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Abstract. Properties of invariant, anti-invariant and slant isometri-
cally immersed submanifolds of metallic Riemannian manifolds are given
with a special view towards the induced Σ-structure. Examples of such
metallic manifolds are also given.
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1. Introduction

The theory of submanifolds has the origin in the study of the geometry of
plane curves initiated by Fermat. Since then it has been evolving in different
directions of differential geometry and mechanics, especially. It is still an active
and vast research field playing an important role in the development of mod-
ern differential geometry. The modeling spaces of dynamical systems always
carry different canonical geometrical objects: affine connections, differential
forms, tensor fields etc. A natural question arising is when the submanifold
inherits the geometrical structures of the ambient manifold. In this spirit, we
shall consider a certain kind of isometrically immersed submanifolds of metallic
Riemannian manifolds, namely, slant submanifolds. The notion of slant sub-
manifold appeared for complex manifolds in Chen’s book [4] and later in his
works ([5], [6], [7], [18]). Remark that the slant submanifolds have been studied
in different contexts: contact [13], LP-contact [12], K-contact [14], Kähler [3],
Sasakian [2], Lorentzian [16], Kenmotsu [8], para-Kenmotsu [1], almost product
Riemannian manifolds [17], almost paracontact metric manifolds [20].

We shall begin recalling the basic properties of a metallic Riemannian struc-
ture and prove some immediate consequences of the Gauss and Weingarten
equations for an isometrically immersed submanifold in a metallic Riemannian
manifold (M̄, J, g). We also consider the Σ-structure induced by a metallic
Riemannian structure on its submanifolds and establish a kind of inheritance
property to the submanifolds of isometrically immersed submanifolds of M̄ . In
the main section we characterize the invariant, anti-invariant and slant sub-
manifolds of M̄ .
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2. Metallic Riemannian manifolds revisited

Definition 2.1. [11] A (1, 1)-tensor field J is called a metallic structure on M
if it satisfies the equation:

(2.1) J2 = pJ + qIΓ(TM),

for p, q ∈ N∗, where IΓ(TM) is the identity operator on Γ(TM). The pair
(M,J) is a metallic manifold. Moreover, if a Riemannian metric g on M is
compatible with J , that is g(JX, Y ) = g(X, JY ), for any X, Y ∈ Γ(TM), we
call the pair (J, g) a metallic Riemannian structure and the triple (M,J, g) a
metallic Riemannian manifold.

It was shown [11] that the powers of J satisfy:

(2.2) Jn = gnJ + qgn−1IΓ(TM),

where {gn}n∈N∗ is the generalized secondary Fibonacci sequence defined by
gn+1 = pgn + qgn−1, n ≥ 1 with g0 = 0, g1 = 1 and p, q real numbers.

Remark 2.2. Concerning the inheritance of this kind of structure on subman-
ifolds, Hreţcanu and Crasmareanu proved in [11] that a metallic structure on
a metallic Riemannian manifold M induced a metallic structure on every in-
variant submanifold of M and illustrate this on a product of spheres in an
Euclidian space.

Fix now J a metallic structure on M and define the associated linear con-
nections as follows:

Definition 2.3. i) A linear connection ∇ on M is called a J-connection if J
is covariant constant with respect to ∇, namely ∇J = 0.

ii) If the Levi-Civita connection ∇ with respect to a Riemannian metric
g on M compatible with J is J-connection, then (M,J, g) is called a locally
metallic Riemannian manifold.

The concept of integrability is defined in the classical manner:

Definition 2.4. A metallic structure J is called integrable if its Nijenhuis
tensor field NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X,Y ] vanishes.

Necessary and sufficient conditions for the integrability of a polynomial
structure J whose characteristic polynomial has only simple roots were given by
Vanzura in [19] who proved that if there exists a symmetric linear J-connection
∇, then the structure J is integrable.

3. Submanifolds of metallic Riemannian manifolds

3.1. Isometrically immersed submanifolds

We shall focus on a certain kind of isometrically immersed submanifolds of
metallic Riemannian manifolds, namely, slant submanifolds.
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Let M be an n-dimensional submanifold of codimension r isometrically
immersed in an (n + r)-dimensional metallic Riemannian manifold (M̄, J, g)
(n, r ∈ N∗). Then for each x ∈ M , the tangent space TxM̄ of M̄ decomposes
into the direct sum:

TxM̄ = TxM ⊕ TxM
⊥.

Denote by:

(3.1) T : Γ(TM) → Γ(TM), TX := (JX)T ,

(3.2) N : Γ(TM) → Γ(TM⊥), NX := (JX)⊥,

(3.3) t : Γ(TM⊥) → Γ(TM), tU := (JU)T ,

(3.4) n : Γ(TM⊥) → Γ(TM⊥), nU := (JU)⊥.

Remark that the maps T and n are g-symmetric:

(3.5) g(TX, Y ) = g(X,TY ), X, Y ∈ Γ(TM),

(3.6) g(nU, V ) = g(U, nV ), U, V ∈ Γ(TM⊥)

and

(3.7) g(NX,U) = g(X, tU), X ∈ Γ(TM), U ∈ Γ(TM⊥).

Denoting also by g the Riemannian metric induced on M , by ∇̄ and ∇ the
Levi-Civita connections on (M̄, g) and (M, g), respectively and by {N1, . . . , Nr}
an orthonormal basis for the normal space, the Gauss and Weingarten formulas
corresponding to M are given by:

(3.8) ∇̄XY = ∇XY +

r∑
α=1

hα(X,Y )Nα,

(3.9) ∇̄XNα = −ANα
X +

r∑
β=1

λαβ(X)Nβ ,

where hα, 1 ≤ α ≤ r, are the (symmetric) second fundamental tensors corre-
sponding to Nα, i.e. h(X,Y ) =

∑r
α=1 hα(X,Y )Nα, for X, Y ∈ Γ(TM), ANα

is the shape operator (or the Weingarten map) in the direction of the nor-
mal vector field Nα defined by g(ANα

X,Y ) = hα(X,Y ), for X, Y ∈ Γ(TM),
1 ≤ α ≤ r and λαβ = −λβα, 1 ≤ α, β ≤ r, the 1-forms on M corresponding to
the normal connection ∇⊥, i.e. ∇⊥

XNα =
∑r

β=1 λαβ(X)Nβ .

Also from g(JX, Y ) = g(X, JY ) follows g((∇̄XJ)Y, Z) = g(Y, (∇̄XJ)Z),
for any X, Y , Z ∈ Γ(TM̄).
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Proposition 3.1. If M is an isometrically immersed submanifold of the metal-
lic Riemannian manifold (M̄, J, g), then g((∇XT )Y, Z) = g(Y, (∇XT )Z), for
any X, Y , Z ∈ Γ(TM).

Proof.

(∇̄XJ)Y = ∇̄XTY + ∇̄XNY − J(∇XY +

r∑
α=1

hα(X,Y )Nα)

= (∇XT )Y −
r∑

α=1

g(NY,Nα)ANαX −
r∑

α=1

hα(X,Y )tNα

+

r∑
α=1

hα(X,TY )Nα +

r∑
α=1

X(g(NY,Nα))Nα

+
∑

1≤α,β≤r

g(NY,Nβ)λβα(X)Nα −
r∑

α=1

hα(X,Y )nNα −N(∇XY ).

