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ON THE TRIGONOMETRIC APPROXIMATION OF
FUNCTIONS IN WEIGHTED LORENTZ SPACES

USING CESÀRO SUBMETHOD
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Abstract. In this study, we investigate some trigonometric approxima-
tion problems in the weighted Lorentz spaces with Muckenhoupt weights
using infinite lower triangular regular matrices obtained by Cesàro sub-
method.
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1. Introduction

We start with the definition of weighted Lorentz spaces.
Let T = [−π, π]. If the set w−1({0,∞}) has the Lebesgue measure zero

then we say that a measurable, nonnegative function w : T → [0,∞] is a
weight function. Let w be a weight function and µ be a measurable set. We
put

(1.1) w(µ) =

∫
µ

w(x)dx.

We define the decreasing rearrangement f⋆
w(t) of f : T → R with respect

to the Borel measure (1.1)

f⋆
w(t) = inf{λ ≥ 0 : w({x ∈ T : |f(x)| > λ} ≤ t)}.

Let t > 0. Then, the average function f⋆⋆(t) is defined by

f⋆⋆(t) =
1

t

∫ t

0

f⋆
w(u)du.

Let f : T → R be a measurable function and 1 < p, q < ∞. The weighted
Lorentz space Lpq

w (T) is defined [10, p.20], [3, p.219] as the set of all measurable
functions f such that ∥f∥pq,w < ∞, where

∥f∥pq,w =

(∫
T
(f⋆⋆(t))qt

q
p
dt

t

) 1
q

.

1Department of Mathematics, Faculty of Education, Balikesir University, 10100, Balikesir-
TURKEY, e-mail: ahmet.avsar@balikesir.edu.tr

2Corresponding author
3Department of Mathematics, Faculty of Education, Balikesir University, 10100, Balikesir-

TURKEY, e-mail: yildirir@balikesir.edu.tr

https://doi.org/10.30755/NSJOM.06335
mailto: ahmet.avsar@balikesir.edu.tr
mailto: yildirir@balikesir.edu.tr


42 Ahmet Hamdi Avsar, Yunus Emre Yildirir

If p = q, Lpq
w (T) turns into weighted Lebesgue space Lp

w(T) [10, p.20].
Let p

′
= p

p−1 and 1 < p < ∞. A weight function w belongs to the Mucken-

houpt class Ap(T) [29] if the condition

sup
1

|J |

∫
J

w(x)dx

(
1

|J |

∫
J

w1−p
′

(x)dx

)p−1

< ∞

holds, where the supremum is taken with respect to all the intervals J with
length ≤ 2π and |J | denotes the length of J.

When w ∈ Ap(T), 1 < p, q < ∞ the relation Lpq
w (T) ⊂ L1(T) holds [10, the

proof of Prop. 3.3]. So the Fourier series and the conjugate Fourier series of
f ∈ Lpq

w (T) can be given as

(1.2) f(x) ∼ a0(f)

2
+

∞∑
k=1

(ak(f) cos kx+ bk(f) sin kx) ,

f̃(x) ∼ a0(f)

2
+

∞∑
k=1

(ak(f) sin kx− bk(f) cos kx)

respectively.
Here a0(f), ak(f), bk(f), k = 1, 2, . . . , are Fourier coefficients of f. The nth

partial sum of the series (1.2) will be denoted by Sn(f, x), (n = 0, 1, 2, . . .) at
the point x, that is,

Sn(f, x) =

n∑
k=0

Uk(f)(x),

where

U0(f)(x) :=
a0(f)

2
,

Uk(f)(x) := ak(f) cos kx+ bk(f) sin kx, k = 1, 2, . . . .

