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OPERATORS INDUCED BY WEIGHTED TOEPLITZ
AND WEIGHTED HANKEL OPERATORS

Gopal Datff] and Anshika Mittal|

Abstract. In this paper, the notion of weighted Toep-Hank operator
Gi, induced by the symbol ¢ € L>(8), on the space H*(8), 8 = {Bn}nez
being a semi-dual sequence of positive numbers with Sy = 1, is intro-
duced. Symbols are identified for the induced weighted Toep-Hank op-
erator to be co-isometry, normal and hyponormal.
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1. Preliminaries and Introduction

Let C and Z denote the set of all complex numbers and integers, respectively.
We consider the spaces L%(3), H%(3), L>°(8) and H>(3) under the assumption
that S = {8, }nez is a semi-dual sequence of positive numbers (that is 8, = S_,
for each n) with By = 1, r < 55:1 < 1 for n > 0, for some r > 0. Any
additional condition if needed, is stated explicitly. If there is no confusion
about the sequence, we denote it by 8 = {8, }n>0. We begin with the following
notational familiarity needed in the paper, for the details of which we refer to
[3],[9] and the references therein.

The space L?(3) consists of all formal Laurent series of the form f(z) =
(o)

> anz™, an € C (whether or not the series converges for any values of z)

n=—oo

for which || f||g < oo, where || f||g is defined as

o0

IAIZ =" lanl?Ba>

n=—oo

The space L?(j) is a Hilbert space with the norm || - || induced by the inner
product

o0

<f>g>: Z (429 5n6n27

n=—oo
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(o]

for f(z) = ioj anz™, g(z) = Y. bpz™. The collection {e,(z) = 2"/Bn}nez

n=—oo n=—oo

form an orthonormal basis for L?(3).

The collection of all f(2) = 3_ a,2" (formal power series) for which || f[|% =
n=0
S lan|?Bn? < o0, is denoted by H?(3). H?(f) is a subspace of L2(3).
n=0

Let L>*(B) denote the set of formal Laurent series ¢(z) = > anz"

n=—oo

such that ¢L?(8) C L?(B) and there exists some ¢ > 0 satisfying |¢f|ls <
c|| f|lg for each f € L?(B). For ¢ € L>°(), define the norm ||¢||« as

lloc = inf{c > 0:[|¢f]ls < c|f]p for each f € L*(8)}.

L®°(3) is a Banach space with respect to || [|«. Also, L>(3) C L3(B). H>®(B)
denotes the set of formal power series ¢ such that ¢H?(3) € H?(3). These
weighted sequence spaces cover Bergman, Hardy, Dirichlet and Fischer spaces
for specifically designed sequences 8 = {3,,} and thus become more demanding.

A huge literature is available on the study of Toeplitz and Hankel operators
on the Hardy spaces, for which we refer [[8],[3],[6]] and the references therein. A
class of operators induced from these operators was discussed in [2] and named
as the class of Toep-Hank operators, whose matriz representation provides a
Hankel matriz if only even columns are considered and a Toeplitz matriz if
only odd columns are considered.

The study of multiplication or Laurent operators was extended to the space
L2(B) by Shields [9] in the year 1974. The notions of Toeplitz and Hankel
operators were lifted to weighted Toeplitz and weighted Hankel operators on
weighted sequence spaces H*(B) and L*(B) in [ and [3], respectively. In this
paper, we are now interested to extend the notion of Toep-Hank operators to
the weighted Hardy space H*(B) and call these operators as weighted Toep-
Hank operators. In the second section of this paper, some algebraic properties
of these operators are discussed and a mecessary condition is obtained for the
adjoint of the weighted Toep-Hank operator to be an isometry. However, it is
seen that there is no isometric weighted Toep-Hank operator on H*(3). In the
third section, an attempt is made to study the compactness, hyponormality and
normality of the weighted Toep-Hank operators.

2. Weighted Toep-Hank operators

We begin with the definition of weighted Toeplitz, weighted Hankel and Toep-
Hank operators, which are frequently used in the paper.
Definition 2.1 ([7]). For ¢ € L>°(f), a weighted Toeplitz operator Tf on the
space H2(f3) is an operator given by T = PﬁM§|H2(5)’ where P? : L2(B) —
H?(p) is the orthogonal projection of L?(3) onto H?(3) and M(f is the weighted
Laurent operator on L?(/3).
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Definition 2.2 ([3]). For ¢ € L*°(f8), a weighted Hankel operator Hg is an
operator on H?(3) given by Hf; = PﬁJﬂMﬂHz(m, where J? is the reflection
operator on L2(f3) given by J%(e,) = e_, for n € Z.