Since NY =
∑r

α=1 g(NY,Nα)Nα and g(NY,Nα) = g(Y, JNα), we get:

g((∇̄XJ)Y, Z) = g((∇XT )Y, Z)−
r∑

α=1

g(NY,Nα)g(ANαX,Z)

−
r∑

α=1

hα(X,Y )g(tNα, Z)

= g((∇XT )Y, Z)

−
r∑

α=1

[g(Y, JNα)hα(X,Z) + g(JNα, Z)hα(X,Y )].

Proposition 3.2. If M is an isometrically immersed submanifold of the locally
metallic Riemannian manifold (M̄, J, g), then:

1. for any X, Y ∈ Γ(TM), we have:

(a) (∇XT )Y =
∑r

α=1 g(NY,Nα)ANα
X +

∑r
α=1 hα(X,Y )tNα,

(b)

r∑
α=1

g(NY,Nα)∇⊥
XNα

= N(∇XY ) +

r∑
α=1

hα(X,Y )nNα

−
r∑

α=1

hα(X,TY )Nα −
r∑

α=1

X(g(NY,Nα))Nα;
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2. for any X ∈ Γ(TM), U ∈ Γ(TM⊥), we have:

(a)

∇XtU =

r∑
α=1

g(nU,Nα)[ANαX − T (ANαX)]

+

r∑
α=1

[X(g(U,Nα)) +

r∑
β=1

g(U,Nβ)λβα(X)]tNα,

(b)

r∑
α=1

g(nU,Nα)∇⊥
XNα = −

r∑
α=1

[X(g(nU,Nα)) + hα(X, tU)]Nα

+

r∑
α=1

[X(g(U,Nα))

+

r∑
β=1

g(U,Nβ)λβα(X)]nNα

−
r∑

α=1

g(nU,Nα)N(ANαX).

Proof. 1. For X, Y ∈ Γ(TM):

NY =

r∑
α=1

g(NY,Nα)Nα

∇̄XNY =

r∑
α=1

X(g(NY,Nα))Nα −
r∑

α=1

g(NY,Nα)ANαX

+
∑

1≤α,β≤r

g(NY,Nα)λαβ(X)Nβ

J(∇̄XY ) = J(∇XY ) +

r∑
α=1

hα(X,Y )(tNα + nNα)

= T (∇XY ) +N(∇XY ) +

r∑
α=1

hα(X,Y )(tNα + nNα).
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It follows:

0 = (∇̄XJ)Y = ∇̄XTY + ∇̄XNY − J(∇̄XY )

= [∇XTY −
r∑

α=1

g(NY,Nα)ANα
X − T (∇XY )−

r∑
α=1

hα(X,Y )tNα]

+ [

r∑
α=1

hα(X,TY )Nα +

r∑
α=1

X(g(NY,Nα))Nα

+
∑

1≤α,β≤r

g(NY,Nα)λαβ(X)Nβ −N(∇XY )−
r∑

α=1

hα(X,Y )nNα].

2. For X ∈ Γ(TM), U ∈ Γ(TM⊥):

U =

r∑
α=1

g(U,Nα)Nα, nU =

r∑
α=1

g(nU,Nα)Nα

∇̄XU =

r∑
α=1

X(g(U,Nα))Nα −
r∑

α=1

g(U,Nα)ANα
X

+
∑

1≤α,β≤r

g(U,Nα)λαβ(X)Nβ

∇̄XnU =

r∑
α=1

X(g(nU,Nα))Nα −
r∑

α=1

g(nU,Nα)ANαX

+
∑

1≤α,β≤r

g(nU,Nα)λαβ(X)Nβ

J(∇̄XU) =

r∑
α=1

X(g(U,Nα))(tNα + nNα)

−
r∑

α=1

g(U,Nα)(T (ANαX) +N(ANαX))

+
∑

1≤α,β≤r

g(U,Nα)λαβ(X)(tNβ + nNβ).
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It follows:

0 = (∇̄XJ)U = ∇̄XtU + ∇̄XnU − J(∇̄XU)

= [∇XtU −
r∑

α=1

g(nU,Nα)ANα
X −

r∑
α=1

X(g(U,Nα))tNα

+

r∑
α=1

g(U,Nα)T (ANα
X)−

∑
1≤α,β≤r

g(U,Nα)λαβ(X)tNβ ]

+ [

r∑
α=1

hα(X, tU)Nα +

r∑
α=1

X(g(nU,Nα))Nα

+
∑

1≤α,β≤r

g(nU,Nα)λαβ(X)Nβ −
r∑

α=1

X(g(U,Nα))nNα

+

r∑
α=1

g(U,Nα)N(ANαX)−
∑

1≤α,β≤r

g(U,Nα)λαβ(X)nNβ ].

Remark 3.3. From the previous computations, we obtain for any X, Y ∈
Γ(TM):

(∇̄XJ)Y

= [∇XTY −
r∑

α=1

g(NY,Nα)ANα
X − T (∇XY )−

r∑
α=1

hα(X,Y )tNα]

+ [

r∑
α=1

hα(X,TY )Nα +

r∑
α=1

X(g(NY,Nα))Nα

+
∑

1≤α,β≤r

g(NY,Nα)λαβ(X)Nβ −N(∇XY )−
r∑

α=1

hα(X,Y )nNα].

We remark that, for X ∈ TxM , the vector fields JX and JNα decompose
into the tangential and the normal components:

(3.10) JX = TX +

r∑
α=1

ηα(X)Nα,

(3.11) JNα = ξα +

r∑
β=1

aαβNβ ,

where T is a tensor field of (1, 1)-type on M (which associates to tangent vector
field X on M the tangential part of JX), ξα are vector fields and ηα are 1-forms
on M (1 ≤ α ≤ r) and (aαβ)1≤α,β≤r is an r×r matrix of smooth real functions
on M , whose properties are stated in the next Proposition:
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Proposition 3.4. [11] If M is an isometrically immersed n-dimensional sub-
manifold of codimension r of the (n + r)-dimensional metallic Riemannian
manifold (M̄, J, g), then the induced structure Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r

on M satisfies:

1. T 2 = pT + qIΓ(TM) −
∑r

α=1 ηα ⊗ ξα;

2. ηα ◦ T = pηα −
∑r

β=1 aαβηβ;

3. aαβ = aβα;

4. ηβ(ξα) = qδαβ + paαβ −
∑r

γ=1 aαγaγβ;

5. Tξα = pξα −
∑r

β=1 aαβξβ;

6. ηα(X) = iξαg(X);

7. g(TX, Y ) = g(X,TY );

8. g(TX, TY ) = pg(X,TY ) + qg(X,Y )−
∑r

α=1 ηα(X)ηα(Y ),

for any X, Y ∈ Γ(TM), 1 ≤ α, β ≤ r, where δαβ is the Kronecker delta.

Notice that in our notations, ηα(X) = g(NX,Nα), for X ∈ Γ(TM) and
ξα = tNα and aαβ = g(nNα, Nβ).

