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OPERATORS INDUCED BY WEIGHTED TOEPLITZ
AND WEIGHTED HANKEL OPERATORS

Gopal Datt12 and Anshika Mittal3

Abstract. In this paper, the notion of weighted Toep-Hank operator
Gβφ, induced by the symbol φ ∈ L∞(β), on the space H2(β), β = {βn}n∈Z
being a semi-dual sequence of positive numbers with β0 = 1, is intro-
duced. Symbols are identified for the induced weighted Toep-Hank op-
erator to be co-isometry, normal and hyponormal.
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1. Preliminaries and Introduction

Let C and Z denote the set of all complex numbers and integers, respectively.
We consider the spaces L2(β), H2(β), L∞(β) and H∞(β) under the assumption
that β = {βn}n∈Z is a semi-dual sequence of positive numbers (that is βn = β−n
for each n) with β0 = 1, r ≤ βn

βn+1
≤ 1 for n ≥ 0, for some r > 0. Any

additional condition if needed, is stated explicitly. If there is no confusion
about the sequence, we denote it by β = {βn}n≥0. We begin with the following
notational familiarity needed in the paper, for the details of which we refer to
[3],[9] and the references therein.

The space L2(β) consists of all formal Laurent series of the form f(z) =
∞∑

n=−∞
anz

n, an ∈ C (whether or not the series converges for any values of z)

for which ‖f‖β <∞, where ‖f‖β is defined as

‖f‖2β =

∞∑
n=−∞

|an|2βn2.

The space L2(β) is a Hilbert space with the norm ‖ · ‖β induced by the inner
product 〈

f, g
〉

=

∞∑
n=−∞

an bnβn
2,
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for f(z) =
∞∑

n=−∞
anz

n, g(z) =
∞∑

n=−∞
bnz

n. The collection {en(z) = zn/βn}n∈Z

form an orthonormal basis for L2(β).

The collection of all f(z) =
∞∑
n=0

anz
n (formal power series) for which ‖f‖2β =

∞∑
n=0
|an|2βn2 < ∞, is denoted by H2(β). H2(β) is a subspace of L2(β).

Let L∞(β) denote the set of formal Laurent series φ(z) =
∞∑

n=−∞
anz

n

such that φL2(β) ⊆ L2(β) and there exists some c > 0 satisfying ‖φf‖β ≤
c‖f‖β for each f ∈ L2(β). For φ ∈ L∞(β), define the norm ‖φ‖∞ as

‖φ‖∞ = inf{c > 0 : ‖φf‖β ≤ c‖f‖β for each f ∈ L2(β)}.

L∞(β) is a Banach space with respect to ‖ ·‖∞. Also, L∞(β) ⊆ L2(β). H∞(β)
denotes the set of formal power series φ such that φH2(β) ⊆ H2(β). These
weighted sequence spaces cover Bergman, Hardy, Dirichlet and Fischer spaces
for specifically designed sequences β = {βn} and thus become more demanding.

A huge literature is available on the study of Toeplitz and Hankel operators
on the Hardy spaces, for which we refer [[8],[3],[6]] and the references therein. A
class of operators induced from these operators was discussed in [2] and named
as the class of Toep-Hank operators, whose matrix representation provides a
Hankel matrix if only even columns are considered and a Toeplitz matrix if
only odd columns are considered.

The study of multiplication or Laurent operators was extended to the space
L2(β) by Shields [9] in the year 1974. The notions of Toeplitz and Hankel
operators were lifted to weighted Toeplitz and weighted Hankel operators on
weighted sequence spaces H2(β) and L2(β) in [7] and [3], respectively. In this
paper, we are now interested to extend the notion of Toep-Hank operators to
the weighted Hardy space H2(β) and call these operators as weighted Toep-
Hank operators. In the second section of this paper, some algebraic properties
of these operators are discussed and a necessary condition is obtained for the
adjoint of the weighted Toep-Hank operator to be an isometry. However, it is
seen that there is no isometric weighted Toep-Hank operator on H2(β). In the
third section, an attempt is made to study the compactness, hyponormality and
normality of the weighted Toep-Hank operators.

