OPERATORS INDUCED BY WEIGHTED TOEPLITZ AND WEIGHTED HANKEL OPERATORS

Gopal Datt 12 and Anshika Mittal 3

Abstract. In this paper, the notion of weighted Toep-Hank operator G_{ϕ}^{β} , induced by the symbol $\phi \in L^{\infty}(\beta)$, on the space $H^{2}(\beta)$, $\beta = \{\beta_{n}\}_{n \in \mathbb{Z}}$ being a semi-dual sequence of positive numbers with $\beta_{0} = 1$, is introduced. Symbols are identified for the induced weighted Toep-Hank operator to be co-isometry, normal and hyponormal.

AMS Mathematics Subject Classification (2010): 47B37; 47B35

Key words and phrases: Hankel operators; Toeplitz operators; Hyponormal operator; Hilbert Schmidt operator; Toep-Hank operator

1. Preliminaries and Introduction

Let \mathbb{C} and \mathbb{Z} denote the set of all complex numbers and integers, respectively. We consider the spaces $L^2(\beta)$, $H^2(\beta)$, $L^{\infty}(\beta)$ and $H^{\infty}(\beta)$ under the assumption that $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ is a semi-dual sequence of positive numbers (that is $\beta_n = \beta_{-n}$ for each n) with $\beta_0 = 1$, $r \leq \frac{\beta_n}{\beta_{n+1}} \leq 1$ for $n \geq 0$, for some r > 0. Any additional condition if needed, is stated explicitly. If there is no confusion about the sequence, we denote it by $\beta = \{\beta_n\}_{n \geq 0}$. We begin with the following notational familiarity needed in the paper, for the details of which we refer to [3],[9] and the references therein.

The space $L^2(\beta)$ consists of all formal Laurent series of the form $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, $a_n \in \mathbb{C}$ (whether or not the series converges for any values of z) for which $\|f\|_{\beta} < \infty$, where $\|f\|_{\beta}$ is defined as

$$||f||_{\beta}^{2} = \sum_{n=-\infty}^{\infty} |a_{n}|^{2} \beta_{n}^{2}.$$

The space $L^2(\beta)$ is a Hilbert space with the norm $\|\cdot\|_{\beta}$ induced by the inner product

$$\langle f,g\rangle = \sum_{n=-\infty}^{\infty} a_n \,\overline{b}_n {\beta_n}^2,$$

¹Department of Mathematics, PGDAV College, University of Delhi, INDIA, e-mail: gopal.d.sati@gmail.com

²Corresponding author

³Department of Mathematics, University of Delhi, INDIA, e-mail: anshika0825@gmail.com

for $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, $g(z) = \sum_{n=-\infty}^{\infty} b_n z^n$. The collection $\{e_n(z) = z^n/\beta_n\}_{n \in \mathbb{Z}}$ form an orthonormal basis for $L^2(\beta)$.

The collection of all $f(z) = \sum_{n=0}^{\infty} a_n z^n$ (formal power series) for which $||f||_{\beta}^2 = \sum_{n=0}^{\infty} |a_n|^2 \beta_n^2 < \infty$, is denoted by $H^2(\beta)$. $H^2(\beta)$ is a subspace of $L^2(\beta)$.

Let $L^{\infty}(\beta)$ denote the set of formal Laurent series $\phi(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ such that $\phi L^2(\beta) \subseteq L^2(\beta)$ and there exists some c > 0 satisfying $\|\phi f\|_{\beta} \leq c \|f\|_{\beta}$ for each $f \in L^2(\beta)$. For $\phi \in L^{\infty}(\beta)$, define the norm $\|\phi\|_{\infty}$ as

 $\|\phi\|_{\infty} = \inf\{c > 0 : \|\phi f\|_{\beta} \le c \|f\|_{\beta} \text{ for each } f \in L^{2}(\beta)\}.$

 $L^{\infty}(\beta)$ is a Banach space with respect to $\|\cdot\|_{\infty}$. Also, $L^{\infty}(\beta) \subseteq L^{2}(\beta)$. $H^{\infty}(\beta)$ denotes the set of formal power series ϕ such that $\phi H^{2}(\beta) \subseteq H^{2}(\beta)$. These weighted sequence spaces cover Bergman, Hardy, Dirichlet and Fischer spaces for specifically designed sequences $\beta = \{\beta_n\}$ and thus become more demanding.

A huge literature is available on the study of Toeplitz and Hankel operators on the Hardy spaces, for which we refer [[8],[3],[6]] and the references therein. A class of operators induced from these operators was discussed in [2] and named as the class of *Toep-Hank operators*, whose matrix representation provides a Hankel matrix if only even columns are considered and a *Toeplitz matrix if* only odd columns are considered.

The study of multiplication or Laurent operators was extended to the space $L^2(\beta)$ by Shields [9] in the year 1974. The notions of Toeplitz and Hankel operators were lifted to weighted Toeplitz and weighted Hankel operators on weighted sequence spaces $H^2(\beta)$ and $L^2(\beta)$ in [7] and [3], respectively. In this paper, we are now interested to extend the notion of Toep-Hank operators to the weighted Hardy space $H^2(\beta)$ and call these operators as weighted Toep-Hank operators. In the second section of this paper, some algebraic properties of these operators are discussed and a necessary condition is obtained for the adjoint of the weighted Toep-Hank operator to be an isometry. However, it is seen that there is no isometric weighted Toep-Hank operator on $H^2(\beta)$. In the third section, an attempt is made to study the compactness, hyponormality and normality of the weighted Toep-Hank operators.

2. Weighted Toep-Hank operators

We begin with the definition of weighted Toeplitz, weighted Hankel and Toep-Hank operators, which are frequently used in the paper.

Definition 2.1 ([7]). For $\phi \in L^{\infty}(\beta)$, a weighted Toeplitz operator T^{β}_{ϕ} on the space $H^{2}(\beta)$ is an operator given by $T^{\beta}_{\phi} = P^{\beta}M^{\beta}_{\phi}|_{H^{2}(\beta)}$, where $P^{\beta} : L^{2}(\beta) \to H^{2}(\beta)$ is the orthogonal projection of $L^{2}(\beta)$ onto $H^{2}(\beta)$ and M^{β}_{ϕ} is the weighted Laurent operator on $L^{2}(\beta)$.