Proposition 3.5. Let M be an isometrically immersed n-dimensional subman-
ifold of codimension r of the (n + r)-dimensional locally metallic Riemannian
manifold (M̄, J, g) and Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r is the induced structure
on M . Then for any X, Y ∈ Γ(TM) and 1 ≤ α, β ≤ r:

1. (∇XT )Y =
∑r

α=1[ηα(Y )ANαX + hα(X,Y )ξα];

2. (∇Xηα)Y = −hα(X,TY ) +
∑r

β=1[aαβhβ(X,Y ) + ηβ(Y )λαβ(X)];

3. ∇Xξα = −T (ANα
X) +

∑r
β=1[aαβANβ

X + λαβ(X)ξβ ];

4. X(aαβ) = −[hα(X, ξβ) + hβ(X, ξα)]−
∑r

γ=1[aαγλγβ(X) + aβγλγα(X)].



Invariant, anti-invariant and slant submanifolds of a metallic manifold 65

Proof.

0 = (∇̄XJ)Y := ∇̄XJY − J(∇̄XY )

= ∇̄XJ(TY ) +

r∑
α=1

ηα(Y )∇̄XNα +

r∑
α=1

X(ηα(Y ))Nα − J(∇XY )

−
r∑

α=1

hα(X,Y )JNα

= (∇XT )Y +

r∑
α=1

hα(X,TY )Nα −
r∑

α=1

ηα(Y )ANαX +

r∑
α=1

X(ηα(Y ))Nα

−
r∑

α=1

ηα(∇XY )Nα −
r∑

α=1

hα(X,Y )ξα +
∑

1≤α,β≤r

λαβ(X)ηα(Y )Nβ

−
∑

1≤α,β≤r

aαβhα(X,Y )Nβ

= (∇XT )Y −
r∑

α=1

ηα(Y )ANα
X −

r∑
α=1

hα(X,Y )ξα

+

r∑
α=1

[(∇Xηα)Y + hα(X,TY ) +

r∑
β=1

λαβ(X)ηβ(Y )

−
r∑

β=1

aαβhβ(X,Y )]Nα,

from where we deduce that the tangential and the normal components should
both vanish.

Also:

(∇Xηα)Y := X(ηα(Y ))−ηα(∇XY ) = X(g(ξα, Y ))−g(ξα,∇XY ) = g(∇Xξα, Y )

and from the second relation we get:

∇Xξα = −T (ANαX) +

r∑
β=1

[aαβANβ
X − g(∇⊥

XNβ , Nα)ξβ ].

For the last relation we have:

X(aαβ) = X(g(JNα, Nβ)) = g(∇̄XJNα, Nβ) + g(JNα, ∇̄XNβ)

= g((∇̄XJ)Nα, Nβ) + g(∇̄XNα, JNβ) + g(JNα, ∇̄XNβ)

and replacing ∇̄XNα and ∇̄XNβ from (3.9) we get the required relation.

From Proposition 3.2, if (M̄, J, g) is a locally Riemannian metallic manifold,
then we can express the Nijenhuis tensor field of T as follows.
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Proposition 3.6. [9] If M is an isometrically immersed n-dimensional sub-
manifold of codimension r of the (n+ r)-dimensional locally metallic Rieman-
nian manifold (M̄, J, g) and Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r is the induced
structure on M , then:

NT (X,Y ) = −
r∑

α=1

g((TANα −ANαT )X,Y )ξα

−
r∑

α=1

ηα(Y )(TANα
−ANα

T )X +

r∑
α=1

ηα(X)(TANα
−ANα

T )Y,

for any X, Y ∈ Γ(TM).

Following [15], we can compute the componentsN (1), N (2), N (3) andN (4) of
the Nijenhuis tensor field of T for the induced structure
Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r on the n-dimensional submanifold of codi-
mension r of the (n+ r)-dimensional metallic Riemannian manifold (M̄, J, g):

1. N (1)(X,Y ) = NT (X,Y )− 2
∑r

α=1 dηα(X,Y )ξα;

2. N
(2)
α (X,Y ) = (LTXηα)Y − (LTY ηα)X;

3. N
(3)
α (X) = (LξαT )X;

4. N
(4)
αβ (X) = (Lξαηβ)X,

for any X, Y ∈ Γ(TM) and 1 ≤ α, β ≤ r, where NT is the Nijenhuis tensor
field of T and LX denoted the Lie derivative with respect to X.

3.2. Σ-structures induced on submanifolds

Let M̄ be an isometrically immersed (n + r)-dimensional submanifold of
codimension 1 of the (n + r + 1)-dimensional metallic Riemannian manifold

( ¯̄M,J, g), M an isometrically immersed n-dimensional submanifold of codi-
mension r of M̄ and denote also by g the induced Riemannian metrics on M̄
and M . Let N be a unit vector field on ¯̄M normal to M̄ and {N1, . . . , Nr} be
an orthonormal basis for the normal space to M in M̄ . Also, {N,N1, . . . , Nr}
is an orthonormal basis for the normal space to M in ¯̄M . Thus, M is an n-
dimensional submanifold of codimension r+1 of ¯̄M and we have the following
immersions between the Riemannian manifolds:

(M, g) ↪→ (M̄, g) ↪→ ( ¯̄M, g).

Then for any X ∈ Γ(TM̄) we have:

(3.12) JX = T̄X + η̄(X)N,

(3.13) JN = ξ̄ + āN,
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where T̄ is a tensor field of (1, 1)-type on M̄ (which associates to tangent vector
field X on M̄ the tangential part of JX), ξ̄ is a vector field and η̄ is a 1-form
on M̄ and ā is a smooth real function on M̄ , and for any X ∈ Γ(TM) we have:

(3.14) JX = TX +

r∑
α=1

ηα(X)Nα + η(X)N,

(3.15) JNα = ξα +

r∑
β=1

aαβNβ + aN,

(3.16) JN = ξ +

r∑
α=1

bαNα + aN,

where T is a tensor field of (1, 1)-type on M (which associates to tangent vector
field X on M the tangential part of JX), ξα, ξ are vector fields and ηα, η are
1-forms on M (1 ≤ α ≤ r), (aαβ)1≤α,β≤r is an r × r matrix of smooth real
functions on M and a = ā|M .

Let A :=

(
(aαβ)1≤α,β≤r

tA
A a

)
, where A := (g(JN1, N), . . . , g(JNr, N)).

Lemma 3.7. The structure Σ̄ := (T̄ , g, η̄, ξ̄, ā) induced on the submanifold
(M̄, g) of codimension 1 of the (n + r + 1)-dimensional metallic Riemannian

manifold ( ¯̄M,J, g) also induces on the submanifold (M, g) of codimension r of
M̄ a structure Σ := (T, g, ηα, η, ξα, ξ,A)1≤α≤r which has the following proper-
ties:

1. T 2 = pT + qIΓ(TM) −
∑r

α=1 ηα ⊗ ξα − η ⊗ ξ;

2. ηα ◦ T = pηα −
∑r

β=1 aαβηβ − bαη;

3. η ◦ T = (p− a)η;

4. aαβ = aβα;

5. ηβ(ξα) = qδαβ + paαβ + bβ −
∑r

γ=1(aαγ + bγ)(aγβ + bγ);

6. ηα(ξ) = (p− a)bα −
∑r

β=1 aαβbβ;

7. η(ξ) = q + pa− a2;

8. Tξα = pξα −
∑r

β=1 aαβξβ + (1− bα)ξ;

9. Tξ = (p− a)ξ −
∑r

β=1 bβξβ;

10. ηα(X) = iξαg(X);

11. η(X) = iξg(X);
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12. g(TX, Y ) = g(X,TY );

13. g(TX, TY ) = pg(X,TY ) + qg(X,Y )−
∑r

α=1 ηα(X)ηα(Y )− η(X)η(Y ),

for any X, Y ∈ Γ(TM), 1 ≤ α, β ≤ r, where δαβ is the Kronecker delta.
Also:

1. T̄ 2 = pT̄ + qIΓ(TM̄) − η̄ ⊗ ξ̄;

2. η̄ ◦ T̄ = (p− ā)η̄;

3. η̄(ξ̄) = q + pā− ā2;

4. T̄ ξ̄ = (p− ā)ξ̄;

5. η̄(X) = iξ̄g(X);

6. g(T̄X, Y ) = g(X, T̄Y );

7. g(T̄X, T̄Y ) = pg(X, T̄Y ) + qg(X,Y )− η̄(X)η̄(Y ),

for any X, Y ∈ Γ(TM̄).