By En(f)Lpq
ω

we will denote the best approximation of f ∈ Lpq
ω (T) by

trigonometric polynomials of degree ≤ n, i.e.,

En(f)Lpq
ω

= inf
Tk∈Tk

∥f − Tk∥pq,ω ,

where Tk is the set of all trigonometric polynomials of degree k ≤ n.
The Hardy Littlewood Maximal operator is defined for f ∈ L1 as

M(f)(x) := sup
x∈I

1

|I|

∫
I

|f(t)|dt, x ∈ [0, 2π]

where the supremum is taken over all subintervals I of [0, 2π] [7, p. 80].
When w ∈ Ap(T) and 1 < p, q < ∞, the Hardy Littlewood maximal opera-

tor of f ∈ Lpq
w (T) is bounded in Lpq

w (T) [6].
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The modulus of continuity of the function f ∈ Lpq
w (T) is defined [19] as

Ω(f, δ)Lpq
w

= sup
|h|<δ

∥Ahf∥pq,w , δ > 0,

where

(Ahf)(x) :=
1

h

h∫
0

|f(x+ t)− f(x)| dt

is the Steklov operator.
The modulus of continuity Ω(f, δ)Lpq

w
is defined in this way since the space

Lpq
w (T) is noninvariant under the usual shift f(·) → f(· + h). Due to bound-

edness of the Hardy Littlewood maximal operator the Steklov operator Ahf is
bounded in Lpq

w (T). So Ω(f, δ)Lpq
w

makes sense for w ∈ Ap(T).
Furthermore, the modulus of continuity Ω(f, δ)Lpq

w
is nondecreasing, non-

negative, continuous function satisfying the conditions

lim
δ→0

Ω(f, δ)Lpq
w

= 0, Ω(f1 + f2, δ)Lpq
w

≤ Ω(f1, δ)Lpq
w

+Ω(f2, δ)Lpq
w
.

In Lebesgue spaces Lp (1 < p < ∞), the traditional modulus of continuity
is defined as

ωp(f, δ) = sup
0<h≤δ

∥f(·+ h)− f(·)∥p , δ > 0,

It is known that the modulus of continuity Ω(f, δ)Lpq
w

and traditional modulus
of continuity ωp(f, δ) are equivalent (see [19]).

Lipschitz class Lip(α,Lpq
w ) is defined as

Lip(α,Lpq
w ) :=

{
f ∈ Lpq

w (T) : Ω(f, δ)Lpq
w

= O(δα), 0 < α ≤ 1
}
.

Let (λn)
∞
n=1 be a strictly increasing sequence of positive integers. For a

sequence (xk) of the real or complex numbers, the Cesàro submethod Cλ is
defined by

(Cλx)n :=
1

λn

λn∑
k=1

xk, (n = 1, 2, . . .).

Particularly, when λn = n we note that (Cλx)n is the classical Cesàro
method (C, 1) of (xk) . Therefore, the Cesàro submethod Cλ yields a subse-
quence of the Cesàro method (C, 1) . The basic properties of the method Cλ

were investigated firstly by Armitage and Maddox in [2] and Osikiewicz [30].
In these works, the relations between the classical Cesàro method and Cesàro
submethod were obtained. Further information about the method Cλ can be
found in [2, 30].

We denote by T ≡ (an,k) a lower triangular regular matrix with nonnegative
entries and row sums 1. We define

(1.3) τλn (f, x) :=

λn∑
k=0

aλn,kSk(f, x), n = 0, 1, 2, . . .
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and

(1.4) Tλ
n (f ;x) =

λn∑
k=0

aλn,λn−kSk(f ;x), n = 0, 1, 2, . . . .

When λn = n, the method (1.3) turns into matrix method τn(f, x) defined
by

τn(f, x) :=

n∑
k=0

an,kSk(f, x), n = 0, 1, 2, . . .

and the method (1.4) turns into matrix method Tn(f ;x) defined by

Tn(f ;x) =

n∑
k=0

an,n−kSk(f ;x), n = 0, 1, 2, . . . .