Definition 2.2 ([3]). For $\phi \in L^{\infty}(\beta)$, a weighted Hankel operator H^{β}_{ϕ} is an operator on $H^{2}(\beta)$ given by $H^{\beta}_{\phi} = P^{\beta}J^{\beta}M^{\beta}_{\phi}|_{H^{2}(\beta)}$, where J^{β} is the reflection operator on $L^{2}(\beta)$ given by $J^{\beta}(e_{n}) = e_{-n}$ for $n \in \mathbb{Z}$.

We recall that for ϕ given by $\phi(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, $a_n \in \mathbb{C}$, the symbol $\widetilde{\phi}$ means the expression $\widetilde{\phi}(z) = \sum_{n=-\infty}^{\infty} a_{-n} z^n$. It is easy to see that if $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ is a semi-dual sequence and $\phi \in L^{\infty}(\beta)$ then $\widetilde{\phi} \in L^{\infty}(\beta)$.

If $\phi(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, then T_{ϕ}^{β} and H_{ϕ}^{β} satisfy that for each $j \ge 0$,

$$T_{\phi}^{\beta}e_{j} = \frac{1}{\beta_{j}}\sum_{n=0}^{\infty}a_{n-j}\beta_{n}e_{n} \ ; \ T_{\phi}^{\beta^{*}}e_{j} = \beta_{j}\sum_{n=0}^{\infty}\overline{a}_{j-n}\frac{e_{n}}{\beta_{n}}$$

$$H^{\beta}_{\phi}e_j = \frac{1}{\beta_j}\sum_{n=0}^{\infty} a_{-n-j}\beta_n e_n \ ; \ H^{\beta^*}_{\phi}e_j = \beta_j\sum_{n=0}^{\infty} \overline{a}_{-n-j}\frac{e_n}{\beta_n}.$$

Definition 2.3 ([2]). Let $\phi \in L^{\infty}(\mathbb{T})$. A Toep-Hank operator G_{ϕ} on $H^{2}(\mathbb{T})$ induced by ϕ is given by $G_{\phi} = H_{\phi}\Lambda + T_{z\tilde{\phi}}V$, where V and Λ are operators on $H^{2}(\mathbb{T})$ defined as

$$V(e_n) = \begin{cases} e_{\frac{n-1}{2}} & \text{if n is odd,} \\ 0 & \text{if n is even} \end{cases} \text{ and } \Lambda(e_n) = \begin{cases} e_{\frac{n}{2}} & \text{if n is even,} \\ 0 & \text{if n is odd.} \end{cases}$$

Each Toep-Hank operator can be expressed as $G_{\phi} = PJM_{\phi}K$, K being an operator from $H^2(\mathbb{T})$ to $L^2(\mathbb{T})$ defined as $K(e_{2n}) = e_n$, $K(e_{2n+1}) = e_{-n-1}$ for all $n \ge 0$.

We now extend the notion of Toep-Hank operator to $H^2(\beta)$ as follows.

Definition 2.4. Let $\phi \in L^{\infty}(\beta)$. A weighted Toep-Hank operator G^{β}_{ϕ} on $H^{2}(\beta)$ is given by $G^{\beta}_{\phi} = H^{\beta}_{\phi}\Lambda^{\beta} + T^{\beta}_{z\tilde{\phi}}V^{\beta}$, where we define operators V^{β} and Λ^{β} on $H^{2}(\beta)$ as

$$V^{\beta}(e_n) = \begin{cases} e_{\frac{n-1}{2}} & \text{if n is odd,} \\ 0 & \text{if n is even} \end{cases} \text{ and } \Lambda^{\beta}(e_n) = \begin{cases} e_{\frac{n}{2}} & \text{if n is even,} \\ 0 & \text{if n is odd} \end{cases}$$

for $n \ge 0$.

Clearly, $\|G_{\phi}^{\beta}\| \leq 2\|\phi\|_{\infty}$. It is trivial to conclude that $G_{\phi}^{\beta} = 0$ for $\phi = 0$. The matrix of G_{ϕ}^{β} with respect to the orthonormal basis $\{e_n : n \geq 0\}$ of $H^2(\beta)$ is of the form

As is observed in the case of Toep-Hank operators, the matrix of weighted Toep-Hank operator G^{β}_{ϕ} provides the matrix of weighted Hankel operator H^{β}_{ϕ} if only even columns are considered and the matrix of weighted Toeplitz operator $T^{\beta}_{z\tilde{\phi}}$ if only odd columns are considered. Further, if $\phi(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ is the Fourier expansion of ϕ and $\{\alpha_{i,j}\}_{i,j\geq 0}$ denotes the matrix of the operator G^{β}_{ϕ} , then the $(i, j)^{\text{th}}$ entry is given by $\langle \alpha_{i,j} \rangle = \langle a_{-i-n} \frac{\beta_i}{\beta_n} \rangle$, if j = 2n and $\langle \alpha_{i,j} \rangle = \langle a_{-i+n+1} \frac{\beta_i}{\beta_n} \rangle$, if j = 2n + 1, $n \geq 0$. Clearly, $\{\alpha_{i,j}\}_{i,j\geq 0}$ satisfies the following relations:

(2.1)
$$\begin{cases} \frac{\beta_{j-1}}{\beta_{k+j}} \alpha_{k+j,2j-1} = \frac{\beta_0}{\beta_k} \alpha_{k,0} & \text{for } k \ge 0, \ j \ge 1, \\ \frac{\beta_j+1}{\beta_{i-1}} \alpha_{i-1,2j+2} = \frac{\beta_j}{\beta_i} \alpha_{i,2j} = \frac{\beta_0}{\beta_i} \alpha_{i,0} & \text{for } i \ge 1, \ j \ge 0, \\ \frac{\beta_{k+j}}{\beta_k} \alpha_{k,2k+2j+1} = \frac{\beta_j}{\beta_0} \alpha_{0,2j+1} & \text{for } k \ge 0, \ j \ge 0. \end{cases}$$