From the above considerations, we obtain that if M is an isometrically im-
mersed n-dimensional submanifold of codimension r of the (n+ r)-dimensional
Riemannian manifold (M̄, ḡ) which is an isometrically immersed (n+r)-dimen-
sional submanifold of codimension 1 of the (n+r+1)-dimensional metallic Rie-

mannian manifold ( ¯̄M,J, ¯̄g), then the induced structure
Σ := (T, g, ηα, η, ξα, ξ,A)1≤α≤r on M by the metallic Riemannian structure

(J, ¯̄g) on ¯̄M is the same as the one induced on M by the structure
Σ̄ := (T̄ , ḡ, η̄, ξ̄, ā) induced on M̄ by the metallic Riemannian structure (J, ¯̄g)

on ¯̄M .

Let Mr be an n-dimensional submanifold of codimension r (r ≥ 2) of the
(n + r)-dimensional metallic Riemannian manifold (M̄, J, g). We make the
following notations: M̄ := M0, g := g0, J := T0, so we have the sequence of
Riemannian immersions:

(Mr, gr) ↪→ (Mr−1, gr−1) ↪→ · · · ↪→ (M1, g1) ↪→ (M̄, g) := (M0, g0),

where gi is the induced metric on Mi by the metric gi−1 on Mi−1, 1 ≤ i ≤ r
and each of the manifolds (Mi, gi) is an isometrically immersed submanifold
of codimension 1 of the Riemannian manifold (Mi−1, gi−1), 1 ≤ i ≤ r. Let
1 ≤ αi, βi ≤ i for any 1 ≤ i ≤ r. In this setting, we obtain:

Proposition 3.8. The structure Σr := (Tr, gr, η
r
αr
, ξrαr

,Ar)1≤αr≤r on the n-
dimensional submanifold Mr of codimension r (r ≥ 2) of the metallic Rie-
mannian manifold (M̄, g, J) induced on Mr by the metallic Riemannian struc-
ture (J, g) is the same as the one induced on Mr by the structure Σi :=
(Ti, gi, η

i
αi
, ξiαi

,Ai)1≤αi≤i (with i < r, 1 ≤ αi ≤ i) induced on Mi by the
metallic Riemannian structure (J, g), where Tr is the tangential component
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of Ti on Mr, the vector fields ξrαr
are the tangential components on Mr of

the vector fields ξiαi
on Mi, the 1-forms ηrαr

are the restrictions on Mr of
the 1-forms ηiαi

on Mi and the matrix Ar := (aαrβr
)1≤αr,βr≤r is defined by

aαrβr
= aβrαr

= gr(Tr−1Nαr
, Nβr

).

3.3. Invariant and anti-invariant submanifolds

3.3.1. Invariant submanifolds

A submanifold M of M̄ is called invariant if J(TxM) ⊂ TxM , for any x ∈ M .
It follows J(TxM

⊥) ⊂ TxM
⊥, for any x ∈ M , because for any U ∈ Γ(TM⊥),

g(X, JU) = g(JX,U) = 0, for any X ∈ Γ(TM).

Proposition 3.9. [11] An isometrically immersed submanifold M of a metallic
Riemannian manifold (M̄, J, g) is invariant with respect to J if and only if
(M,T, g) is metallic Riemannian manifold whenever T is non-trivial.

Proposition 3.10. If M is an isometrically immersed invariant submanifold
of the locally metallic Riemannian manifold (M̄, J, g), then for any X, Y ∈
Γ(TM):

(3.17) ∇J = 0,

(3.18)
r∑

α=1

hα(X, JY )Nα =

r∑
α=1

hα(X,Y )JNα =

r∑
α=1

hα(JX, Y )Nα,

(3.19) hα(JX, JY ) = phα(X, JY ) + qhα(X,Y ), for any 1 ≤ α ≤ r.

Proof. Let X, Y ∈ Γ(TM). Then ∇XY , JX, JY , J(∇XY ) ∈ Γ(TM) and
JNα ∈ Γ(TM⊥), for any 1 ≤ α ≤ r. If ∇̄J = 0, using Proposition 3.2:

(∇XJ)Y := ∇XJY − J(∇XY ) = ∇XTY − T (∇XY ) := (∇XT )Y = 0.

Also:
r∑

α=1

hα(X,Y )nNα −
r∑

α=1

hα(X,TY )Nα = 0

which implies:

r∑
α=1

hα(X, JY )Nα =

r∑
α=1

hα(X,Y )JNα =

r∑
α=1

hα(Y,X)JNα

=

r∑
α=1

hα(Y, JX)Nα =

r∑
α=1

hα(JX, Y )Nα

and
hα(JX, JY ) = hα(X, J2Y ) = phα(X, JY ) + qhα(X,Y ).
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Remark 3.11. If M is an isometrically immersed invariant n-dimensional sub-
manifold of codimension r of the (n+r)-dimensional metallic Riemannian man-
ifold (M̄, J, g) and Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r is the induced structure on
M , then ξα are zero vector fields and the 1-forms ηα vanish identically on M ,
for any 1 ≤ α ≤ r. In this case, for any X ∈ Γ(TM), (3.10) and (3.11) become:

(3.20) JX = TX, JNα =

r∑
β=1

aαβNβ , for any 1 ≤ α ≤ r.

Also, the Σ-structure satisfies:

1. T 2 = pT + qIΓ(TM);

2. aαβ = aβα;

3.
∑r

γ=1 aαγaγβ = qδαβ + paαβ ;

4. X(aαβ) = g((∇̄XJ)Nα, Nβ)−
∑r

γ=1[aαγλγβ(X) + aβγλγα(X)];

5. g(TX, Y ) = g(X,TY );

6. g(TX, TY ) = pg(X,TY ) + qg(X,Y ),

for any X, Y ∈ Γ(TM) and 1 ≤ α, β ≤ r.

Denoting by J := ∇̄J , from Remark 3.3 we obtain:

Proposition 3.12. Let M be an isometrically immersed invariant n-dimen-
sional submanifold of codimension r of the (n + r)-dimensional metallic Rie-
mannian manifold (M̄, J, g) and Σ := (T, g, ηα = 0, ξα = 0, (aαβ))1≤α,β≤r is
the induced structure on M . Then:

1. J (X,Y )T = (∇XT )Y ,
J (X,Y )⊥ =

∑r
α=1[hα(X,TY )Nα − hα(X,Y )nNα];

2. J (X,Nα)
T = T (ANαX)−

∑r
β=1 aαβANβ

X,

J (X,Nα)
⊥ =

∑r
β=1[X(aαβ) +

∑r
γ=1(aαγλγβ(X) + aβγλγα(X))]Nβ,

for any X, Y ∈ Γ(TM) and 1 ≤ α ≤ r.