We recall that for ¢ given by ¢(z) = > anz™, a, € C, the symbol a

n=—oo

—~ [ee]
means the expression ¢(z) = Y. a_pz™. It is easy to see that if f = {Bn}nez

n=—oo

is a semi-dual sequence and ¢ € L™ () then 5 € L™ (p).
o0
If p(2) = > anz", then Tf and Hg satisfy that for each j > 0,

n=—oo

B 1o B* —~
Tyej = 5 Zoan—jﬁnen i Ty ej =B; Zoajfngz
n= n—

B 1 o B* S
Hd)ej = Fy ZO a,n,jﬁnen N H¢ €; = ﬁj Zoﬁ,n,j;—:.
n= n=

Definition 2.3 ([2]). Let ¢ € L>(T). A Toep-Hank operator Gy on H?*(T)
induced by ¢ is given by Gy = HyA + Tzq;V, where V' and A are operators on

H?(T) defined as

Vien) = en1 if n is odd, and Afen) = ez if nis even,
" 0 if n is even " 0 if n is odd.

Each Toep-Hank operator can be expressed as Gy = PJMyK, K being an
operator from H?(T) to L*(T) defined as K(ea) = en, K(e2n11)
=e_p_1 for allmn > 0.

We now extend the notion of Toep-Hank operator to H?(B) as follows.

Definition 2.4. Let ¢ € L>*(8). A weighted Toep-Hank operator G’g on
H?(pB) is given by Gg = quA,B + ngV'B, where we define operators V# and A
on H?(B) as

VA(e,) = and AP(e,) = en %f n 15 even,
0 if n is odd

en1 if n is odd,
0 if n is even
for n > 0.

Clearly, ||Gg|| < 2||@|loo- It is trivial to conclude that Gi =0 for ¢ = 0.
The matriz of Gg with respect to the orthonormal basis {e, : n > 0} of H*(B)
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1s of the form

r Bo Bo Bo Bo Bo Bo Bo 7
o3, a1, a-13 a2, a-2, a3, a-33,
Bs Bs B3 Bs B3 Ba Bs
a-3 Bo -2 Bo -1 B -1 B1 a—5 B2 a0 B2 a—6 Bs
a_4% a_3% a_5% a_g% a_s% a_1 gi a_7%

As is observed in the case of Toep-Hank operators, the matriz of weighted
Toep-Hank operator Gg provides the matrix of weighted Hankel operator Hg if
only even columns are considered and the matrix of weighted Toeplitz operator

(o]
TZN) if only odd columns are considered. Further, if ¢(z) = . anz™ is the

n—=—oo

Fourier expansion of ¢ and {cy ;}i >0 denotes the matriz of the operator GB,
then the (i,7)t" entry is given by <ozm-> = <a,i,n%>, if 7 = 2n and <ai’j> =

<a,i+n+1%>, if j=2n+1,n>0. Clearly, {c, ;}i >0 satisfies the following
relations:

Bi— .
B;+; Apyj2j—1 = g—zak@ f07“ k Z 0, J Z 17

. 1 . . .
(2.1) %’:1 Qi_1,2j+2 = %O&hgj = %aw fori>1, j >0,

ﬂg:j O 2k 4241 = %a0,2j+1 for k>0, j>0.

In [10], Zorboska discussed the notion of composition operator C’ﬁ, with the

symbol ¢ (non constant analytic), defined on H?(3) to H*(B) as (Cgf)(z) =
f(@(2)), for all f in H?(B). It is evident from here that for a bounded sequence
B = {Bn}n>0, the composition operator sz is a bounded operator on H?(3).
Clearly, if B, = 1 for each n, then the operator sz coincides with the composi-
tion operator C,2> on H?(T). Further, it is proved in [2] that AC.> is a Hankel
operator for every Toep-Hank operator A on H*(T). However, we will see that
this is not the situation in case of a weighted Toep-Hank operator.

An infinite matriz {; j}ij>0 is called a weighted Hankel matriz [J|] with
respect to a semi-dual sequence 8 = {8, }n>0 if ’Z—J'y” = %'Yi_17lj+1 for each
i > 0,5 > 0. Under the additional assumption of {By}nez being bounded, it
is shown in [{l, Theorem 2.10] that an operator on H?(B) is weighted Hankel
operator if and only if its matriz is a weighted Hankel matriz. We show through

next example that for a weighted Toep-Hank operator A on H?*(j3), AC’?2 need
not be a weighted Hankel operator.