In [10], Zorboska discussed the notion of composition operator C_{ϕ}^{β} , with the symbol ϕ (non constant analytic), defined on $H^2(\beta)$ to $H^2(\beta)$ as $(C_{\phi}^{\beta}f)(z) = f(\phi(z))$, for all f in $H^2(\beta)$. It is evident from here that for a bounded sequence $\beta = \{\beta_n\}_{n\geq 0}$, the composition operator $C_{z^2}^{\beta}$ is a bounded operator on $H^2(\beta)$. Clearly, if $\beta_n = 1$ for each n, then the operator $C_{z^2}^{\beta}$ coincides with the composition operator C_{z^2} on $H^2(\mathbb{T})$. Further, it is proved in [2] that AC_{z^2} is a Hankel operator for every Toep-Hank operator A on $H^2(\mathbb{T})$. However, we will see that this is not the situation in case of a weighted Toep-Hank operator.

An infinite matrix $\{\gamma_{i,j}\}_{i,j\geq 0}$ is called a weighted Hankel matrix [4] with respect to a semi-dual sequence $\beta = \{\beta_n\}_{n\geq 0}$ if $\frac{\beta_j}{\beta_i}\gamma_{i,j} = \frac{\beta_{j+1}}{\beta_{i-1}}\gamma_{i-1,j+1}$ for each $i > 0, j \geq 0$. Under the additional assumption of $\{\beta_n\}_{n\in\mathbb{Z}}$ being bounded, it is shown in [4, Theorem 2.10] that an operator on $H^2(\beta)$ is weighted Hankel operator if and only if its matrix is a weighted Hankel matrix. We show through next example that for a weighted Toep-Hank operator A on $H^2(\beta)$, $AC_{z^2}^{\beta}$ need not be a weighted Hankel operator.

Example 2.5. Let $\phi(z) = 2z^{-2}$ and $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ be defined as

$$\beta_n = \begin{cases} 1 & if \ n = 0, 1, -1 \\ 2 & otherwise \end{cases}$$

Then $\{\beta_n\}$ is a bounded semi-dual sequence satisfying $\frac{1}{2} \leq \frac{\beta_n}{\beta_{n+1}} \leq 1$ for $n \geq 0$ and $\phi \in L^{\infty}(\beta)$. Consider the weighted Toep-Hank operator A (= G_{ϕ}^{β}) on $H^2(\beta)$. Let $\{\alpha_{i,j}\}_{i,j\geq 0}$ and $\{\gamma_{i,j}\}_{i,j\geq 0}$ be the matrices of A and $AC_{z^2}^{\beta}$, respectively with respect to the usual basis of $H^2(\beta)$. Then $\{\alpha_{i,j}\}_{i,j\geq 0}$ satisfies the relation (2.1). But for $i \geq 1, j \geq 0$,

$$\begin{aligned} \frac{\beta_{j+1}}{\beta_{i-1}} \gamma_{i-1,j+1} &= \frac{\beta_{j+1}}{\beta_{i-1}} \left\langle A C_{z^2}^{\beta} e_{j+1}, e_{i-1} \right\rangle = \frac{\beta_{j+1}}{\beta_{i-1}} \left\langle \frac{\beta_{2j+2}}{\beta_{j+1}} A e_{2j+2}, e_{i-1} \right\rangle \\ &= \frac{\beta_{2j+2}}{\beta_{i-1}} \alpha_{i-1,2j+2} = \frac{\beta_{2j+2}}{\beta_{j+1}} \frac{\beta_j}{\beta_i} \alpha_{i,2j} \end{aligned}$$

and $\frac{\beta_j}{\beta_i}\gamma_{i,j} = \frac{\beta_{2j}}{\beta_i}\alpha_{i,2j}$. In particular, for i = 1, j = 1, we find that $\frac{\beta_{j+1}}{\beta_{i-1}}\gamma_{i-1,j+1} = 2 \neq 4 = \frac{\beta_j}{\beta_i}\gamma_{i,j}$. Thus, $AC_{z^2}^{\beta}$ can not be a weighted Hankel operator.

In order to derive a weighted Hankel operator from a given weighted Toep-Hank operator, we proceed to define the following operator.

Definition 2.6. For $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^2(\beta)$, an operator $\hat{C}_{z^2}^{\beta}$ from $H^2(\beta)$ to $H^2(\beta)$ is defined as $\hat{C}_{z^2}^{\beta}(f(z)) = \sum_{n=0}^{\infty} a_n \frac{\beta_n}{\beta_{2n}} z^{2n}$.

 $\hat{C}_{z^2}^{\beta}$ is a bounded linear operator on $H^2(\beta)$ with norm 1. Further, $\hat{C}_{z^2}^{\beta}(e_n) = \hat{C}_{z^2}^{\beta}(\frac{z^n}{\beta_n}) = \frac{z^{2n}}{\beta_{2n}} = e_{2n}$ for each $n \ge 0$. The following result is now immediate.

Proposition 2.7. Let $\beta = {\{\beta_n\}_{n\geq 0}}$ be bounded. If matrix of any bounded linear operator A defined on $H^2(\beta)$ is a weighted Toep-Hank matrix, then $A\hat{C}_{z^2}^{\beta}$ is a weighted Hankel operator on $H^2(\beta)$.

It is worth noticing that weighted Hankel and weighted Toeplitz operators are linear with respect to their symbols. Thus the class of all weighted Toep-Hank operators on $H^2(\beta)$ is a linear subspace of $\mathfrak{B}(H^2(\beta))$, the space of all bounded operators on $H^2(\beta)$. Furthermore, the correspondence $\phi \to G_{\phi}^{\beta}$ is an injective linear mapping from $L^{\infty}(\beta)$ into $\mathfrak{B}(H^2(\beta))$.