When aλn,λn−k =
p
λn−k

Pλn
, the method Tλ

n turns into Nörlund submethod

given as

Nλ
n (f ;x) :=

1

Pλn

λn∑
k=0

p
λn−k

Sk(f ;x)

and when aλn,k =
p
k

Pλn
, the method τλn turns into Riesz submethod given by

Rλ
n(f ;x) :=

1

Pλn

λn∑
k=0

pkSk(f ;x)

where

Pλn
= p0 + p1 + p2 + . . .+ pλn

̸= 0 (n > 0)

and by convention, p−1 = P−1 = 0 [30].
Also, in the case pn = 1, n ≥ 0, λn = n, both of Nλ

n (f)(x) and Rλ
n(f)(x)

are equal to the Cesàro mean

σn(f)(x) =
1

n+ 1

n∑
k=0

Sk(f ;x).

A nonnegative sequence u := (un) is called almost monotone decreasing
(increasing), if there exists a constant K := K(u), depending on the sequence
u only, such that

un ≤ Kum (Kun ≥ um)

for all n ≥ m. Such sequences will be denoted by u ∈ AMDS (u ∈ AMIS) .
Let

An,k :=
1

k + 1

k∑
i=0

an,i.



Approximation in weighted Lorentz spaces 45

If {An,k} ∈ AMDS ({An,k} ∈ AMIS) , then we will say that {an,k} is an
almost monotone decreasing (increasing) mean sequence. Briefly, we will write
{an,k} ∈ AMDMS ({an,k} ∈ AMIMS) .

Let

A
∗

n,k :=
1

k + 1

n∑
i=n−k

an,i.

If
{
A∗

n,k

}
∈ AMDS

({
A∗

n,k

}
∈ AMIS

)
, then we will say that {an,k}

is an almost monotone decreasing (increasing) upper mean sequence. Briefly,
{an,k} ∈ AMDUMS ({an,k} ∈ AMIUMS) .

The following inclusions are valid [28, 32].

AMDS ⊂ AMIUMS and AMIS ⊂ AMDUMS

We will use sums up to λn in Sn and σn and write these sums as Sλ
n and σλ

n,
respectively.

The operator ∆k is defined by

∆kan,k = an,k − an,k+1.

The relation ≼ is defined as ”A ≼ B ⇔there exists a positive constant C,
independent of essential parameters, such that A ≤ CB”.

We set

[x] := max {n ∈ Z : n ≤ x} .

2. Historical Background

Approximation degree of trigonometric polynomials by means of differ-
ent summability methods were investigated by many researchers in Lebesgue
spaces. We will give some of these results in chronological order.

In [31], Quade proved an important theorem about trigonometric approxi-
mation without using the method given by Hardy and Littlewood [14] in 1928.
The result of Quade is following:

Theorem 2.1. Let f ∈ Lip(α, p), 0 < α ≤ 1. Then

∥f − σn(f)∥p = O(n−α)

for either

(i) p > 1 and 0 < α ≤ 1 or

(ii) p = 1 and 0 < α < 1.

And if p = α = 1 then

∥f − σn(f)∥1 = O(n−1 log(n+ 1)).
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In [4, 5], Chandra extended the work of Quade [31] using Nn(f ;x) and
Rn(f ;x) methods which are the generalizations of Cesàro method. These stud-
ies have given very satisfactory results about trigonometric approximation by
means of Nn(f ;x) and Rn(f ;x) methods. Leindler [20] improved the theorems
proved by Chandra [5] by weakened monotonicity conditions on sequences (Pn).
The work of Chandra [5] was extended by Mittal et al. [22] using matrix method
which is a generalization of Nn(f ;x) and Rn(f ;x) methods. The results given
by Chandra [5] in classical Lebesgue spaces were extended by Guven [11] to
weighted Lebesgue spaces. The approximation theorems proved by Chandra
[5] and Leindler [20] were improved by Szal [32] under weakened assumptions,
and they were also extended by Israfilov and Guven [13] to variable exponent
weighted Lebesgue spaces. The trigonometric approximation problems investi-
gated by Mittal et al. [22] their results were improved by Mittal et al. [23] by
dropping the monotonicity on the elements of matrix rows. Also, they extended
two theorems given by Leindler [20] to a more general class of triangular matrix
methods. In [12], Guven extended the work of Mittal et al. [22] to variable
exponent Lebesgue spaces using matrix method. In [28], Mohapatra and Szal
investigated the results given in [5] with less stringent assumptions using ma-
trix method. Deger and Kaya [9] and Deger et al. [8] generalized the results
obtained by Chandra [5] and Leindler [20] taking Nλ

