȳ) in Υ.

Corollary 3.3. Let H1, H2, and H3 be real Hilbert spaces. Let T : H1 →
H1, S : H2 → H2 be k1-strictly pseudocontractive and k2-strictly pseudocon-
tractive mappings respectively such that I−S and I−T are demi-closed at 0. Let
fi and gi (i = 1, 2) be two convex and lower semicontinuous functions such that
f1 : H1 → R and f2 : H2 → R are differentiable with L1- and L2- Lipschitz con-
tinuous gradient, g1 : H1 → R and g2 : H2 → R be simple maps and A : H1 →
H3, B : H2 → H3 be bounded linear operators. Assume that the solution set

Υ ̸= ∅ and let the step-size γn ∈
(
ϵ, 2||Atn−Brn||2

||A∗(Atn−Brn)||2+||B∗(Atn−Brn)||2 − ϵ
)
, n ∈

Ω. Otherwise, γn = γ(γ being any nonegative value), where the set of indexes
Ω = {n : Atn −Brn ̸= 0}.

Let u, x0 ∈ Q1 and v, y0 ∈ Q2 be arbitrary and the sequences ({xn}, {yn})
be generated by

tn = (1− αn)xn + αnu

rn = (1− αn)yn + αnv

un = Proxδng1(I − δn∇f1)(tn − γnA
∗(Atn −Brn))

vn = Proxδng2(I − δn∇f2)(rn + γnB
∗(Atn −Brn))

xn+1 = (1− ζn)un + ζnTun

yn+1 = (1− ψn)vn + ψnSvn

(3.43)

where {δn} is a sequence of positive real numbers and {αn}, {ζn} and {ψn}
are sequences in (0, 1), with conditions

i limn→∞ αn = 0,
∑∞

n=1 αn = ∞,

ii ζn ∈ (a, 1− k1) ⊆ (0, 1) for some a > 0,

iii ψn ∈ (b, 1− k2) ⊆ (0, 1) for some b > 0.

Then {(xn, yn)} converges strongly to (x̄, ȳ) in Υ.
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3.1. Application to the split equality monotone variational inclusion
problem

Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 → H3

be two bounded linear operators. Let f1 : H1 → H1, f2 : H2 → H2 be α1,
(respectively, α2)-inverse strongly monotone mappings and M1 : H1 → 2H1 ,
M2 : H2 → 2H2 be maximal monotone mappings. The split equality monotone
variational inclusion problem (SEMVIP) is to find x∗ ∈ H1 and y∗ ∈ H2 such
that

0 ∈ f1(x
∗) +M1(x

∗),(3.44)

0 ∈ f2(y
∗) +M2(y

∗), and Ax∗ = By∗.(3.45)

Let SOL(fi,Mi), (i = 1, 2) be the solution set of SEMVIP. The operator
JMi
σ (I − λϕ) (i = 1, 2) is an averaged nonexpansive operator and F (JMi

σ (I −
λfi)) =SOL(fi,Mi), i = 1, 2, where σ > 0, λ ∈ (0, 2α) and JMi

σ (I − λϕ) is the
resolvent of Mi with parameter σ (see for example [1, 19]).

Since every averaged nonexpansive mapping with nonempty fixed point set
is quasi-nonexpansive, in Corollary 3.2, if we let T = JM1

σ (I − λf1) and S =
JM2
σ (I − λf2), then we obtain a strong convergence result for approximating a

common solution of SEMVIP and SEMFPP.
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