2. Weighted Toep-Hank operators

We begin with the definition of weighted Toeplitz, weighted Hankel and Toep-
Hank operators, which are frequently used in the paper.

Definition 2.1 ([7]). For φ ∈ L∞(β), a weighted Toeplitz operator T βφ on the

space H2(β) is an operator given by T βφ = P βMβ
φ

∣∣
H2(β)

, where P β : L2(β) →
H2(β) is the orthogonal projection of L2(β) onto H2(β) and Mβ

φ is the weighted

Laurent operator on L2(β).
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Definition 2.2 ([3]). For φ ∈ L∞(β), a weighted Hankel operator Hβ
φ is an

operator on H2(β) given by Hβ
φ = P βJβMβ

φ

∣∣
H2(β)

, where Jβ is the reflection

operator on L2(β) given by Jβ(en) = e−n for n ∈ Z.

We recall that for φ given by φ(z) =
∞∑

n=−∞
anz

n, an ∈ C, the symbol φ̃

means the expression φ̃(z) =
∞∑

n=−∞
a−nz

n. It is easy to see that if β = {βn}n∈Z

is a semi-dual sequence and φ ∈ L∞(β) then φ̃ ∈ L∞(β).

If φ(z) =
∞∑

n=−∞
anz

n, then T βφ and Hβ
φ satisfy that for each j ≥ 0,

T βφ ej = 1
βj

∞∑
n=0

an−jβnen ; T βφ
∗
ej = βj

∞∑
n=0

aj−n
en
βn

Hβ
φ ej = 1

βj

∞∑
n=0

a−n−jβnen ; Hβ
φ

∗
ej = βj

∞∑
n=0

a−n−j
en
βn

.

Definition 2.3 ([2]). Let φ ∈ L∞(T). A Toep-Hank operator Gφ on H2(T)
induced by φ is given by Gφ = HφΛ + Tzφ̃V , where V and Λ are operators on

H2(T) defined as

V (en) =

{
en−1

2
if n is odd,

0 if n is even
and Λ(en) =

{
en

2
if n is even,

0 if n is odd.

Each Toep-Hank operator can be expressed as Gφ = PJMφK, K being an
operator from H2(T) to L2(T) defined as K(e2n) = en, K(e2n+1)
= e−n−1 for all n ≥ 0.

We now extend the notion of Toep-Hank operator to H2(β) as follows.

Definition 2.4. Let φ ∈ L∞(β). A weighted Toep-Hank operator Gβφ on

H2(β) is given by Gβφ = Hβ
φΛβ +T β

zφ̃
V β , where we define operators V β and Λβ

on H2(β) as

V β(en) =

{
en−1

2
if n is odd,

0 if n is even
and Λβ(en) =

{
en

2
if n is even,

0 if n is odd

for n ≥ 0.

Clearly, ‖Gβφ‖ ≤ 2‖φ‖∞. It is trivial to conclude that Gβφ = 0 for φ = 0.

The matrix of Gβφ with respect to the orthonormal basis {en : n ≥ 0} of H2(β)
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is of the form

a0
β0

β0
a1

β0

β0
a−1

β0

β1
a2

β0

β1
a−2

β0

β2
a3

β0

β2
a−3

β0

β3
· · ·

a−1
β1

β0
a0

β1

β0
a−2

β1

β1
a1

β1

β1
a−3

β1

β2
a2

β1

β2
a−4

β1

β3
· · ·

a−2
β2

β0
a−1

β2

β0
a−3

β2

β1
a0

β2

β1
a−4

β2

β2
a1

β2

β2
a−5

β2

β3
· · ·

a−3
β3

β0
a−2

β3

β0
a−4

β3

β1
a−1

β3

β1
a−5

β3

β2
a0

β3

β2
a−6

β3

β3
· · ·

a−4
β4

β0
a−3

β4

β0
a−5

β4

β1
a−2

β4

β1
a−6

β4

β2
a−1

β4

β2
a−7

β4

β3
· · ·

...
...

...
...

...
...