n (f ;x) and Rλ
n(f ;x) in the

place of Nn(f ;x) and Rn(f ;x). Krasniqi [17] investigated the degree of approx-
imation using Nörlund and Riesz submethods by modulus of continuity of first
order in the weighted Lebesgue spaces. In [18], the results on the trigonomet-
ric approximation problems by means of Nλ

n (f ;x) and Rλ
n(f ;x) submethods

were investigated for two new numerical sequences. In [24], Mittal and Singh
improved the results given by Deger et al. [8] by dropping monotonicity con-
ditions on the elements of matrix rows. In [9], Deger and Kaya extended the
works of Leindler [20] and Mohapatra and Szal [28] under the perspective of
Nλ

n (f ;x) and Rλ
n(f ;x) submethods.

In [25], Mittal and Singh examined the approximation rate of functions us-
ing Tλ

n (f ;x) and τλn (f ;x) obtained by means of Cesàro Submethod in Lebesgue
spaces.

Lebesgue space may be generalized in different ways. One of the important
generalizations of this space is the Lorentz space. Lorentz space was firstly
introduced by G. G. Lorentz in [21]. By means of the weight functions satisfying
Muckenhoupt condition, the weighted Lorentz spaces were defined in [3, 10].

In weighted Lorentz spaces, some researchers obtained results about ap-
proximation theory using different methods [1, 16, 34, 33]. But in these papers
degree of approximation using Cesàro submethod were not examined in the
weighted Lorentz spaces. In this paper, we examine degree of approximation
using this method in these spaces and generalize the results obtained by Mittal
and Singh [25] to weighted Lorentz spaces.
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3. Main results

In this study, we obtain the following results related to trigonometric ap-
proximation using matrix submethod of partial sums of Fourier series of func-
tions f in weighted Lorentz spaces.

Theorem 3.1. Let 1 < p, q < ∞, w ∈ Ap(T), f ∈ Lip(α,Lp,q
w ) and T ≡ (an,k)

a lower triangular regular matrix with nonnegative entries and row sums 1. If
one of the conditions

(i) 0 < α < 1 and {aλn,k} ∈ AMIMS,
(ii) 0 < α < 1, {aλn,k} ∈ AMDMS and

(λn + 1)aλn,0 = O(1),

(iii) α = 1 and
λn−2∑
k=0

|∆kAλn,k| = O
(
λ−1
n

)
is valid, then

(3.1)
∥∥f − τλn (f)

∥∥
pq,w

= O(λ−α
n ).

If we take aλn,k =
p
k

Pλn
, we obtain the following corollary.

Corollary 3.2. Let 1 < p, q < ∞, w ∈ Ap(T), f ∈ Lip(α,Lp,q
w ) and (pk) be a

positive sequence. If one of the conditions
(i) 0 < α < 1 and (pk) ∈ AMIMS,
(ii) 0 < α < 1, (pk) ∈ AMDMS and

(λn + 1)pλn
= O (Pλn

) ,

(iii) α = 1 and
λn−1∑
k=0

∣∣∣∣∆k
Pk

k + 1

∣∣∣∣ = O

(
Pλn

λn

)
is valid, then ∥∥f −Rλ

n(f)
∥∥
pq,w

= O(λ−α
n ).

Also, the result is similar to this corollary was obtained in Lebesgue space
Lp, 1 < p < ∞ in [9].