From Proposition 3.5 and Proposition 3.12 we deduce that:

Corollary 3.13. If M is an isometrically immersed invariant n-dimensio-
nal submanifold of codimension r of the (n + r)-dimensional locally metallic
Riemannian manifold (M̄, J, g), Σ := (T, g, ηα = 0, ξα = 0, (aαβ))1≤α,β≤r is
the induced structure on M , then:

1. ∇T = 0,∑r
α=1[hα(X,TY )Nα − hα(X,Y )nNα] = 0;

2. T (ANα
X)−

∑r
β=1 aαβANβ

X = 0,

X(aαβ) +
∑r

γ=1[aαγλγβ(X) + aβγλγα(X)] = 0,



Invariant, anti-invariant and slant submanifolds of a metallic manifold 71

for any X, Y ∈ Γ(TM) and 1 ≤ α, β ≤ r.

From

dηα(X,Y ) = −g((TANα −ANαT )X,Y ) +

r∑
β=1

[λαβ(X)ηβ(Y )− λαβ(Y )ηβ(X)],

for any X, Y ∈ Γ(TM), we obtain that:

Proposition 3.14. Let M be an isometrically immersed invariant n-dimen-
sional submanifold of codimension r of the (n+ r)-dimensional locally metallic
Riemannian manifold (M̄, J, g) and Σ := (T, g, ηα = 0, ξα = 0, (aαβ))1≤α,β≤r

is the induced structure on M . Then

TANα
= ANα

T,

for any 1 ≤ α ≤ r and the Nijenhuis tensor field of T vanishes identically on
M (i.e. NT (X,Y ) = 0, for any X, Y ∈ Γ(TM)).

Proposition 3.15. Let M be an isometrically immersed invariant n-dimen-
sional submanifold of codimension r of the (n + r)-dimensional metallic Rie-
mannian manifold (M̄, J, g) and Σ := (T, g, ηα = 0, ξα = 0, (aαβ))1≤α,β≤r is
the induced structure on M . Then the components N (2), N (3) and N (4) van-
ish identically on M . Moreover, if NT = 0, then N (1) vanishes, too, on M .
In particular, this happens if the normal connection ∇⊥ on the normal bundle
vanishes identically (i.e. λαβ = 0, for every 1 ≤ α, β ≤ r).

3.3.2. Anti-invariant submanifolds

A submanifold M of M̄ is called anti-invariant if J(TxM) ⊂ TxM
⊥, for any

x ∈ M .

Proposition 3.16. If M is an isometrically immersed anti-invariant subman-
ifold of the locally metallic Riemannian manifold (M̄, J, g), then for any X,
Y ∈ Γ(TM):

(3.21)
r∑

α=1

hα(X,Y )tNα = −
r∑

α=1

g(JY,Nα)ANα
X,

(3.22)
r∑

α=1

hα(X,Y )nNα =

r∑
α=1

g(JY,Nα)∇⊥
XNα +

r∑
α=1

X(g(JY,Nα))− J(∇XY ).

Proof. Let X, Y ∈ Γ(TM). Then ∇XY ∈ Γ(TM), JX, JY ,
J(∇XY ) ∈ Γ(TM⊥). If ∇̄J = 0, using Proposition 3.2:

r∑
α=1

g(NY,Nα)ANαX +

r∑
α=1

hα(X,Y )tNα = 0.
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Also:

r∑
α=1

g(NY,Nα)∇⊥
XNα = N(∇XY )+

r∑
α=1

hα(X,Y )nNα−
r∑

α=1

X(g(NY,Nα))Nα.

Remark 3.17. If M is an isometrically immersed anti-invariant n-dimensional
submanifold of codimension r of the (n+ r)-dimensional metallic Riemannian
manifold (M̄, J, g) and Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r is the induced structure
on M , then T vanishes identically on M . In this case, for any X ∈ Γ(TM),
(3.10) becomes:

(3.23) JX =

r∑
α=1

ηα(X)Nα.

Also, the Σ-structure satisfies:

1.
∑r

α=1 ηα ⊗ ξα = qIΓ(TM);

2.
∑r

β=1 aαβηβ(X) = pηα(X);

3. aαβ = aβα;

4. ηβ(ξα) = qδαβ + paαβ −
∑r

γ=1 aαγaγβ ;

5.
∑r

β=1 aαβξβ = pξα;

6. X(aαβ) = g((∇̄XJ)Nα, Nβ) − [hα(X, ξβ) + hβ(X, ξα)] −∑r
γ=1[aαγλγβ(X) + aβγλγα(X)];

7. ηα(X) = iξαg(X),

for any X, Y ∈ Γ(TM) and 1 ≤ α, β ≤ r.

Denoting by J := ∇̄J , from Remark 3.3 we obtain:

Proposition 3.18. Let M be an isometrically immersed anti-invariant n-
dimensional submanifold of codimension r of the (n+ r)-dimensional metallic
Riemannian manifold (M̄, J, g) and Σ := (T = 0, g, ηα, ξα, (aαβ))1≤α,β≤r is the
induced structure on M . Then:

1.

J (X,Y )T =−
r∑

α=1

ηα(Y )ANα
X −

r∑
α=1

hα(X,Y )ξα,

J (X,Y )⊥ =

r∑
α=1

X(ηα(Y ))Nα −
∑

1≤α,β≤r

λαβ(X)ηβ(Y )Nα

−
r∑

α=1

hα(X,Y )nNα −N(∇XY );
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2.

J (X,Nα)
T =∇Xξα −

r∑
β=1

aαβANβ
X −

r∑
β=1

λαβ(X)ξβ ,

J (X,Nα)
⊥ =

r∑
β=1

[X(aαβ) + hβ(X, ξα)

+

r∑
γ=1

(aαγλγβ(X) + aβγλγα(X))]Nβ +N(ANα
X),

for any X, Y ∈ Γ(TM) and 1 ≤ α ≤ r.

From Proposition 3.5 and Proposition 3.18 we deduce that:

Corollary 3.19. If M be an isometrically immersed anti-invariant n-dimen-
sional submanifold of codimension r of the (n+ r)-dimensional locally metallic
Riemannian manifold (M̄, J, g), Σ := (T = 0, g, ηα, ξα, (aαβ))1≤α,β≤r is the
induced structure on M , then:

1.
r∑

α=1

ηα(Y )ANαX +

r∑
α=1

hα(X,Y )ξα = 0,

r∑
α=1

X(ηα(Y ))Nα −
∑

1≤α,β≤r

λαβ(X)ηβ(Y )Nα

−
r∑

α=1

hα(X,Y )nNα −N(∇XY ) = 0;

2.

∇Xξα −
r∑

β=1

aαβANβ
X −

r∑
β=1

λαβ(X)ξβ = 0,

X(aαβ) + hα(X, ξβ) + hβ(X, ξα) +

r∑
γ=1

[aαγλγβ(X) + aβγλγα(X)] = 0,

r∑
β=1

hα(X, ξβ)Nβ = N(ANα
X),

for any X, Y ∈ Γ(TM) and 1 ≤ α ≤ r.