...
. . .


.

As is observed in the case of Toep-Hank operators, the matrix of weighted
Toep-Hank operator Gβφ provides the matrix of weighted Hankel operator Hβ

φ if
only even columns are considered and the matrix of weighted Toeplitz operator

T β
zφ̃

if only odd columns are considered. Further, if φ(z) =
∞∑

n=−∞
anz

n is the

Fourier expansion of φ and {αi,j}i,j≥0 denotes the matrix of the operator Gβφ,

then the (i, j)th entry is given by
〈
αi,j
〉

=
〈
a−i−n

βi

βn

〉
, if j = 2n and

〈
αi,j
〉

=〈
a−i+n+1

βi

βn

〉
, if j = 2n + 1, n ≥ 0. Clearly, {αi,j}i,j≥0 satisfies the following

relations:

(2.1)


βj−1

βk+j
αk+j,2j−1 = β0

βk
αk,0 for k ≥ 0, j ≥ 1,

βj+1
βi−1

αi−1,2j+2 =
βj

βi
αi,2j = β0

βi
αi,0 for i ≥ 1, j ≥ 0,

βk+j

βk
αk,2k+2j+1 =

βj

β0
α0,2j+1 for k ≥ 0, j ≥ 0.

In [10], Zorboska discussed the notion of composition operator Cβφ , with the

symbol φ (non constant analytic), defined on H2(β) to H2(β) as (Cβφf)(z) =

f(φ(z)), for all f in H2(β). It is evident from here that for a bounded sequence

β = {βn}n≥0, the composition operator Cβz2 is a bounded operator on H2(β).

Clearly, if βn = 1 for each n, then the operator Cβz2 coincides with the composi-
tion operator Cz2 on H2(T). Further, it is proved in [2] that ACz2 is a Hankel
operator for every Toep-Hank operator A on H2(T). However, we will see that
this is not the situation in case of a weighted Toep-Hank operator.

An infinite matrix {γi,j}i,j≥0 is called a weighted Hankel matrix [4] with

respect to a semi-dual sequence β = {βn}n≥0 if
βj

βi
γi,j =

βj+1

βi−1
γi−1,j+1 for each

i > 0, j ≥ 0. Under the additional assumption of {βn}n∈Z being bounded, it
is shown in [4, Theorem 2.10] that an operator on H2(β) is weighted Hankel
operator if and only if its matrix is a weighted Hankel matrix. We show through
next example that for a weighted Toep-Hank operator A on H2(β), ACβz2 need
not be a weighted Hankel operator.

Example 2.5. Let φ(z) = 2z−2 and β = {βn}n∈Z be defined as

βn =

{
1 if n = 0, 1,−1

2 otherwise
.
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Then {βn} is a bounded semi-dual sequence satisfying 1
2 ≤

βn

βn+1
≤ 1 for

n ≥ 0 and φ ∈ L∞(β). Consider the weighted Toep-Hank operator A (=

Gβφ) on H2(β). Let {αi,j}i,j≥0 and {γi,j}i,j≥0 be the matrices of A and ACβz2 ,

respectively with respect to the usual basis of H2(β). Then {αi,j}i,j≥0 satisfies
the relation (2.1). But for i ≥ 1, j ≥ 0,

βj+1

βi−1
γi−1,j+1 =

βj+1

βi−1

〈
ACβz2ej+1, ei−1

〉
=
βj+1

βi−1

〈β2j+2

βj+1
Ae2j+2, ei−1

〉
=

β2j+2

βi−1
αi−1,2j+2 =

β2j+2

βj+1

βj
βi
αi,2j

and
βj

βi
γi,j =

β2j

βi
αi,2j . In particular, for i = 1, j = 1, we find that

βj+1

βi−1
γi−1,j+1 =

2 6= 4 =
βj

βi
γi,j . Thus, ACβz2 can not be a weighted Hankel operator.

In order to derive a weighted Hankel operator from a given weighted Toep-
Hank operator, we proceed to define the following operator.