Theorem 3.3. Let 1 < p, q < ∞, w ∈ Ap(T), f ∈ Lip(α,Lp,q
w ) and let T ≡

(an,k) be a lower triangular regular matrix with nonnegative entries and row
sums 1. If one of the conditions

(i) 0 < α < 1 and {aλn,k} ∈ AMDUMS,
(ii) 0 < α < 1, {aλn,k} ∈ AMIUMS and have

(λn + 1)aλn,λn = O(1),



48 Ahmet Hamdi Avsar, Yunus Emre Yildirir

(iii) α = 1 and
λn−2∑
k=0

∣∣∣∆kA
∗

λn,k

∣∣∣ = O
(
λ−1
n

)
is valid, then ∥∥f − Tλ

n (f)
∥∥
pq,w

= O(λ−α
n ).

When we take aλn,λn−k = pk

Pλn
and Pλn,k := 1

k+1

λn∑
i=λn−k

pi, we have the

following corollary.

Corollary 3.4. Let 1 < p, q < ∞, ω ∈ Ap(T), f ∈ Lip(α,Lp,q
w ) and let (pk) be

a positive sequence. If one of the conditions
(i) 0 < α < 1 and (pk) ∈ AMDUMS,
(ii) 0 < α < 1, (pk) ∈ AMIUMS and

(λn + 1)pλn
= O (Pλn

) ,

(iii) α = 1 and
λn−2∑
k=0

|∆kPλn,k| = O

(
Pλn

λn

)
is valid, then ∥∥f −Nλ

n (f)
∥∥
pq,w

= O(λ−α
n ).

Also, the result similar to this corollary was obtained in Lebesgue space Lp,
1 < p < ∞ in [9].

4. Applications

In this section, we will give an application of digital filter, especially of
modified Cesàro filter.

In (1.3), when we assume that (Sk) is the input sequence and
(
τλn
)
is the

output sequence of information, we can say that
(
τλn
)
behaves as a digital

filter. Then,
(
τλn
)
yields a modified version of Cesàro filter. When we use aλn,k

instead of an,k, then we get sharper (good) estimates. So, we have a better
performance of the digital filter. In [27], it has been mentioned that digital
filters are widely used in many signal processing applications such as speech and
image processing, radar, sonar and medical signal processing. Thus, the design
of digital filters is transformed into approximation problems. Approximation
method is one of the popular methods for the design of digital filters.

Example 4.1. To illustrate Gibb’s phenomenon, consider the function defined
by

f(t) =

{
−1, −π ≤ t ≤ 0
1, 0 ≤ t ≤ π.
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The nth partial sum of Fourier series of Gibb’s phenomenon is

Sn(t) =

n∑
k=−n, k ̸=0

i

π

−1 + (−1)k

k
eikt.

Then one can write that the nth Cesàro sum (filter) as follows

σn(t) =

n∑
k=1

(
n− k

n

)(
−2

π

)(
−1 + (−1)k

k

)
sin(kt).

For n = 10 using the above two definitions we plot the following figure.

0 1 2 3 4 5 6

t

-1.5

-1

-0.5

0

0.5

1

1.5

S
10

(t)

10
(t)

Figure 1:

For further information see [26, p. 465-468]. Note that the estimates in
our main submethod results are sharper than the results obtained using Cesàro
method because (λn)

−α ≤ (n)
−α

for 0 < α ≤ 1.

5. Auxiliary Results

We shall use the following lemmas for proving our main theorems.

Lemma 5.1. Let 1 < p, q < ∞, w ∈ Ap(T). If f ∈ Lip(1, Lpq
w ), then f is

absolutely continuous and f ′ ∈ Lpq
w (T).

Proof. We follow the method in [19, Th. 3]. If f ∈ Lpq
w (T), then there exists

p0 > 1 such that f ∈ Lp0 and

(5.1) ∥f∥Lp0 ≼ ∥f∥Lpq
w
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[16, Prop. 3.3]. Using (5.1) and the equivalence of traditional modulus of
continuity ω(f, δ)Lp and Ω(f, δ)Lpq

w
, we get

ω(f, δ)Lp0 ≼ Ω(f, δ)Lpq
w
.

Since Ω(f, δ)Lpq
w

= O(δ), the same estimate holds for ω(f, δ)Lp0 , too. From
here, we obtain that f is absolutely continuous in [−π, π] and for almost every
x

(5.2)
f(x+ t)− f(x)

t
→ f

′
(x) , (t → 0) .