Example 2.5. Let ¢(z) = 2272 and 8 = {8, }nez be defined as

1 ifn=01,-1
ﬂn:{ f .

2 otherwise
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Then {5,} is a bounded semi-dual sequence satisfying % < ,3[3711 < 1 for
n > 0 and ¢ € L*(B). Consider the weighted Toep-Hank operator A (=
Gg) on H%(B). Let {a; ;}i >0 and {7i;}ij>0 be the matrices of A and ACEQ,
respectively with respect to the usual basis of H%(3). Then {a ;}i ;>0 satisfies
the relation (2.1]). But for i > 1,5 >0,

Bi+1 Bj+1 8 Bit1 ,B2j+2
= AC e e; = J
1,541 1 1
51—1% ot Bi—1 < s cict) Bi—1 " Bjt1
_ B2j+2a L2j42 = ﬂ2j+2 Bj
ﬁz 1 T ﬁ]-‘rl ﬂz

Aegjia, 6i—1>

and %%J = % a25. Inparticular, fori = 1,j = 1, we find tha

—Lj+1 =
2#4£4= % - Thus, AC , can not be a weighted Hankel operator

In order to derive a weighted Hankel operator from a given weighted Toep-
Hank operator, we proceed to define the following operator.

Definition 2.6. For f(z) = Z a,z" € H?(B3), an operator C’fQ from H?2(j3)

to H%(B) is defined as Cﬁ (f(z) = Z an

6'52 is a bounded linear operator on H?(f3) with norm 1. Further, CA’fQ(en) =
Cvﬁ (z"
22\ B

)= E:Tn = egy for each n > 0. The following result is now immediate.

Proposition 2.7. Let 8 = {B,}n>0 be bounded. If matriz of any bounded

linear operator A defined on H*(83) is a weighted Toep-Hank matriz, then Aéfz
is a weighted Hankel operator on H*(3).

It is worth noticing that weighted Hankel and weighted Toeplitz operators
are linear with respect to their symbols. Thus the class of all weighted Toep-
Hank operators on H?(B) is a linear subspace of B(H?(B)), the space of all
bounded operators on H?(B3). Furthermore, the correspondence ¢ — G¢> s an
injective linear mapping from L>(B) into B(H?()).

Now one can easily see that the adjoint Gf;* of a weighted Toep-Hank op-
erator Gg is mothing but an operator on H*(j) satisfying Gg* = A’B*Hg* +
V'B*TZ%*, where AP* and VP* on H2(B) are defined as A’ (e,) = es, and
Vﬁ*(en) = egpy1 for n > 0. The operators A® and VP also satisfies ABAPT =
I, VBVE* =1, VBAP" =0 and APVF" = 0.

In [3], it is shown that if the sequence 8 = {B,}nez is such that {%’: Ynez
is bounded then ¢(2%) € L>(B) for each ¢ € L>°(8). We now proceed ahead to
discuss the product of weighted Toep-Hank operators with the weighted Toeplitz
operators on the space H?(B3) for some specific symbols. We begin with the
following result.
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Proposition 2.8. Let 8 = {fBn}nez be a sequence such that {%‘—”}nez 18

bounded. Then for each ¢ € L>(B) of the form ¢(z) = > anz™ with ap # 0
nez
for at least one positive integer p, we have the following:

1. ABTf(Zz) = Tf/\ﬁ if and only if there exists a positive real number a > 1
such that {Bn}nez is given by

Bn:{l an:O

a otherwise

2. A necessary condition for the operator equation VﬁTf(ZQ) = TfVﬁ to hold

is that the sequence {%ﬁ’:l}nzl 18 constant with each term equal to (3.

3. For0# v € L®(8) and ¢ € H¥(B), GuAP APT) ) = Bif By =a
for each n # 0 and for some positive real number a > 1

Proof. Let APT 2y = T(fAﬁ for the above ¢. Hence, for k > 0,

¢(

AP T¢(22)62k(2) = TfABegk(z),

which yields that

(22) 52]@ Zan62k+2nek+n :B Zanﬂk—knek-‘rn)

n=0

for each k£ > 0. On comparing the coefficients of e, 1 both sides of equation
for n = p and k = mp for m > 0, we get that B(,,41)p = Ba(m41)p for m >
0. As a consequence, we have 8, = 8, for each n > p. Similarly, on comparing
the coefficients by setting n = p and taking the values k = 1,2,3,--- ,p— 1
successively, we obtain that

51:52:&:'“:5;7—1:52;772

Therefore, 8, = 1 forn > 1 and 5, > 1.
Converse follows immediately as for each n > 0,

o0

APTP 5 (2 amBokiomerim) if n=2kk>0
Tynen = m=0
if n=2k+1,k>0

5%( > @m3k+m€k+m) ifn=2k k>0

0 ifn=2k+1,k>0
= TfAﬁen.