Definition 2.6. For f(z) =
∞∑
n=0

anz
n ∈ H2(β), an operator Ĉβz2 from H2(β)

to H2(β) is defined as Ĉβz2(f(z)) =
∞∑
n=0

an
βn

β2n
z2n.

Ĉβz2 is a bounded linear operator on H2(β) with norm 1. Further, Ĉβz2(en) =

Ĉβz2( z
n

βn
) = z2n

β2n
= e2n for each n ≥ 0. The following result is now immediate.

Proposition 2.7. Let β = {βn}n≥0 be bounded. If matrix of any bounded

linear operator A defined on H2(β) is a weighted Toep-Hank matrix, then AĈβz2
is a weighted Hankel operator on H2(β).

It is worth noticing that weighted Hankel and weighted Toeplitz operators
are linear with respect to their symbols. Thus the class of all weighted Toep-
Hank operators on H2(β) is a linear subspace of B(H2(β)), the space of all

bounded operators on H2(β). Furthermore, the correspondence φ → Gβφ is an

injective linear mapping from L∞(β) into B(H2(β)).

Now one can easily see that the adjoint Gβφ
∗

of a weighted Toep-Hank op-

erator Gβφ is nothing but an operator on H2(β) satisfying Gβφ
∗

= Λβ
∗
Hβ
φ

∗
+

V β
∗
T β
zφ̃

∗
, where Λβ

∗
and V β

∗
on H2(β) are defined as Λβ

∗
(en) = e2n and

V β
∗
(en) = e2n+1 for n ≥ 0. The operators Λβ and V β also satisfies ΛβΛβ

∗
=

I, V βV β
∗

= I, V βΛβ
∗

= 0 and ΛβV β
∗

= 0.

In [5], it is shown that if the sequence β = {βn}n∈Z is such that {β2n

βn
}n∈Z

is bounded then φ(z2) ∈ L∞(β) for each φ ∈ L∞(β). We now proceed ahead to
discuss the product of weighted Toep-Hank operators with the weighted Toeplitz
operators on the space H2(β) for some specific symbols. We begin with the
following result.
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Proposition 2.8. Let β = {βn}n∈Z be a sequence such that {β2n

βn
}n∈Z is

bounded. Then for each φ ∈ L∞(β) of the form φ(z) =
∑
n∈Z

anz
n with ap 6= 0

for at least one positive integer p, we have the following:

1. ΛβT βφ(z2) = T βφΛβ if and only if there exists a positive real number a ≥ 1

such that {βn}n∈Z is given by

βn =

{
1 if n = 0

a otherwise
.

2. A necessary condition for the operator equation V βT βφ(z2) = T βφ V
β to hold

is that the sequence {β2np+1

βnp
}n≥1 is constant with each term equal to β1.

3. For 0 6= ψ ∈ L∞(β) and φ ∈ H∞(β), GβψΛβ
∗
ΛβT βφ(z2) = Hβ

φψΛβ if βn = a

for each n 6= 0 and for some positive real number a ≥ 1.

Proof. Let ΛβT βφ(z2) = T βφΛβ for the above φ. Hence, for k ≥ 0,

ΛβT βφ(z2)e2k(z) = T βφΛβe2k(z),

which yields that

(2.2)
1

β2k

( ∞∑
n=0

anβ2k+2nek+n
)

=
1

βk

( ∞∑
n=0

anβk+nek+n
)

for each k ≥ 0. On comparing the coefficients of en+k both sides of equation
(2.2) for n = p and k = mp for m ≥ 0, we get that β(m+1)p = β2(m+1)p for m ≥
0. As a consequence, we have βn = βp for each n ≥ p. Similarly, on comparing
the coefficients by setting n = p and taking the values k = 1, 2, 3, · · · , p − 1
successively, we obtain that

β1 = β2 = β4 = · · · = βp−1 = β2p−2.

Therefore, βn = β1 for n ≥ 1 and β1 ≥ 1.
Converse follows immediately as for each n ≥ 0,

ΛβT βφ(z2)en =

 1
β2k

( ∞∑
m=0

amβ2k+2mek+m
)

if n = 2k, k ≥ 0

0 if n = 2k + 1, k ≥ 0

=

 1
βk

( ∞∑
m=0

amβk+mek+m
)

if n = 2k, k ≥ 0

0 if n = 2k + 1, k ≥ 0

= T βφΛβen.