From (5.2) we write also for almost every x

2

δ

δ∫
δ
2

|f(x+ t)− f(x)|
t

dt →
∣∣∣f ′

(x)
∣∣∣ , (δ → 0+) .

From Fatou’s Lemma

∥∥∥f ′
∥∥∥
Lpq

w

≤ lim inf
δ→0+

∥∥∥∥∥∥∥
2

δ

δ∫
δ
2

|f(x+ t)− f(x)|
t

dt

∥∥∥∥∥∥∥
Lpq

w

≤ lim sup
4

δ
δ→0+

∥∥∥∥∥∥1δ
δ∫

0

|f(x+ t)− f(x)| dt

∥∥∥∥∥∥
Lpq

w

≤ lim sup 4
δ→0+

Ω(f, δ)

δ
< ∞.

We have proved the lemma.

Lemma 5.2. Let 1 < p, q < ∞, w ∈ Ap(T) and f ∈ Lip(1, Lpq
w ). Then, for

n = 1, 2, . . . , the estimate

∥σn(f)− Sn(f)∥pq,w = O(n−1)

holds.

Proof. If the Fourier series of f is

f(x) ∼
∞∑
k=0

Uk(f)(x),

then the conjugate Fourier series of the function f
′

f̃
′
(x) ∼

∞∑
k=0

kUk(f)(x).
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On the other hand,

Sn(f)(x)− σn(f)(x) =

n∑
k=1

k

n+ 1
Uk(f)(x)

=
1

n+ 1
Sn(f̃

′
)(x).

Since the partial sums and the conjugate operator are bounded in the space
Lpq
w (T) (see [16, Prop. 3.4],[15, Th. 6.6.2,],[35, Chap. VI]), we obtain that

∥Sn(f)− σn(f)∥pq,w =
1

n+ 1

∥∥∥Sn(f̃
′
)
∥∥∥
pq,w

≼ 1

n+ 1

∥∥∥f̃ ′
∥∥∥
pq,w

≼ 1

n+ 1

∥∥∥f ′
∥∥∥
pq,w

= O(n−1)

for n = 1, 2, . . . .

Lemma 5.3. Let 0 < α ≤ 1, 1 < p, q < ∞, w ∈ Ap(T) and f ∈ Lip(1, Lpq
w ).

Then, the estimate
∥f − Sn(f)∥pq,w = O(n−α)

is valid for n = 1, 2, . . . .

Proof. Assume that t∗n (n = 0, 1, . . .) is the best approximating trigonometric
polynomial to f in Lpq

w . Then we have

∥f − t∗n∥pq,w = inf
tn∈Tn

∥f − tn∥pq,w .

From [34, Lemma 2.3], we have

∥f − t∗n∥pq,w = O(Ω(f, 1/n)Lpq
w
)

and hence
∥f − t∗n∥pq,w = O(n−α).

Using the uniform boundedness of the partial sums Sn(f) in the space Lpq
w , we

get

∥f − Sn(f)∥pq,w ≤ ∥f − t∗n∥pq,w + ∥t∗n − Sn(f)∥pq,w
= ∥f − t∗n∥pq,w + ∥Sn(t

∗
n − f)∥pq,w

= O(∥f − t∗n∥pq,w)
= O(n−α).

Lemma 5.4. ([25])
Let T ≡ (an,k) be an infinite lower triangular regular matrix with nonneg-

ative entries and row sums 1. If either
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(i)
{aλn,k} ∈ AMIMS

or
(ii)

{aλn,k} ∈ AMDMS and (λn + 1)aλn,0
= O (1) ,

then, for 0 < α < 1,

λn∑
k=0

aλn,k (k + 1)
−α

= O
(
λ−α
n

)
.

Lemma 5.5. ([25]) Let T ≡ (an,k)be an infinite lower triangular regular ma-
trix with nonnegative entries and row sums 1. If one of the conditions

(i) {aλn,k} ∈ AMDUMS
(ii) {aλn,k} ∈ AMIUMS and

(λn + 1)aλn,λn
= O(1)

holds, then for 0 < α < 1,

λn∑
k=0

aλn,λn−k (k + 1)
−α

= O
(
λ−α
n

)
.