This completes the proof of (1).
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For (2), suppose VﬁT(f(z = TfVﬁ. This provides that for each & > 0,

%)

V'BTf(ZQ)eng(z) = TfVBeng(z). As a consequence, for each & > 0
R 1, =

2.3 an ni1€kin) = — an n€k4n )

(2.3) ﬂ2k+1(77,z::0 Bakt2nt1€kin) B’f(nz::o Br+n€hin)

On setting n = p and applying equation successively for & = mp for
m > 0, we get the result.

Proof of (3) follows using (1) and the facts that A’A?” = I and VFAP" = 0.
This completes the proof. O

However, we find that the condition % = By for each n > 1, in the
p

Proposition is only necessary but not sufficient. For, ¢(z) = z* and the
semi-dual sequence B = {fBn}tnez defined as

1 ifn=0,1,-1
ﬂn{ s

2  otherwise

we have % = 1= p1 for each n > 1. Although, VBTf(ZZ)eg = e3 # 2e3 =
TV Pes.

It is known [3, Theorem 4.2] that for the symbols ¢,1p € L>(3), TSH(? =
H(fo if and only if v € H*(B). Further it is proved [1] that Tfo = wa if
P is analytic. In accordance with these observations, our next result calculates
the product of a weighted Toep-Hank operator Gg with Tg on H?(B), which we

state without proof. L
sie _ n 00 BB _ B
Proposition 2.9. Let ¢(z) = > anz™ € L>®(B). Then TJG¢ = Gy for

n=—oo

each ¢y € H*(B). In particular, TZB,nGg = wa for each n > 0.

Recall that for a semi-dual sequence {By}nez, oll the functions qz, o+ (E
and ¢¢ belong to L>=(B) provided ¢ € L>(B). In [3], commutativity of the
weighted Hankel operator H ZB ¢ with the weighted Toeplitz operator Tf has been

established for those symbols ¢ € L>(B) such that ¢ + $ and ¢>$ are constants.
Using this fact, the following can be easily attained.

Proposition 2.10. Let ¢ € L*>(3) be such that ¢ + 5 and ¢>$ are constants.
Then

1. T)GE, = HD LA + TfoVB if p € H(f).

2. TG, = HL,T]N + T VP if 6 € H(5).

It is known from [3] that there does not exist any ¢ € L*°(8) inducing
isometric weighted Hankel operators H(f In the next result, we see that the

weighted Toep-Hank operator Gg, ¢ € L™(B), fails to become an isometry.
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Theorem 2.11. A weighted Toep-Hank operator on H?(B) cannot be an isom-
etry.

Proof. Suppose that a weighted Toep-Hank operator Gg on H2(B), where
o(z) = > apz™ € L>®(p), is an isometry. Then for each j > 0, ||Gg€2j||2 =

o)
HngjH2 = ,8%2 Zo la_pn_j?8, = 1, which implies that
n=

(2.4) > lacn—j?8a = 5.
n=0

o0
For j = 0, equation (2.4) means that 3 |a_,|?>8,> = 1 and hence we have

n=0

) )
1 S ﬂj2 = Z |a—n—j|2ﬁn2 S Z |a—n|2ﬂn2 =1
n=0 n=0

for each 7 > 1. This yields that 3, = 1 for all n.

Now on replacing j by j + 1 in equation and then on subtracting it
from equation , we obtain that a_,_; = 0 for each n,j > 0. This implies
that ||G§,€2J‘||2 = 0. This contradicts our assumption. Hence, Gg can not be
an isometry. O

Now, we discuss the isometric behavior of the adjoint of weighted Toep-Hank
operators and obtain a necessary condition for such operators when induced by
a specific symbol. Almost along the same arguments as in the above theorem,
we can prove the following.

Theorem 2.12. A necessary condition for the adjoint of a weighted Toep-Hank
operator, induced by the symbol p(z) = > a;z* € L™(B), to be an isometry

i=—00

-1
is that B, =1 for eachn € Z and > |a;|* = 1.