This completes the proof of (1).
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For (2), suppose V βT βφ(z2) = T βφ V
β . This provides that for each k ≥ 0,

V βT βφ(z2)e2k+1(z) = T βφ V
βe2k+1(z). As a consequence, for each k ≥ 0

(2.3)
1

β2k+1

( ∞∑
n=0

anβ2k+2n+1ek+n
)

=
1

βk

( ∞∑
n=0

anβk+nek+n
)
.

On setting n = p and applying equation (2.3) successively for k = mp for
m ≥ 0, we get the result.

Proof of (3) follows using (1) and the facts that ΛβΛβ
∗

= I and V βΛβ
∗

= 0.
This completes the proof.

However, we find that the condition
β2np+1

βnp
= β1 for each n ≥ 1, in the

Proposition 2.8 is only necessary but not sufficient. For, φ(z) = z2 and the
semi-dual sequence β = {βn}n∈Z defined as

βn =

{
1 if n = 0, 1,−1

2 otherwise
,

we have β4n+1

β2n
= 1 = β1 for each n ≥ 1. Although, V βT βφ(z2)e3 = e3 6= 2e3 =

T βφ V
βe3.

It is known [3, Theorem 4.2] that for the symbols φ, ψ ∈ L∞(β), T β
ψ̃
Hβ
φ =

Hβ
φT

β
ψ if and only if ψ ∈ H∞(β). Further it is proved [1] that T βφ T

β
ψ = T βφψ if

ψ is analytic. In accordance with these observations, our next result calculates
the product of a weighted Toep-Hank operator Gβφ with T β

ψ̃
on H2(β), which we

state without proof.

Proposition 2.9. Let φ(z) =
1∑

n=−∞
anz

n ∈ L∞(β). Then T β
ψ̃
Gβφ = Gβφψ for

each ψ ∈ H∞(β). In particular, T βz−nG
β
φ = Gβznφ for each n ≥ 0.

Recall that for a semi-dual sequence {βn}n∈Z, all the functions φ̃, φ + φ̃

and φφ̃ belong to L∞(β) provided φ ∈ L∞(β). In [3], commutativity of the

weighted Hankel operator Hβ
zφ with the weighted Toeplitz operator T βφ has been

established for those symbols φ ∈ L∞(β) such that φ+ φ̃ and φφ̃ are constants.
Using this fact, the following can be easily attained.

Proposition 2.10. Let φ ∈ L∞(β) be such that φ + φ̃ and φφ̃ are constants.
Then

1. T βφG
β
zφ = Hβ

zφ2Λβ + T βφ T
β

φ̃
V β if φ ∈ H∞(β).

2. T βφG
β
zφ = Hβ

zφT
β
φΛβ + T β

φφ̃
V β if φ̃ ∈ H∞(β).

It is known from [3] that there does not exist any φ ∈ L∞(β) inducing

isometric weighted Hankel operators Hβ
φ . In the next result, we see that the

weighted Toep-Hank operator Gβφ, φ ∈ L∞(β), fails to become an isometry.
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Theorem 2.11. A weighted Toep-Hank operator on H2(β) cannot be an isom-
etry.

Proof. Suppose that a weighted Toep-Hank operator Gβφ on H2(β), where

φ(z) =
∞∑

n=−∞
anz

n ∈ L∞(β), is an isometry. Then for each j ≥ 0, ‖Gβφe2j‖2 =

‖Hβ
φ ej‖2 = 1

β2
j

∞∑
n=0
|a−n−j |2βn2 = 1, which implies that

(2.4)

∞∑
n=0

|a−n−j |2βn2 = β2
j .