6. Proof of Main Theorems

Proof of Theorem 3.1
Since

τλn (f ;x)− f (x) =

λn∑
k=0

aλn,kSk(f ;x)− f (x) ,

using Lemma 5.3 and Lemma 5.4 we have

∥∥τλn (f)− f
∥∥
pq,w

≤
λn∑
k=0

aλn,k ∥Sk(f)− f∥pq,w

= O

(
λn∑
k=0

aλn,k(k + 1)−α

)
= O(λ−α

n ).

This completes the proof of (i) and (ii) .
In the case of α = 1, we will use Sλn as Sλ

n . Applying Abel’s transformation
two times,

τλn (f ;x)− f (x) =

λn−1∑
k=0

[Sk(f ;x)− Sk+1(f ;x)]

k∑
i=0

aλn,i
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+
[
Sλ
nf (x)− f (x)

]
= Sλ

nf (x)− f (x)−
λn−1∑
k=0

(k + 1)Uk+1f (x)Aλn,k

= Sλ
nf (x)− f (x)−

λn−2∑
k=0

(Aλn,k −Aλn,k+1)×

k∑
i=0

(i+ 1)Ui+1f (x)−Aλn,λn−1

λn−1∑
i=0

(i+ 1)Ui+1f (x)

= Sλ
nf (x)− f (x)−

λn−2∑
k=0

(Aλn,k −Aλn,k+1)

k+1∑
i=1

iUif (x)

− 1

λn

λn∑
k=0

aλn,k

λn∑
i=1

iUif (x) .

Therefore by Minkowski inequality, we get

(6.1)
∥∥τλn (f)− f

∥∥
pq,w

≤
∥∥Sλ

nf − f
∥∥
pq,w

+

λn−2∑
k=0

∥∥∥∥∥
k+1∑
i=1

iUif

∥∥∥∥∥
pq,w

∣∣∆kA
∗
λn,k

∣∣+ 1

λn

∥∥∥∥∥
λn∑
i=1

iUif

∥∥∥∥∥
pq,w

.

We get

Sλ
nf − σλ

nf =
1

λn + 1

λn∑
i=1

iUif (x) .

From Lemma 5.2

(6.2)

∥∥∥∥∥
λn∑
i=1

iUif

∥∥∥∥∥
pq,w

= (λn + 1)
∥∥Sλ

nf − σλ
nf
∥∥
pq,w

= O (1) .

If
λn−2∑
k=0

|∆kAλn,k| = O
(
λ−1
n

)
,

then, from (6.1),(6.2) and Lemma 5.3, we write

∥∥τλn (f)− f
∥∥
pq,w

= O
(
λ−1
n

)
+O (1) +

λn−2∑
k=0

|∆kAλn,k|

= O
(
λ−1
n

)
.

Therefore, this yields (3.1).
Proof of Theorem 3.3
The proof of this theorem is similar to the proof of Theorem 3.1. Here, we

use Lemma 5.5 instead of Lemma 5.4.
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9, 1-2 (1989), 195–206.

[3] Bennett, C., and Sharpley, R. Interpolation of operators, vol. 129 of Pure
and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.

[4] Chandra, P. Functions of classes Lp and Lip(α, p) and their Riesz means. Riv.
Mat. Univ. Parma (4) 12 (1986), 275–282 (1987).

[5] Chandra, P. Trigonometric approximation of functions in Lp-norm. J. Math.
Anal. Appl. 275, 1 (2002), 13–26.

[6] Chung, H. M., Hunt, R. A., and Kurtz, D. S. The Hardy-Littlewood max-
imal function on L(p, q) spaces with weights. Indiana Univ. Math. J. 31, 1
(1982), 109–120.

[7] Cruz-Uribe, D. V., and Fiorenza, A. Variable Lebesgue spaces. Applied and
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