1=—00

Proof. Proof can be obtained using the inequalities % <1 and 521 < 5—12 for
j i1 j

each j > 1. O

The conditions obtained in above theorem are not sufficient for the adjoint
of the given weighted Toep-Hank operator to be an isometry and this can be
justified through the following example.

Example 2.13. Consider the sequence § = {8, }nez such that 3, = 1 for each

n. Let ¢(z) = %z_l + %2_2, where (%)2 + (%)2 = 1. Then ¢ € L*>®(f)

as ||ofllg < V2| fllg. But for f(z) = 2eo + 3e; € H?(B), we have ||G§f||2 =
19 £13 = | 7|12
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In [2, Theorem 2.5], it is proved that G4* is an isometry on H*(T) if and

only if (Ed)* = 1. If we take the case of B, =1 for each n € Z, then the
weighted Toep-Hank operator Gg on H?(B) becomes the Toep-Hank operator

Gy on H?(T). The above mentioned ¢ satisfies 5(;5* =1+ %z + %2*1 #1. As

.
a consequence, Gg can’t be an isometry.

3. Compact, Hyponormal and Hilbert-Schmidt Opera-
tors

This section is devoted to study some basic structural properties of the
weighted Toep-Hank operators on H*(3). It is also proved that for G’g ,0(2) =

—1
> apz™ € L®(B) with a_, # 0 for p > 1, to be hyponormal, we have 3, =1

n=—p
for 0 < n < 2p. We, however, see in the next result that the only Hilbert-

Schmidt weighted Toep-Hank operator is the zero operator.

Theorem 3.1. Gi is a Hilbert-Schmidt operator if and only if ¢ = 0.

Proof. Let Gg be a Hilbert-Schmidt operator, where ¢ = Y a;2" € L>(B).

Then -
oo (o)
Z% 1Ghenl® = Z% (Ghen, Glen)
o
= Z<G ean, G 62n>+z ¢62n+1,Gg€2n+1>
n=0 n=0
= Z <H§6n,H£€n> + Z <Tﬁ;€n,Tf$€n>
n=0 n=0
Zﬁi Zla al?8?) +Zﬁ1% Zla cins1]282)
-3 L (Sl a8) + (Zm z
— n i—0 ﬁn+z 1

3 (3 ).

1=—00

0 o0 2
As Y ||Gf>en||2 is finite, we have |a;|*( > ﬁzﬁ" ) is finite for each i > 1
n=0 o "rtist

n=
[ee] 2

and [a;[2( Y %) is finite for each ¢ < 0. Now the former implies a; = 0
n=0 "

ﬂz

for n > 1 because the series Z 7
n+i—1

is divergent for each ¢ > 1. The latter
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holds only if a, = 0 for each ¢ < 0 as each term of the series Z Bn L satisfies
n=0 "
”5775;“ > 1. Hence ¢ = 0.
Converse follows evidently. O

In [2], it has been proved that a Toep-Hank operator on the space H?(T) is
compact if and only if ¢ = 0. Along similar lines, we show that for the bounded
sequences B = {Bn}n>0, there is a dearth of compact weighted Toep-Hank op-
erators on H?(B). In fact, the only compact weighted Toep-Hank operator is
the zero operator.

Theorem 3.2. For bounded sequences {B,}n>0, the operator Gi on H?(B) is
compact if and only if ¢ = 0.

Proof. Let Gg be compact, where ¢ = > a;2* € L>(3). Since e, — 0

i=—00
weakly, we have ||G eant1|* = Z la_itns1)?82 — 0 as n — oo. It is easy to

conclude from here that |a;| = 0 for each i € Z. Hence, ¢ = 0.
Nothing needs to be proved for the converse. O

In the next result, we investigate the self-adjoint nature of weighted Toep-
oo

Hank operators induced by the symbols of the form ¢(z) = Y. anz™ or ¢(z) =

n=—m

—m 00
> anz™, where ap, € C and a_y, # 0 form > 0. For ¢p(z) = > anz" €

n=—oo n=-—m

L (), we have

1 > * a. +1
Tf~€j = Z a—n-‘rj-l—lﬁnen and Tzﬁa € = 6J Z Nl R

ﬁj n=0
Theorem 3.3. The weighted Toep-Hank operator Gi on H?(B), induced by
P(z) = > anz" or ¢(z) = E anz"™, where a, € C and a_,, # 0 for

n=—m n=—oo
m > 0, can not be self-adjoint.