Now one can easily see that the adjoint $G_{\phi}^{\beta^*}$ of a weighted Toep-Hank operator G_{ϕ}^{β} is nothing but an operator on $H^2(\beta)$ satisfying $G_{\phi}^{\beta^*} = \Lambda^{\beta^*} H_{\phi}^{\beta^*} + V^{\beta^*} T_{z\tilde{\phi}}^{\beta^*}$, where Λ^{β^*} and V^{β^*} on $H^2(\beta)$ are defined as $\Lambda^{\beta^*}(e_n) = e_{2n}$ and $V^{\beta^*}(e_n) = e_{2n+1}$ for $n \ge 0$. The operators Λ^{β} and V^{β} also satisfies $\Lambda^{\beta} \Lambda^{\beta^*} = I$, $V^{\beta} V^{\beta^*} = I$, $V^{\beta} \Lambda^{\beta^*} = 0$ and $\Lambda^{\beta} V^{\beta^*} = 0$.

In [5], it is shown that if the sequence $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ is such that $\{\frac{\beta_{2n}}{\beta_n}\}_{n \in \mathbb{Z}}$ is bounded then $\phi(z^2) \in L^{\infty}(\beta)$ for each $\phi \in L^{\infty}(\beta)$. We now proceed ahead to discuss the product of weighted Toep-Hank operators with the weighted Toeplitz operators on the space $H^2(\beta)$ for some specific symbols. We begin with the following result.

Proposition 2.8. Let $\beta = {\{\beta_n\}_{n \in \mathbb{Z}}}$ be a sequence such that ${\{\frac{\beta_{2n}}{\beta_n}\}_{n \in \mathbb{Z}}}$ is bounded. Then for each $\phi \in L^{\infty}(\beta)$ of the form $\phi(z) = \sum_{n \in \mathbb{Z}} a_n z^n$ with $a_p \neq 0$ for at least one positive integer p, we have the following:

1. $\Lambda^{\beta}T^{\beta}_{\phi(z^2)} = T^{\beta}_{\phi}\Lambda^{\beta}$ if and only if there exists a positive real number $a \ge 1$ such that $\{\beta_n\}_{n \in \mathbb{Z}}$ is given by

$$\beta_n = \begin{cases} 1 & if \ n = 0\\ a & otherwise \end{cases}$$

- 2. A necessary condition for the operator equation $V^{\beta}T^{\beta}_{\phi(z^2)} = T^{\beta}_{\phi}V^{\beta}$ to hold is that the sequence $\{\frac{\beta_{2np+1}}{\beta_{np}}\}_{n\geq 1}$ is constant with each term equal to β_1 .
- 3. For $0 \neq \psi \in L^{\infty}(\beta)$ and $\phi \in H^{\infty}(\beta)$, $G^{\beta}_{\psi}\Lambda^{\beta^*}\Lambda^{\beta}T^{\beta}_{\phi(z^2)} = H^{\beta}_{\phi\psi}\Lambda^{\beta}$ if $\beta_n = a$ for each $n \neq 0$ and for some positive real number $a \geq 1$.

Proof. Let $\Lambda^{\beta}T^{\beta}_{\phi(z^2)} = T^{\beta}_{\phi}\Lambda^{\beta}$ for the above ϕ . Hence, for $k \ge 0$,

$$\Lambda^{\beta}T^{\beta}_{\phi(z^2)}e_{2k}(z) = T^{\beta}_{\phi}\Lambda^{\beta}e_{2k}(z),$$

which yields that

(2.2)
$$\frac{1}{\beta_{2k}} \left(\sum_{n=0}^{\infty} a_n \beta_{2k+2n} e_{k+n}\right) = \frac{1}{\beta_k} \left(\sum_{n=0}^{\infty} a_n \beta_{k+n} e_{k+n}\right)$$

for each $k \ge 0$. On comparing the coefficients of e_{n+k} both sides of equation (2.2) for n = p and k = mp for $m \ge 0$, we get that $\beta_{(m+1)p} = \beta_{2(m+1)p}$ for $m \ge 0$. As a consequence, we have $\beta_n = \beta_p$ for each $n \ge p$. Similarly, on comparing the coefficients by setting n = p and taking the values $k = 1, 2, 3, \dots, p-1$ successively, we obtain that

$$\beta_1 = \beta_2 = \beta_4 = \dots = \beta_{p-1} = \beta_{2p-2}.$$

Therefore, $\beta_n = \beta_1$ for $n \ge 1$ and $\beta_1 \ge 1$.

Converse follows immediately as for each $n \ge 0$,

$$\begin{split} \Lambda^{\beta} T^{\beta}_{\phi(z^{2})} e_{n} &= \begin{cases} \frac{1}{\beta_{2k}} \Big(\sum_{m=0}^{\infty} a_{m} \beta_{2k+2m} e_{k+m} \Big) & \text{if } n = 2k, k \ge 0\\ 0 & \text{if } n = 2k+1, k \ge 0 \end{cases} \\ &= \begin{cases} \frac{1}{\beta_{k}} \Big(\sum_{m=0}^{\infty} a_{m} \beta_{k+m} e_{k+m} \Big) & \text{if } n = 2k, k \ge 0\\ 0 & \text{if } n = 2k+1, k \ge 0 \end{cases} \\ &= T^{\beta}_{\phi} \Lambda^{\beta} e_{n}. \end{split}$$

This completes the proof of (1).

For (2), suppose $V^{\beta}T^{\beta}_{\phi(z^2)} = T^{\beta}_{\phi}V^{\beta}$. This provides that for each $k \geq 0$, $V^{\beta}T^{\beta}_{\phi(z^2)}e_{2k+1}(z) = T^{\beta}_{\phi}V^{\beta}e_{2k+1}(z)$. As a consequence, for each $k \geq 0$

(2.3)
$$\frac{1}{\beta_{2k+1}} \Big(\sum_{n=0}^{\infty} a_n \beta_{2k+2n+1} e_{k+n} \Big) = \frac{1}{\beta_k} \Big(\sum_{n=0}^{\infty} a_n \beta_{k+n} e_{k+n} \Big)$$

On setting n = p and applying equation (2.3) successively for k = mp for $m \ge 0$, we get the result.