For j = 0, equation (2.4) means that
∞∑
n=0
|a−n|2βn2 = 1 and hence we have

1 ≤ βj2 =

∞∑
n=0

|a−n−j |2βn2 ≤
∞∑
n=0

|a−n|2βn2 = 1

for each j ≥ 1. This yields that βn = 1 for all n.
Now on replacing j by j + 1 in equation (2.4) and then on subtracting it

from equation (2.4), we obtain that a−n−j = 0 for each n, j ≥ 0. This implies

that ‖Gβφe2j‖2 = 0. This contradicts our assumption. Hence, Gβφ can not be
an isometry.

Now, we discuss the isometric behavior of the adjoint of weighted Toep-Hank
operators and obtain a necessary condition for such operators when induced by
a specific symbol. Almost along the same arguments as in the above theorem,
we can prove the following.

Theorem 2.12. A necessary condition for the adjoint of a weighted Toep-Hank

operator, induced by the symbol φ(z) =
−1∑

i=−∞
aiz

i ∈ L∞(β), to be an isometry

is that βn = 1 for each n ∈ Z and
−1∑

i=−∞
|ai|2 = 1.

Proof. Proof can be obtained using the inequalities 1
β2
j
≤ 1 and 1

β2
j+1
≤ 1

β2
j

for

each j ≥ 1.

The conditions obtained in above theorem are not sufficient for the adjoint
of the given weighted Toep-Hank operator to be an isometry and this can be
justified through the following example.

Example 2.13. Consider the sequence β = {βn}n∈Z such that βn = 1 for each
n. Let φ(z) = 1√

2
z−1 + 1√

2
z−2, where ( 1√

2
)2 + ( 1√

2
)2 = 1. Then φ ∈ L∞(β)

as ‖φf‖β ≤
√

2‖f‖β . But for f(z) = 2e0 + 3e1 ∈ H2(β), we have ‖Gβ
∗

φ f‖2 =

19 6= 13 = ‖f‖2.
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In [2, Theorem 2.5], it is proved that Gφ
∗ is an isometry on H2(T) if and

only if φ̃φ∗ = 1. If we take the case of βn = 1 for each n ∈ Z, then the
weighted Toep-Hank operator Gβφ on H2(β) becomes the Toep-Hank operator

Gφ on H2(T). The above mentioned φ satisfies φ̃φ∗ = 1 + 1
2z + 1

2z
−1 6= 1. As

a consequence, Gβ
∗

φ can’t be an isometry.

3. Compact, Hyponormal and Hilbert-Schmidt Opera-
tors

This section is devoted to study some basic structural properties of the

weighted Toep-Hank operators on H2(β). It is also proved that for Gβ
∗

φ , φ(z) =
−1∑

n=−p
anz

n ∈ L∞(β) with a−p 6= 0 for p ≥ 1, to be hyponormal, we have βn = 1

for 0 ≤ n ≤ 2p. We, however, see in the next result that the only Hilbert-
Schmidt weighted Toep-Hank operator is the zero operator.

Theorem 3.1. Gβφ is a Hilbert-Schmidt operator if and only if φ = 0.

Proof. Let Gβφ be a Hilbert-Schmidt operator, where φ =
∞∑

i=−∞
aiz

i ∈ L∞(β).

Then
∞∑
n=0

‖Gβφen‖
2 =

∞∑
n=0

〈
Gβφen, G

β
φen
〉

=

∞∑
n=0

〈
Gβφe2n, G

β
φe2n

〉
+

∞∑
n=0

〈
Gβφe2n+1, G

β
φe2n+1

〉
=

∞∑
n=0

〈
Hβ
φ en, H

β
φ en

〉
+

∞∑
n=0

〈
T β
zφ̃
en, T

β

zφ̃
en
〉

=

∞∑
n=0

1

β2
n

( ∞∑
i=0

|a−i−n|2β2
i

)
+

∞∑
n=0

1

β2
n

( ∞∑
i=0

|a−i+n+1|2β2
i

)
=

∞∑
n=0

1

β2
n

( ∞∑
i=0

|a−i−n|2β2
i

)
+

( ∞∑
i=1

|ai|2
( ∞∑
n=0

β2
n

β2
n+i−1

)
+

0∑
i=−∞

|ai|2
( ∞∑
n=0

β2
n−i+1

β2
n

))
.