Proof. For ¢(z) = > an,2z", if we assume that Gg is self-adjoint then we

n=—m

must have Ggegj = Gg*egj for each j > 0. This provides that

7‘7+m 27+m oo e
_ 2n+1
Z a_n— jﬂnen 52] Z —n— QJﬁ + Z Ap—2541 E )
n=0 n=0 " p=2j-m-1 n
o0
for j > 0. If j = m it implies that “=¢eg = Bopn( > Tn_2mi1 2[;}“) where
n=m-—1

the series on right side does not 1nc1ude an appearance of ey. Hence a_,,, = 0,
which is absurd. Hence Gg can not be self-adjoint.
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Similarly, for ¢(z) = _Z a, 2™, we can check that Ggeo #+ Gg*eo. Hence

the result. O

Towards the end, we discuss the hyponormality and normality of weighted

Toep-Hank operators for the symbol ¢ € L>°(B) of the form ¢(z) = > anz™,

a_m # 0 for m > 0. It is known that an operator T on H?() is hyponormal
if \Tf1?> > |T* f|? for each f € H?(B). The following can be obtained without
any extra efforts.

Theorem 3.4. The weighted Toep-Hank operator Gg on H?(B), induced by
o(z)= > anz" € L>®(f), a—m # 0 for m > 0, can not be hyponormal.

n=—m

Proof. If we assume that the symbol ¢(z) = > a,2", m > 0, is such that

n=—m

GY is hyponormal, then [|GJezm 42| > |G eamo|®. This yields that

2 ﬂ§m+2 2 ﬂ%’m-&-Q 2 B§m+2
02|a—m| 27+|a—m+1| 27+‘a—m+2‘ 3 + -,
Bm+1 m+2 m+3

which is possible only if a; = 0 for each ¢ > —m. This implies a_,, = 0 which
is absurd. This completes the proof. O

FEvery normal operator is hyponormal so the above theorem leads to the
following.

Corollary 3.5. No weighted Toep-Hank operator Gg on the weighted Hardy
space H?(B), for ¢(z) = > anz™ € L=®(B), a_y # 0 for m > 0, is normal.

n=—m
From Corollary[3.8, we can also conclude that the trigonometric polynomials
l

of the form ¢(z) = > anz™ with a_m,a; # 0, can never induce a normal

weighted Toep-Hank operator on H?(3).
Through our next result, we discuss the hyponormality of the adjoint of a
weighted Toep-Hank operator on H?(3), induced by the symbol

o) = 3 an" € L(B)

n=—p
and obtain the following.

Theorem 3.6. A necessary condition for the adjoint of a weighted Toep-Hank
—1
operator, induced by the symbol ¢(z) = . anz™ € L>®(B), ap, #0 forp > 1,

n=—p

to be hyponormal is that B, =1 for 0 <n < 2p.
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Proof. Let Gg* be hyponormal. Then for all j > 0, ||Gg*€2j||2 > ||Ggegj||2.
For j = 0, this gives that

B;) T+ |a7p| ( 13)

la_q[? ( — 1) +la—s/? ( B

B B3

Since — B2 <0 for 1 < i < p, hence above inequality implies 3, = 1

?
for each 0 < n < p. Now on applying ||Gg*€2j+1\|2 > ||Ggegj+1”2 for j =
0,1,2,--- ,p — 1 successively to conclude that 8, = 1 for each p+1 < n < 2p.
This proves the result. U

A

Along the lines of computations in Theorem[3.6, one can immediately con-
clude the following.

-1
Corollary 3.7. If ¢ € L™(B) is such that (z) = > anz™, then a necessary

n—=—oo

condition for the operator Gi* to be hyponormal is that B,, = 1 for each n € Z.

The condition obtained in Theorem[3.6| is just necessary. It is not sufficient
for the adjoint Gg to be hyponormal. For, let B = {Bn}nez be a semi-dual
sequence defined as

2inl otherwise

ﬂ:{l if —2<n<2

and let ¢(z) = a_1z71 € L>(B). Here, p=1. Then ||G£*65||2 = la_1|?2* <
ja1]?2® = [|Gjes] .

Example 3.8. Consider the space L>(f), where the sequence § = {8,} is

given by
5, = 1 ifn=0,1,-1
" 12  otherwise '

Let ¢(z) = 2272 + 2. Then, ¢ € L*(B). Consider Gf;*, the adjoint of
a weighted Toep-Hank operator induced by the above defined ¢. Then, it is
clearly evident from Theorems and that the operator Gg* is neither
an isometry (as £, # 1 for each n > 2) nor a hyponormal operator (as 8, # 1
for 2 <n <4).
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