Proof of (3) follows using (1) and the facts that $\Lambda^{\beta}\Lambda^{\beta^*} = I$ and $V^{\beta}\Lambda^{\beta^*} = 0$. This completes the proof.

However, we find that the condition $\frac{\beta_{2np+1}}{\beta_{np}} = \beta_1$ for each $n \ge 1$, in the Proposition 2.8 is only necessary but not sufficient. For, $\phi(z) = z^2$ and the semi-dual sequence $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ defined as

$$\beta_n = \begin{cases} 1 & if \ n = 0, 1, -1 \\ 2 & otherwise \end{cases},$$

we have $\frac{\beta_{4n+1}}{\beta_{2n}} = 1 = \beta_1$ for each $n \ge 1$. Although, $V^{\beta}T^{\beta}_{\phi(z^2)}e_3 = e_3 \neq 2e_3 = T^{\beta}_{\phi}V^{\beta}e_3$.

It is known [3, Theorem 4.2] that for the symbols $\phi, \psi \in L^{\infty}(\beta)$, $T^{\beta}_{\widetilde{\psi}}H^{\beta}_{\phi} = H^{\beta}_{\phi}T^{\beta}_{\psi}$ if and only if $\psi \in H^{\infty}(\beta)$. Further it is proved [1] that $T^{\beta}_{\phi}T^{\beta}_{\psi} = T^{\beta}_{\phi\psi}$ if ψ is analytic. In accordance with these observations, our next result calculates the product of a weighted Toep-Hank operator G^{β}_{ϕ} with $T^{\beta}_{\widetilde{\psi}}$ on $H^{2}(\beta)$, which we state without proof.

Proposition 2.9. Let $\phi(z) = \sum_{n=-\infty}^{1} a_n z^n \in L^{\infty}(\beta)$. Then $T^{\beta}_{\widetilde{\psi}} G^{\beta}_{\phi} = G^{\beta}_{\phi\psi}$ for each $\psi \in H^{\infty}(\beta)$. In particular, $T^{\beta}_{z^{-n}} G^{\beta}_{\phi} = G^{\beta}_{z^n\phi}$ for each $n \ge 0$.

Recall that for a semi-dual sequence $\{\beta_n\}_{n\in\mathbb{Z}}$, all the functions ϕ , $\phi + \phi$ and $\phi\phi$ belong to $L^{\infty}(\beta)$ provided $\phi \in L^{\infty}(\beta)$. In [3], commutativity of the weighted Hankel operator $H_{z\phi}^{\beta}$ with the weighted Toeplitz operator T_{ϕ}^{β} has been established for those symbols $\phi \in L^{\infty}(\beta)$ such that $\phi + \phi$ and $\phi\phi$ are constants. Using this fact, the following can be easily attained.

Proposition 2.10. Let $\phi \in L^{\infty}(\beta)$ be such that $\phi + \tilde{\phi}$ and $\phi \tilde{\phi}$ are constants. Then

$$\begin{split} &1. \ T^{\beta}_{\phi}G^{\beta}_{z\phi} = H^{\beta}_{z\phi^{2}}\Lambda^{\beta} + T^{\beta}_{\phi}T^{\beta}_{\widetilde{\phi}}V^{\beta} \ if \ \phi \in H^{\infty}(\beta). \\ &2. \ T^{\beta}_{\phi}G^{\beta}_{z\phi} = H^{\beta}_{z\phi}T^{\beta}_{\phi}\Lambda^{\beta} + T^{\beta}_{\phi\widetilde{\phi}}V^{\beta} \ if \ \widetilde{\phi} \in H^{\infty}(\beta). \end{split}$$

It is known from [3] that there does not exist any $\phi \in L^{\infty}(\beta)$ inducing isometric weighted Hankel operators H^{β}_{ϕ} . In the next result, we see that the weighted Toep-Hank operator G^{β}_{ϕ} , $\phi \in L^{\infty}(\beta)$, fails to become an isometry. **Theorem 2.11.** A weighted Toep-Hank operator on $H^2(\beta)$ cannot be an isometry.

Proof. Suppose that a weighted Toep-Hank operator G_{ϕ}^{β} on $H^{2}(\beta)$, where $\phi(z) = \sum_{n=-\infty}^{\infty} a_{n} z^{n} \in L^{\infty}(\beta)$, is an isometry. Then for each $j \geq 0$, $\|G_{\phi}^{\beta}e_{2j}\|^{2} = \|H_{\phi}^{\beta}e_{j}\|^{2} = \frac{1}{\beta_{j}^{2}}\sum_{n=0}^{\infty} |a_{-n-j}|^{2}\beta_{n}^{2} = 1$, which implies that

(2.4)
$$\sum_{n=0}^{\infty} |a_{-n-j}|^2 \beta_n^2 = \beta_j^2.$$

For j = 0, equation (2.4) means that $\sum_{n=0}^{\infty} |a_{-n}|^2 \beta_n^2 = 1$ and hence we have

$$1 \le {\beta_j}^2 = \sum_{n=0}^\infty |a_{-n-j}|^2 {\beta_n}^2 \le \sum_{n=0}^\infty |a_{-n}|^2 {\beta_n}^2 = 1$$

for each $j \ge 1$. This yields that $\beta_n = 1$ for all n.

Now on replacing j by j + 1 in equation (2.4) and then on subtracting it from equation (2.4), we obtain that $a_{-n-j} = 0$ for each $n, j \ge 0$. This implies that $\|G_{\phi}^{\beta}e_{2j}\|^2 = 0$. This contradicts our assumption. Hence, G_{ϕ}^{β} can not be an isometry.

Now, we discuss the isometric behavior of the adjoint of weighted Toep-Hank operators and obtain a necessary condition for such operators when induced by a specific symbol. Almost along the same arguments as in the above theorem, we can prove the following.