Proposition 3.20. Let M be an isometrically immersed anti-invariant n-
dimensional submanifold of codimension r of the (n+ r)-dimensional metallic
Riemannian manifold (M̄, J, g) and Σ := (T = 0, g, ηα, ξα, (aαβ))1≤α,β≤r is the
induced structure on M . Then the components N (2) and N (3) vanish identi-
cally on M . Moreover, if ξα are parallel with respect to a symmetric linear
connection, for any 1 ≤ α ≤ r, then N (1) and N (4) vanish, too, on M .
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3.4. Slant submanifolds

The operator T will essentially be involved in characterizing the slant sub-
manifolds.

We say that M is slant submanifold if for any x ∈ M and Xx ∈ TxM , the
angle θ(Xx) between JXx and TxM (which agrees with the angle between JXx

and TXx) is constant. In this case, we call θ =: θ(Xx) the slant angle. Invariant
and anti-invariant submanifolds are particular cases of slant submanifolds with
the slant angle θ = 0 and θ = π

2 , respectively. A slant immersion which is not
invariant nor anti-invariant is called proper slant.

For any nonzero tangent vector Xx of TxM , the cosine of the slant angle θ
can be expressed as:

(3.24) cos(θ(Xx)) :=
g(JXx, TXx)√

g(JXx, JXx)
√
g(TXx, TXx)

=
||TXx||
||JXx||

.

Properties of slant submanifolds will be stated in the next Propositions.

Proposition 3.21. Let M be an isometrically immersed submanifold of the
metallic Riemannian manifold (M̄, J, g). If M is slant with the slant angle θ,
then:

(3.25) g(TX, TY ) = cos2(θ)[pg(X, JY ) + qg(X,Y )]

and

(3.26) g(NX,NY ) = sin2(θ)[pg(X, JY ) + qg(X,Y )],

for any X, Y ∈ Γ(TM).

Proof. Taking X + Y in g(TX, TX) = cos2(θ)g(JX, JX) we easily obtain
g(TX, TY ) = cos2(θ)g(JX, JY ) = cos2(θ)[pg(X, JY ) + qg(X,Y )]. Also,
g(NX,NY ) = g(JX, JY )− g(TX, TY ) = sin2(θ)[pg(X, JY ) + qg(X,Y )].

A characterization in terms of the T -operator of a slant submanifold of a
metallic Riemannian manifold is now given:

Proposition 3.22. Let M be an isometrically immersed submanifold of the
metallic Riemannian manifold (M̄, J, g). Then M is slant if and only if there
exists a real number λ ∈ [0, 1] such that

(3.27) T 2 = λ(pT + qIΓ(TM)).

Proof. If M is slant, θ is constant and using the Proposition 3.21 we get:

g(T 2X,Y ) = g(J(TX), Y ) = g(TX, JY ) = g(TX, TY )

= cos2(θ)[pg(X, JY ) + qg(X,Y )] = cos2(θ)g(pJX + qX, Y ),

for any X, Y ∈ Γ(TM).
Conversely, if there exists a real number λ ∈ [0, 1] such that T 2 = λ(pT +

qIΓ(TM)), it follows that cos
2(θ(X)) = λ, so θ(X) does not depend on X.
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Proposition 3.23. Let M be an isometrically immersed submanifold of the
metallic Riemannian manifold (M̄, J, g). If M is slant with the slant angle θ,
then:

(3.28) (∇XT 2)Y = p cos2(θ)(∇XT )Y,

for any X, Y ∈ Γ(TM).

Proof. We have:

T 2(∇XY ) = cos2(θ)[pT (∇XY ) + q∇XY ]

and
∇XT 2Y = cos2(θ)[p∇XTY + q∇XY ].

It follows:

(∇XT 2)Y := ∇XT 2Y − T 2(∇XY ) = p cos2(θ)(∇XT )Y.

We deduce that:

Corollary 3.24. If M is an isometrically immersed slant submanifold of the
metallic Riemannian manifold (M̄, J, g) with the slant angle θ, then ∇T 2 = 0
if and only if M is anti-invariant or (M,T, g) is locally metallic Riemannian
manifold.

Proposition 3.25. Let M be an isometrically immersed n-dimensional sub-
manifold of codimension r of the (n+ r)-dimensional locally metallic Rieman-
nian manifold (M̄, J, g) and Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r is the induced
structure on M . Then:

(3.29) (∇XT 2)Y = p cos2(θ)

r∑
α=1

[ηα(Y )ANαX + hα(X,Y )ξα],

for any X, Y ∈ Γ(TM).
Moreover, if T 2 is Codazzi, then on M :

(3.30)

r∑
α=1

(ηα ⊗ANα −ANα ⊗ ηα) = 0.

From Proposition 3.4 and Proposition 3.22, we can characterize T 2 in terms
of the Σ-structure induced on M as follows.

Proposition 3.26. Let M be an isometrically immersed n-dimensional sub-
manifold of codimension r of the (n + r)-dimensional metallic Riemannian
manifold (M̄, J, g) and Σ := (T, g, ηα, ξα, (aαβ))1≤α,β≤r is the induced struc-
ture on M . If M is proper slant submanifold with the slant angle θ, then:

(3.31) T 2 =
1

tan2(θ)

r∑
α=1

ηα ⊗ ξα.
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Remark 3.27. Denote by D = ∩r
α=1Dα the intersection of the distributions

Dα := ker ηα, 1 ≤ α ≤ r and by D⊥ its orthogonal complement in M . Then:
i) Dα is integrable if and only if ηα is closed;
ii) T 2|Γ(D) = 0 (from (3.31));

iii) ξα ∈ D⊥, for any 1 ≤ α ≤ r;
iv) the distribution D is T -invariant because

g(TX, ξα) = g(JX, ξα) = g(X, Jξα) = g(X, JNα)−
r∑

β=1

aαβg(X,Nβ)

= g(X, ξα) = 0,

for any X ∈ Γ(D);
v) if (M̄, J, g) is a locally metallic Riemannian manifold, then for

X, Y ∈ Γ(D) we have (∇XT )Y =
∑r

α=1 hα(X,Y )ξα ∈ Γ(D⊥) and T is Co-
dazzi.

4. Examples

Example 4.1. Consider the Euclidean space E2a+b of dimension (2a + b), a,
b ∈ N∗. For an almost product structure F : E2a+b → E2a+b, F (Xi, Y i, Zj) =
(Xi,−Y i, Zj), let Jλ : E2a+b → E2a+b be the (1, 1)-tensor field defined by:

(4.1) Jλ(X
i, Y i, Zj) =

p

2
(Xi, Y i, Zj) + λ

√
∆

2
F (Xi, Y i, Zj),

for λ ∈ {−1, 1}, (Xi, Y i, Zj) := (X1, . . . , Xa, Y 1, . . . , Y a, Z1, . . . , Zb) from

E2a+b, i ∈ {1, . . . , a}, j ∈ {1, . . . , b}, where σ = σp,q = p+
√
∆

2 is a metallic

number, σ = p − σ = p−
√
∆

2 and ∆ = p2 + 4q, for p and q positive integer
numbers.

For λ = 1:

(4.2) J1(X
i, Y i, Zj) = (σXi, σY i, σZj)

and for λ = −1:

(4.3) J−1(X
i, Y i, Zj) = (σXi, σY i, σZj).