As
∞∑
n=0
‖Gβφen‖2 is finite, we have |ai|2

( ∞∑
n=0

β2
n

β2
n+i−1

)
is finite for each i ≥ 1

and |ai|2
( ∞∑
n=0

β2
n−i+1

β2
n

)
is finite for each i ≤ 0. Now the former implies ai = 0

for n ≥ 1 because the series
∞∑
n=0

β2
n

β2
n+i−1

is divergent for each i ≥ 1. The latter
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holds only if ai = 0 for each i ≤ 0 as each term of the series
∞∑
n=0

β2
n−i+1

β2
n

satisfies

β2
n−i+1

β2
n
≥ 1. Hence φ = 0.

Converse follows evidently.

In [2], it has been proved that a Toep-Hank operator on the space H2(T) is
compact if and only if φ = 0. Along similar lines, we show that for the bounded
sequences β = {βn}n≥0, there is a dearth of compact weighted Toep-Hank op-
erators on H2(β). In fact, the only compact weighted Toep-Hank operator is
the zero operator.

Theorem 3.2. For bounded sequences {βn}n≥0, the operator Gβφ on H2(β) is
compact if and only if φ = 0.

Proof. Let Gβφ be compact, where φ =
∞∑

i=−∞
aiz

i ∈ L∞(β). Since en → 0

weakly, we have ‖Gβφe2n+1‖2 =
∞∑
i=0

|a−i+n+1|2β2
i → 0 as n → ∞. It is easy to

conclude from here that |ai| = 0 for each i ∈ Z. Hence, φ = 0.
Nothing needs to be proved for the converse.

In the next result, we investigate the self-adjoint nature of weighted Toep-

Hank operators induced by the symbols of the form φ(z) =
∞∑

n=−m
anz

n or φ(z) =

−m∑
n=−∞

anz
n, where an ∈ C and a−m 6= 0 for m > 0. For φ(z) =

∞∑
n=−m

anz
n ∈

L∞(β), we have

T β
zφ̃
ej =

1

βj

∞∑
n=0

a−n+j+1βnen and T β
zφ̃

∗
ej = βj

∞∑
n=0

an−j+1

βn
en.

Theorem 3.3. The weighted Toep-Hank operator Gβφ on H2(β), induced by

φ(z) =
∞∑

n=−m
anz

n or φ(z) =
−m∑

n=−∞
anz

n, where an ∈ C and a−m 6= 0 for

m > 0, can not be self-adjoint.

Proof. For φ(z) =
∞∑

n=−m
anz

n, if we assume that Gβφ is self-adjoint then we

must have Gβφe2j = Gβ
∗

φ e2j for each j ≥ 0. This provides that

1

βj

(−j+m∑
n=0

a−n−jβnen
)

= β2j
(−2j+m∑

n=0

a−n−2j
e2n
βn

+

∞∑
n=2j−m−1

an−2j+1
e2n+1

βn

)
for j ≥ 0. If j = m it implies that a−m

βm
e0 = β2m(

∞∑
n=m−1

an−2m+1
e2n+1

βn
), where

the series on right side does not include an appearance of e0. Hence a−m = 0,
which is absurd. Hence Gβφ can not be self-adjoint.
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Similarly, for φ(z) =
−m∑

n=−∞
anz

n, we can check that Gβφe0 6= Gβ
∗

φ e0. Hence

the result.

Towards the end, we discuss the hyponormality and normality of weighted

Toep-Hank operators for the symbol φ ∈ L∞(β) of the form φ(z) =
∞∑

n=−m
anz

n,

a−m 6= 0 for m > 0. It is known that an operator T on H2(β) is hyponormal
if ‖Tf‖2 ≥ ‖T ∗f‖2 for each f ∈ H2(β). The following can be obtained without
any extra efforts.

Theorem 3.4. The weighted Toep-Hank operator Gβφ on H2(β), induced by

φ(z) =
∞∑

n=−m
anz

n ∈ L∞(β), a−m 6= 0 for m > 0, can not be hyponormal.