Theorem 2.12. A necessary condition for the adjoint of a weighted Toep-Hank operator, induced by the symbol $\phi(z) = \sum_{i=-\infty}^{-1} a_i z^i \in L^{\infty}(\beta)$, to be an isometry

is that $\beta_n = 1$ for each $n \in \mathbb{Z}$ and $\sum_{i=-\infty}^{-1} |a_i|^2 = 1$.

Proof. Proof can be obtained using the inequalities $\frac{1}{\beta_j^2} \leq 1$ and $\frac{1}{\beta_{j+1}^2} \leq \frac{1}{\beta_j^2}$ for each $j \geq 1$.

The conditions obtained in above theorem are not sufficient for the adjoint of the given weighted Toep-Hank operator to be an isometry and this can be justified through the following example.

Example 2.13. Consider the sequence $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ such that $\beta_n = 1$ for each n. Let $\phi(z) = \frac{1}{\sqrt{2}}z^{-1} + \frac{1}{\sqrt{2}}z^{-2}$, where $(\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 = 1$. Then $\phi \in L^{\infty}(\beta)$ as $\|\phi f\|_{\beta} \leq \sqrt{2} \|f\|_{\beta}$. But for $f(z) = 2e_0 + 3e_1 \in H^2(\beta)$, we have $\|G_{\phi}^{\beta^*}f\|^2 = 19 \neq 13 = \|f\|^2$.

In [2, Theorem 2.5], it is proved that G_{ϕ}^* is an isometry on $H^2(\mathbb{T})$ if and only if $\tilde{\phi}\phi^* = 1$. If we take the case of $\beta_n = 1$ for each $n \in \mathbb{Z}$, then the weighted Toep-Hank operator G_{ϕ}^{β} on $H^2(\beta)$ becomes the Toep-Hank operator G_{ϕ} on $H^2(\mathbb{T})$. The above mentioned ϕ satisfies $\tilde{\phi}\phi^* = 1 + \frac{1}{2}z + \frac{1}{2}z^{-1} \neq 1$. As a consequence, $G_{\phi}^{\beta^*}$ can't be an isometry.

3. Compact, Hyponormal and Hilbert-Schmidt Operators

This section is devoted to study some basic structural properties of the weighted Toep-Hank operators on $H^2(\beta)$. It is also proved that for $G_{\phi}^{\beta^*}$, $\phi(z) = \sum_{n=-p}^{-1} a_n z^n \in L^{\infty}(\beta)$ with $a_{-p} \neq 0$ for $p \geq 1$, to be hyponormal, we have $\beta_n = 1$ for $0 \leq n \leq 2p$. We, however, see in the next result that the only Hilbert-Schmidt weighted Toep-Hank operator is the zero operator.

Theorem 3.1. G^{β}_{ϕ} is a Hilbert-Schmidt operator if and only if $\phi = 0$.

Proof. Let G_{ϕ}^{β} be a Hilbert-Schmidt operator, where $\phi = \sum_{i=-\infty}^{\infty} a_i z^i \in L^{\infty}(\beta)$. Then

$$\begin{split} \sum_{n=0}^{\infty} \|G_{\phi}^{\beta}e_{n}\|^{2} &= \sum_{n=0}^{\infty} \left\langle G_{\phi}^{\beta}e_{n}, G_{\phi}^{\beta}e_{n} \right\rangle \\ &= \sum_{n=0}^{\infty} \left\langle G_{\phi}^{\beta}e_{2n}, G_{\phi}^{\beta}e_{2n} \right\rangle + \sum_{n=0}^{\infty} \left\langle G_{\phi}^{\beta}e_{2n+1}, G_{\phi}^{\beta}e_{2n+1} \right\rangle \\ &= \sum_{n=0}^{\infty} \left\langle H_{\phi}^{\beta}e_{n}, H_{\phi}^{\beta}e_{n} \right\rangle + \sum_{n=0}^{\infty} \left\langle T_{z\phi}^{\beta}e_{n}, T_{z\phi}^{\beta}e_{n} \right\rangle \\ &= \sum_{n=0}^{\infty} \frac{1}{\beta_{n}^{2}} \Big(\sum_{i=0}^{\infty} |a_{-i-n}|^{2}\beta_{i}^{2} \Big) + \sum_{n=0}^{\infty} \frac{1}{\beta_{n}^{2}} \Big(\sum_{i=0}^{\infty} |a_{-i+n+1}|^{2}\beta_{i}^{2} \Big) \\ &= \sum_{n=0}^{\infty} \frac{1}{\beta_{n}^{2}} \Big(\sum_{i=0}^{\infty} |a_{-i-n}|^{2}\beta_{i}^{2} \Big) + \left(\sum_{i=1}^{\infty} |a_{i}|^{2} \Big(\sum_{n=0}^{\infty} \frac{\beta_{n}^{2}}{\beta_{n+i-1}^{2}} \Big) + \right) \\ &\sum_{i=-\infty}^{0} |a_{i}|^{2} \Big(\sum_{n=0}^{\infty} \frac{\beta_{n-i+1}^{2}}{\beta_{n}^{2}} \Big) \Big). \end{split}$$

As $\sum_{n=0}^{\infty} \|G_{\phi}^{\beta}e_n\|^2$ is finite, we have $|a_i|^2 \left(\sum_{n=0}^{\infty} \frac{\beta_n^2}{\beta_{n+i-1}^2}\right)$ is finite for each $i \ge 1$ and $|a_i|^2 \left(\sum_{n=0}^{\infty} \frac{\beta_{n-i+1}^2}{\beta_n^2}\right)$ is finite for each $i \le 0$. Now the former implies $a_i = 0$ for $n \ge 1$ because the series $\sum_{n=0}^{\infty} \frac{\beta_n^2}{\beta_{n+i-1}^2}$ is divergent for each $i \ge 1$. The latter holds only if $a_i = 0$ for each $i \le 0$ as each term of the series $\sum_{n=0}^{\infty} \frac{\beta_{n-i+1}^2}{\beta_n^2}$ satisfies

 $\frac{\beta_{n-i+1}^2}{\beta_n^2} \ge 1. \text{ Hence } \phi = 0.$

Converse follows evidently.