J1 is a metallic structure on E2a+b because:

J2
1 (X

i, Y i, Zj) = (σ2Xi, σ2Y i, σ2Zj)

= ((pσ + q)Xi, (pσ + q)Y i, (pσ + q)Zj)

= p(σXi, σY i, σZj) + q(Xi, Y i, Zj)

= (pJ1 + qI)(Xi, Y i, Zj).

In the same manner we can find that J2
−1 = pJ−1 + qI, which implies that

J−1 is a metallic structure on E2a+b.
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In the following, we denote by Jλ := J , where λ ∈ {−1, 1}.
For any (Xi, Y i, Zj), (X ′i, Y ′i, Z ′j) ∈ Γ(TE2a+b), we have:

⟨J(Xi, Y i, Zj), (X ′i, Y ′i, Z ′j)⟩ = ⟨(Xi, Y i, Zj), J(X ′i, Y ′i, Z ′j)⟩.

Thus the scalar product ⟨·, ·⟩ on E2a+b is J-compatible and
(E2a+b, ⟨·, ·⟩, J) is a metallic Riemannian manifold.

Starting from the equation of the sphere S2a+b−1(R):

a∑
i=1

(xi)2 +

a∑
i=1

(yi)2 +

b∑
j=1

(zj)2 = R2,

where R is the radius of the sphere and

(x1, . . . , xa, y1, . . . , ya, z1, . . . , zb) := (xi, yi, zj),

i ∈ {1, . . . , a}, j ∈ {1, . . . , b}, are the coordinates of a point of S2a+b−1(R), we
use the following notations:

a∑
i=1

(xi)2 = r21,

a∑
i=1

(yi)2 = r22,

b∑
j=1

(zj)2 = r23, r
2
1 + r22 := r2, r2 + r23 = R2.

Remark that S2a−1(r) × Sb−1(r3) is a submanifold of codimension 1 in
S2a+b−1(R) and we have the successive embeddings:

S2a−1(r)× Sb−1(r3) ↪→ S2a+b−1(R) ↪→ E2a+b.

The tangent space in a point (xi, yi, zj) at the product of spheres
S2a−1(r)× Sb−1(r3) is:

T(x1,...,xa,y1,...,ya,o, . . . , o︸ ︷︷ ︸
b

)S
2a−1(r)⊕ T(o, . . . , o︸ ︷︷ ︸

2a

,z1,...,zb)S
b−1(r3).

A vector (X1, . . . , Xa, Y 1, . . . , Y a) from T(x1,...,xa,y1,...,ya)E
2a is tangent to

S2a−1(r) if and only if
∑a

i=1(x
iXi + yiY i) = 0 and it can be identified with

(X1, . . . , Xa, Y 1, . . . , Y a, 0, . . . , 0︸ ︷︷ ︸
b

) from E2a+b.

A vector (Z1, . . . , Zb) from T(z1,...,zb)E
b is tangent to Sb−1(r3) if and only if∑b

j=1 z
jZj = 0 and it can be identified with (0, . . . , 0︸ ︷︷ ︸

2a

, Z1, . . . , Zb) from E2a+b.

Consequently, for any point (xi, yi, zj) ∈ S2a−1(r)× Sb−1(r3), we have:

(Xi, Y i, Zj) ∈ T(x1,...,xa,y1,...,ya,z1,...,zb)(S
2a−1(r)× Sb−1(r3))

if and only if
∑a

i=1(x
iXi + yiY i) = 0 and

∑b
j=1 z

jZj = 0.
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Using the unit normal vector fields on the sphere S2a+b−1(R) and
S2a−1(r)× Sb−1(r3), respectively, given by:

N1 :=
1

R
(xi, yi, zj), N2 =

1

R

(
r3
r
xi,

r3
r
yi,− r

r3
zj
)
,

for any i ∈ {1, . . . , a}, j ∈ {1, . . . , b}, we obtain an orthonormal basis {N1, N2}
of T⊥

(xi,yi,zj)(S
2a−1(r) × Sb−1(r3)), for N1 the unit vector field normal at

S2a+b−1(R) and also, normal at S2a−1(r)× Sb−1(r3).
For J := J1:

JN1 =
1

R
(σxi, σyi, σzj).

From the decomposition of JNk = ξk+ak1N1+ak2N2, k ∈ {1, 2}, into the
tangential and normal components at S2a+b−1(R) and from akt = ⟨JNk, Nt⟩,
k, t ∈ {1, 2}, we obtain:
(4.4)

a11 =
σr21 + σr22 + σr23

R2
, a12 = a21 = − (σ − σ)r3r

2
2

rR2
, a22 =

r3(σr
2
1 + σr22 + σr2)

rR2

and the matrix A := (aαβ)2 is given by:

(4.5) A =
1

rR2

(
r(σr21 + σr22 + σr23) (σ − σ)r3r

2
2

(σ − σ)r3r
2
2 r3(σr

2
1 + σr22 + σr2)

)
.

The tangential components ξk = JNk − ak1N1 − ak2N2 of JNk, k ∈ {1, 2},
at the sphere S2a+b−1(R) are given by:

(4.6) ξ1 =

(
(σ − σ)r22

r2
xi,− (σ − σ)r21

r2
yi, 0

)
and
(4.7)

ξ2 =
1

rR3

((
r3τ − pr22r

2
3

r

)
xi,

(
r3τ − pr22r

2
3

r

)
yi,

(
rτ −

√
∆r22r3 −

rR2σ

r23

)
zj
)
,

for i ∈ {1, . . . , a} and j ∈ {1, . . . , b}, where τ = σr21 + σr22 + σr23.
If we decompose J(Xi, Y i, Zj) into the tangential and normal components

at the sphere S2a+b−1, where (Xi, Y i, Zj) is a tangent vector field at S2a+b−1(R),
we obtain:

J(Xi, Y i, Zj) = T (Xi, Y i, Zj) + η1(X
i, Y i, Zj)N1 + η2(X

i, Y i, Zj)N2.

From ηk(X
i, Y i, Zj) = ⟨(Xi, Y i, Zj), ξk⟩, k ∈ {1, 2}, we obtain:

(4.8) η1(X
i, Y i, Zj) =

√
∆

a∑
i=1

xiXi, η2(X
i, Y i, Zj) = 0.

Moreover, we have:

(4.9) T (Xi, Y i, Zj) =

(
σXi −

√
∆

R
sxi, σY i −

√
∆

R
syi, σZj −

√
∆

R
szj

)
,
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where s =
∑a

i=1 x
iXi = −

∑a
i=1 y

iY i and (Xi, Y i, Zj) is a tangent vector at
S2a−1(r)× Sb−1(r3) in any point (xi, yi, zj).

Therefore, the induced structure (T, ⟨·, ·⟩, ξ1, ξ2, η1, η2,A) by the metallic
structure J := J1 from E2a+b on the product of spheres S2a−1(r)×Sb−1(r3) in
the Euclidean space E2a+b is given by the equations (4.9), (4.6), (4.7), (4.8) and
(4.5). Similarly, we can find the induced structure by the metallic structure
J := J2 from E2a+b on the product of spheres S2a−1(r) × Sb−1(r3) in the
Euclidean space E2a+b.

Example 4.2. Like in the Golden case [10], we construct an invariant sub-
manifold of a metallic Riemannian manifold.