Proof. If we assume that the symbol φ(z) =
∞∑

n=−m
anz

n, m > 0, is such that

Gβφ is hyponormal, then ‖Gβφe2m+2‖2 ≥ ‖Gβ
∗

φ e2m+2‖2. This yields that

0 ≥ |a−m|2
β2
2m+2

β2
m+1

+ |a−m+1|2
β2
2m+2

β2
m+2

+ |a−m+2|2
β2
2m+2

β2
m+3

+ · · · ,

which is possible only if ai = 0 for each i ≥ −m. This implies a−m = 0 which
is absurd. This completes the proof.

Every normal operator is hyponormal so the above theorem leads to the
following.

Corollary 3.5. No weighted Toep-Hank operator Gβφ on the weighted Hardy

space H2(β), for φ(z) =
∞∑

n=−m
anz

n ∈ L∞(β), a−m 6= 0 for m > 0, is normal.

From Corollary 3.5, we can also conclude that the trigonometric polynomials

of the form φ(z) =
l∑

n=−m
anz

n with a−m, al 6= 0, can never induce a normal

weighted Toep-Hank operator on H2(β).
Through our next result, we discuss the hyponormality of the adjoint of a

weighted Toep-Hank operator on H2(β), induced by the symbol

φ(z) =

−1∑
n=−p

anz
n ∈ L∞(β)

and obtain the following.

Theorem 3.6. A necessary condition for the adjoint of a weighted Toep-Hank

operator, induced by the symbol φ(z) =
−1∑

n=−p
anz

n ∈ L∞(β), a−p 6= 0 for p ≥ 1,

to be hyponormal is that βn = 1 for 0 ≤ n ≤ 2p.
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Proof. Let Gβ
∗

φ be hyponormal. Then for all j ≥ 0, ‖Gβ
∗

φ e2j‖2 ≥ ‖Gβφe2j‖2.
For j = 0, this gives that

|a−1|2
( 1

β2
1

− β2
1

)
+ |a−2|2

( 1

β2
2

− β2
2

)
+ · · ·+ |a−p|2

( 1

β2
p

− β2
p

)
≥ 0.

Since 1
β2
i
− β2

i ≤ 0 for 1 ≤ i ≤ p, hence above inequality implies βn = 1

for each 0 ≤ n ≤ p. Now on applying ‖Gβ
∗

φ e2j+1‖2 ≥ ‖Gβφe2j+1‖2 for j =
0, 1, 2, · · · , p− 1 successively to conclude that βn = 1 for each p+ 1 ≤ n ≤ 2p.
This proves the result.

Along the lines of computations in Theorem 3.6, one can immediately con-
clude the following.

Corollary 3.7. If φ ∈ L∞(β) is such that φ(z) =
−1∑

n=−∞
anz

n, then a necessary

condition for the operator Gβ
∗

φ to be hyponormal is that βn = 1 for each n ∈ Z.

The condition obtained in Theorem 3.6 is just necessary. It is not sufficient

for the adjoint Gβ
∗

φ to be hyponormal. For, let β = {βn}n∈Z be a semi-dual
sequence defined as

βn =

{
1 if −2 ≤ n ≤ 2

2|n| otherwise

and let φ(z) = a−1z
−1 ∈ L∞(β). Here, p = 1. Then ‖Gβ

∗

φ e5‖2 = |a−1|224 <

|a−1|228 = ‖Gβφe5‖2.

Example 3.8. Consider the space L∞(β), where the sequence β = {βn} is
given by

βn =

{
1 if n = 0, 1,−1

2 otherwise
.

Let φ(z) = 2z−2 + z−1. Then, φ ∈ L∞(β). Consider Gβ
∗

φ , the adjoint of
a weighted Toep-Hank operator induced by the above defined φ. Then, it is

clearly evident from Theorems 2.12 and 3.6 that the operator Gβ
∗

φ is neither
an isometry (as βn 6= 1 for each n ≥ 2) nor a hyponormal operator (as βn 6= 1
for 2 ≤ n ≤ 4).
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