In [2], it has been proved that a Toep-Hank operator on the space $H^2(\mathbb{T})$ is compact if and only if $\phi = 0$. Along similar lines, we show that for the bounded sequences $\beta = \{\beta_n\}_{n\geq 0}$, there is a dearth of compact weighted Toep-Hank operators on $H^2(\beta)$. In fact, the only compact weighted Toep-Hank operator is the zero operator.

Theorem 3.2. For bounded sequences $\{\beta_n\}_{n\geq 0}$, the operator G_{ϕ}^{β} on $H^2(\beta)$ is compact if and only if $\phi = 0$.

Proof. Let G_{ϕ}^{β} be compact, where $\phi = \sum_{i=-\infty}^{\infty} a_i z^i \in L^{\infty}(\beta)$. Since $e_n \to 0$ weakly, we have $\|G_{\phi}^{\beta}e_{2n+1}\|^2 = \sum_{i=0}^{\infty} |a_{-i+n+1}|^2 \beta_i^2 \to 0$ as $n \to \infty$. It is easy to conclude from here that $|a_i| = 0$ for each $i \in \mathbb{Z}$. Hence, $\phi = 0$.

Nothing needs to be proved for the converse.

In the next result, we investigate the self-adjoint nature of weighted Toep-Hank operators induced by the symbols of the form $\phi(z) = \sum_{n=-m}^{\infty} a_n z^n$ or $\phi(z) = \sum_{n=-m}^{\infty} a_n z^n$

 $\sum_{n=-\infty}^{-m} a_n z^n, \text{ where } a_n \in \mathbb{C} \text{ and } a_{-m} \neq 0 \text{ for } m > 0. \text{ For } \phi(z) = \sum_{n=-m}^{\infty} a_n z^n \in L^{\infty}(\beta), \text{ we have}$

$$T_{z\widetilde{\phi}}^{\beta}e_{j} = \frac{1}{\beta_{j}}\sum_{n=0}^{\infty}a_{-n+j+1}\beta_{n}e_{n} \text{ and } T_{z\widetilde{\phi}}^{\beta}{}^{*}e_{j} = \beta_{j}\sum_{n=0}^{\infty}\frac{\overline{a}_{n-j+1}}{\beta_{n}}e_{n}.$$

Theorem 3.3. The weighted Toep-Hank operator G_{ϕ}^{β} on $H^{2}(\beta)$, induced by $\phi(z) = \sum_{n=-m}^{\infty} a_{n}z^{n}$ or $\phi(z) = \sum_{n=-\infty}^{-m} a_{n}z^{n}$, where $a_{n} \in \mathbb{C}$ and $a_{-m} \neq 0$ for m > 0, can not be self-adjoint.

Proof. For $\phi(z) = \sum_{n=-m}^{\infty} a_n z^n$, if we assume that G_{ϕ}^{β} is self-adjoint then we must have $G_{\phi}^{\beta} e_{2j} = G_{\phi}^{\beta^*} e_{2j}$ for each $j \ge 0$. This provides that

$$\frac{1}{\beta_j} \Big(\sum_{n=0}^{-j+m} a_{-n-j} \beta_n e_n \Big) = \beta_{2j} \Big(\sum_{n=0}^{-2j+m} \overline{a}_{-n-2j} \frac{e_{2n}}{\beta_n} + \sum_{n=2j-m-1}^{\infty} \overline{a}_{n-2j+1} \frac{e_{2n+1}}{\beta_n} \Big)$$

for $j \ge 0$. If j = m it implies that $\frac{a_{-m}}{\beta_m}e_0 = \beta_{2m} (\sum_{n=m-1}^{\infty} \overline{a}_{n-2m+1} \frac{e_{2n+1}}{\beta_n})$, where the series on right side does not include an appearance of e_0 . Hence $a_{-m} = 0$, which is absurd. Hence G_{ϕ}^{β} can not be self-adjoint.

 \square

Similarly, for $\phi(z) = \sum_{n=-\infty}^{-m} a_n z^n$, we can check that $G_{\phi}^{\beta} e_0 \neq G_{\phi}^{\beta^*} e_0$. Hence the result.

Towards the end, we discuss the hyponormality and normality of weighted Toep-Hank operators for the symbol $\phi \in L^{\infty}(\beta)$ of the form $\phi(z) = \sum_{n=-m}^{\infty} a_n z^n$, $a_{-m} \neq 0$ for m > 0. It is known that an operator T on $H^2(\beta)$ is hyponormal if $||Tf||^2 \ge ||T^*f||^2$ for each $f \in H^2(\beta)$. The following can be obtained without any extra efforts.

Theorem 3.4. The weighted Toep-Hank operator G_{ϕ}^{β} on $H^{2}(\beta)$, induced by $\phi(z) = \sum_{n=-m}^{\infty} a_{n} z^{n} \in L^{\infty}(\beta), a_{-m} \neq 0$ for m > 0, can not be hyponormal.

Proof. If we assume that the symbol $\phi(z) = \sum_{n=-m}^{\infty} a_n z^n$, m > 0, is such that G_{ϕ}^{β} is hyponormal, then $\|G_{\phi}^{\beta}e_{2m+2}\|^2 \ge \|G_{\phi}^{\beta^*}e_{2m+2}\|^2$. This yields that

$$0 \ge |a_{-m}|^2 \frac{\beta_{2m+2}^2}{\beta_{m+1}^2} + |a_{-m+1}|^2 \frac{\beta_{2m+2}^2}{\beta_{m+2}^2} + |a_{-m+2}|^2 \frac{\beta_{2m+2}^2}{\beta_{m+3}^2} + \cdots$$

which is possible only if $a_i = 0$ for each $i \ge -m$. This implies $a_{-m} = 0$ which is absurd. This completes the proof.

Every normal operator is hyponormal so the above theorem leads to the following.