Consider the Euclidean space Ea+b of dimension (a + b), a, b ∈ N∗. Let
J : Ea+b → Ea+b be the (1, 1)-tensor field defined by:

(4.10) J(X1, . . . , Xa, Y 1, . . . , Y b) = (σX1, . . . , σXa, σY 1, . . . , σY b),

for (X1, . . . , Xa, Y 1, . . . , Y b) := (Xi, Y j) from Ea+b, i ∈ {1, . . . , a},
j ∈ {1, . . . , b}, where σ = σp,q = p+

√
∆

2 is a metallic number, σ = p−σ = p−
√
∆

2
and ∆ = p2 + 4q, for p and q positive integer numbers.

J is a metallic structure on Ea+b because:

J2(Xi, Y j) = (σ2X1, . . . , σ2Xa, σ2Y 1, . . . , σ2Y b)

= p(σX1, . . . , σXa, σY 1, . . . , σY b) + q(X1, . . . , Xa, Y 1, . . . , Y b)

= (pJ + qI)(Xi, Y j).

For any (Xi, Y j), (X ′i, Y ′j) ∈ Γ(TEa+b), we have:

⟨J(Xi, Y j), (X ′i, Y ′j)⟩ = ⟨(Xi, Y j), J(X ′i, Y ′j)⟩.

Thus, the scalar product ⟨·, ·⟩ on Ea+b is J-compatible and (Ea+b, ⟨·, ·⟩, J)
is a metallic Riemannian manifold.

From Ea+b = Ea × Eb, in each of the spaces Ea and Eb we can get the
hyperspheres:

Sa−1(r1) = {(x1, . . . , xa) ∈ Ea,

a∑
i=1

(xi)2 = r21},

Sb−1(r2) = {(y1, . . . , yb) ∈ Eb,
b∑

j=1

(yj)2 = r22},

respectively. Thus, we can construct the product manifold Sa−1(r1)×Sb−1(r2).
Let (x1, . . . , xa, y1, . . . , yb) := (xi, yj), i ∈ {1, . . . , a}, j ∈ {1, . . . , b}, be the

coordinates of a point of Sa−1(r1)× Sb−1(r2) so that:

a∑
i=1

(xi)2 +

b∑
j=1

(yj)2 = r21 + r22 := r2.
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Remark that Sa−1(r1)×Sb−1(r2) is a submanifold of codimension 2 in Ea+b,
Sa−1(r1) × Sb−1(r2) is a submanifold of codimension 1 in Sa+b−1(r) and we
have the successive embeddings:

Sa−1(r1)× Sb−1(r2) ↪→ Sa+b−1(r) ↪→ Ea+b.

The tangent space in a point (x1, . . . , xa, y1, . . . , yb) := (xi, yj) at the prod-
uct of spheres Sa−1(r1)× Sb−1(r2) is:

T(x1,...,xa,o, . . . , o︸ ︷︷ ︸
b

)S
a−1(r1)⊕ T(o, . . . , o︸ ︷︷ ︸

a

,y1,...,yb)S
b−1(r2).

A vector (X1, . . . , Xa) from T(x1,...,xa)E
a (respectively (Y 1, . . . , Y b) from

T(y1,...,yb)E
b) is tangent to Sa−1(r1) (respectively to Sb−1(r2)) if and only if∑a

i=1 x
iXi = 0 (respectively

∑b
j=1 y

jY j = 0) and it can be identified with

(X1, . . . , Xa, 0, . . . , 0︸ ︷︷ ︸
b

) from Ea+b (respectively with (0, . . . , 0︸ ︷︷ ︸
a

, Y 1, . . . , Y b) from

Ea+b).
Consequently, for any point (xi, yj) ∈ Sa−1(r1)× Sb−1(r2), we have:

(Xi, Y j) ∈ T(xi,yj)(S
a−1(r1)× Sb−1(r2)) ⊂ T(xi,yj)S

a+b−1(r)

if and only if
∑a

i=1 x
iXi =

∑b
j=1 y

jY j = 0.
We consider a local orthonormal basis {N1, N2} of

T⊥
(xi,yj)(S

a−1(r1) × Sb−1(r2)) in a point (xi, yj) ∈ Sa−1(r1) × Sb−1(r2), given
by:

N1 =
1

r
(xi, yj), N2 =

1

r

(
r2
r1

xi,−r1
r2

yj
)
,

for any i ∈ {1, . . . , a}, j ∈ {1, . . . , b}.
From the decomposition of JNk = ξk + ak1N1 + ak2N2, k ∈ {1, 2},

into the tangential and normal components at Sa−1(r1) × Sb−1(r2) and from
akt = ⟨JNk, Nt⟩, k, t ∈ {1, 2}, we obtain:

(4.11) a11 =
σr21 + σr22

r2
, a12 = a21 =

r1r2(σ − σ)

r2
, a22 =

σr21 + σr22
r2

and the matrix A := (aαβ)2 is given by:

(4.12) A =
1

r2

(
(σr21 + σr22) r1r2(σ − σ)
r1r2(σ − σ) σr21 + σr22

)
.

We obtain:

(4.13) ξ1 = ξ2 = (0, . . . , 0)︸ ︷︷ ︸
a+b

therefore:

J(T⊥
x (Sa−1(r1)× Sb−1(r2))) ⊆ T⊥

x (Sa−1(r1)× Sb−1(r2)).
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From ηk(X
i, Y j) = ⟨(Xi, Y j), ξk⟩, k ∈ {1, 2} and (4.13), we obtain:

(4.14) η1(X
i, Y j) = η2(X

i, Y j) = 0,

for any tangent vector (Xi, Y j) on the product of spheres Sa−1(r1)×Sb−1(r2)
in a point (xi, yj) ∈ Sa−1(r1)× Sb−1(r2).

From the decomposition of J(X1, . . . , Xa, Y 1, . . . , Y b) := J(Xi, Y j) into
the tangential and normal components at Sa−1(r1)× Sb−1(r2) we obtain:

(4.15) T (Xi, Y j) = J(Xi, Y j).

Thus, we have J(Tx(S
a−1(r1)× Sb−1(r2))) ⊆ Tx(S

a−1(r1)× Sb−1(r2)) and

T 2(Xi, Y j) = pT (Xi, Y j) + q(Xi, Y j)

and we obtain the induced structure (T, ⟨·, ·⟩, 0, 0, 0, 0,A) on the product of
spheres Sa−1(r1)× Sb−1(r2) by the metallic structure (J, ⟨·, ·⟩) on Ea+b. Also,
(T, ⟨·, ·⟩) is a metallic Riemannian structure on Sa−1(r1)×Sb−1(r2) and we re-
mark that Sa−1(r1)×Sb−1(r2) is an invariant manifold in the (a+b)-dimensional
manifold Ea+b, a, b ∈ N∗.

Acknowledgement. The authors wish to express thanks to the referees
for their valuable suggestions.
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Sem. Rep. 27, 1-2 (1976), 42–50.

[20] We lyczko, J. Slant curves in 3-dimensional normal almost paracontact metric
manifolds. Mediterr. J. Math. 11, 3 (2014), 965–978.

Received by the editors June 20, 2017
First published online April 14, 2018


	Introduction
	Metallic Riemannian manifolds revisited
	Submanifolds of metallic Riemannian manifolds
	Isometrically immersed submanifolds
	-structures induced on submanifolds
	Invariant and anti-invariant submanifolds
	Invariant submanifolds
	Anti-invariant submanifolds

	Slant submanifolds

	Examples