Corollary 3.5. No weighted Toep-Hank operator G_{ϕ}^{β} on the weighted Hardy space $H^{2}(\beta)$, for $\phi(z) = \sum_{n=-m}^{\infty} a_{n} z^{n} \in L^{\infty}(\beta)$, $a_{-m} \neq 0$ for m > 0, is normal.

From Corollary 3.5, we can also conclude that the trigonometric polynomials of the form $\phi(z) = \sum_{n=-m}^{l} a_n z^n$ with $a_{-m}, a_l \neq 0$, can never induce a normal weighted Toep-Hank operator on $H^2(\beta)$.

Through our next result, we discuss the hyponormality of the adjoint of a weighted Toep-Hank operator on $H^2(\beta)$, induced by the symbol

$$\phi(z) = \sum_{n=-p}^{-1} a_n z^n \in L^{\infty}(\beta)$$

and obtain the following.

Theorem 3.6. A necessary condition for the adjoint of a weighted Toep-Hank operator, induced by the symbol $\phi(z) = \sum_{n=-p}^{-1} a_n z^n \in L^{\infty}(\beta), a_{-p} \neq 0$ for $p \ge 1$, to be hyponormal is that $\beta_n = 1$ for $0 \le n \le 2p$.

Proof. Let $G_{\phi}^{\beta^*}$ be hyponormal. Then for all $j \ge 0$, $\|G_{\phi}^{\beta^*}e_{2j}\|^2 \ge \|G_{\phi}^{\beta}e_{2j}\|^2$. For j = 0, this gives that

$$|a_{-1}|^2 \left(\frac{1}{\beta_1^2} - \beta_1^2\right) + |a_{-2}|^2 \left(\frac{1}{\beta_2^2} - \beta_2^2\right) + \dots + |a_{-p}|^2 \left(\frac{1}{\beta_p^2} - \beta_p^2\right) \ge 0.$$

Since $\frac{1}{\beta_i^2} - \beta_i^2 \leq 0$ for $1 \leq i \leq p$, hence above inequality implies $\beta_n = 1$ for each $0 \leq n \leq p$. Now on applying $\|G_{\phi}^{\beta^*}e_{2j+1}\|^2 \geq \|G_{\phi}^{\beta}e_{2j+1}\|^2$ for $j = 0, 1, 2, \cdots, p-1$ successively to conclude that $\beta_n = 1$ for each $p+1 \leq n \leq 2p$. This proves the result.

Along the lines of computations in Theorem 3.6, one can immediately conclude the following.

Corollary 3.7. If $\phi \in L^{\infty}(\beta)$ is such that $\phi(z) = \sum_{n=-\infty}^{-1} a_n z^n$, then a necessary condition for the operator $G_{\phi}^{\beta^*}$ to be hyponormal is that $\beta_n = 1$ for each $n \in \mathbb{Z}$.

The condition obtained in Theorem 3.6 is just necessary. It is not sufficient for the adjoint $G_{\phi}^{\beta^*}$ to be hyponormal. For, let $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ be a semi-dual sequence defined as

$$\beta_n = \begin{cases} 1 & if -2 \le n \le 2\\ 2^{|n|} & otherwise \end{cases}$$

and let $\phi(z) = a_{-1}z^{-1} \in L^{\infty}(\beta)$. Here, p = 1. Then $\|G_{\phi}^{\beta^*}e_5\|^2 = |a_{-1}|^2 2^4 < |a_{-1}|^2 2^8 = \|G_{\phi}^{\beta}e_5\|^2$.

Example 3.8. Consider the space $L^{\infty}(\beta)$, where the sequence $\beta = \{\beta_n\}$ is given by

$$\beta_n = \begin{cases} 1 & if \ n = 0, 1, -1 \\ 2 & otherwise \end{cases}$$

Let $\phi(z) = 2z^{-2} + z^{-1}$. Then, $\phi \in L^{\infty}(\beta)$. Consider $G_{\phi}^{\beta^*}$, the adjoint of a weighted Toep-Hank operator induced by the above defined ϕ . Then, it is clearly evident from Theorems 2.12 and 3.6 that the operator $G_{\phi}^{\beta^*}$ is neither an isometry (as $\beta_n \neq 1$ for each $n \geq 2$) nor a hyponormal operator (as $\beta_n \neq 1$ for $2 \leq n \leq 4$).

References

- [1] ARORA, S. C., AND KATHURIA, R. Properties of the slant weighted Toeplitz operator. Ann. Funct. Anal. 2, 1 (2011), 19–30.
- [2] DATT, G., AND MITTAL, A. Operators induced by toeplitz and hankel operators. (Communicated).
- [3] DATT, G., AND PORWAL, D. K. Product of weighted Hankel and weighted Toeplitz operators. Demonstratio Math. 46, 3 (2013), 571–583.

- [4] DATT, G., AND PORWAL, D. K. On commutativity of weighted Hankel operators and their spectra. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18, 3 (2015), 1550017, 14.
- [5] DATT, G., AND PORWAL, D. K. On a generalization of weighted slant Hankel operators. Math. Slovaca 66, 5 (2016), 1193–1206.
- [6] HALMOS, P. R. A Hilbert space problem book, second ed., vol. 19 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982. Encyclopedia of Mathematics and its Applications, 17.
- [7] LAURIC, V. On a weighted Toeplitz operator and its commutant. Int. J. Math. Math. Sci., 6 (2005), 823–835.
- [8] MARTÍ NEZ AVENDAÑO, R. A., AND ROSENTHAL, P. An introduction to operators on the Hardy-Hilbert space, vol. 237 of Graduate Texts in Mathematics. Springer, New York, 2007.
- [9] SHIELDS, A. L. Weighted shift operators and analytic function theory. 49–128. Math. Surveys, No. 13.
- [10] ZORBOSKA, N. Compact composition operators on some weighted Hardy spaces.
 J. Operator Theory 22, 2 (1989), 233-241.

Received by the editors November 11, 2017 First published online May 11, 2018