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APPLICATIONS OF JACK’S LEMMA FOR THE
HOLOMORPHIC FUNCTIONS

Selin Aydınoğlu1 and Bülent Nafi Örnek23

Abstract. In this paper, we give some results on zf ′(z)
f(z)

for certain

classes of holomorphic functions on the unit disc U = {z : |z| < 1} and
on ∂U = {z : |z| = 1}. For the function f(z) = z+c2z

2+c3z
3+... defined

on the unit disc U such that f ∈ M, we estimate a modulus of the an-

gular derivative zf ′(z)
f(z)

function at the boundary point b with f ′(b) = 0.
Moreover, Schwarz lemma for the class M is given. The sharpness of
these inequalities is also proved.
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1. Introduction

Let A denote the class of functions f(z) = z + c2z
2 + c3z

2 + ... which are
holomorphic on U = {z : |z| < 1}. Also, let M be the subclass of A consisting
of all functions f(z) which satisfy

(1.1) <

1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

 <
3

2
, z ∈ U.

Under condition (1.1), in other words when the defining property of the class
M is satisfied, the functions f(z) in the classM are starlike functions. Two of
the simplest results of the complex function theory for holomorphic functions
are both the classical Schwarz lemma and Jack’s lemma. The Schwarz lemma
and Jack’s lemma have a very important role in the geometric function theory.
A general form for these two lemmas, which is very simple and commonly used,
is given as follows:

Lemma 1 (Schwarz lemma). Let U be the unit disc in the complex plane
C. Let f : U → U be a holomorphic function with f(0) = 0. Under these
circumstances |f(z)| ≤ |z| for all z ∈ U , and |f ′(0)| ≤ 1. In addition, if the
equality |f(z)| = |z| holds for any z 6= 0, or |f ′(0)| = 1 then f is a rotation,
that is, f(z) = zeiγ , γ real ([7], p329, [16]).
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Lemma 2 (Jack’s Lemma). Let f(z) be a non-constant and holomorphic func-
tion on the unit disc U with f(0) = 0. If |f(z)| attains its maximum value on
the circle |z| = r at the point z0, then

z0f
′(z0)

f(z0)
= k,

where k ≥ 1 is a real number ([9]).

For historical background about the Schwarz lemma and its applications on
the boundary of the unit disc, we refer to [1, 6, 15, 17]. Moreover, in [8] the
authors proved an analogue of the generalized Schwarz lemma for meromorphic
functions. Their results improved the classical generalized Schwarz lemma.

In this work, we show an application of Jack’s lemma for holomorphic func-
tions that provide inequality (1.1). Also, we will give the Schwarz lemma for
this class. Moreover, we will give the Schwarz lemma at the boundary for this
class. Let f(z) = z + c2z

2 + c3z
2 + .. be a holomorphic function on the unit

disc U . Consider the function

(1.2) ϕ(z) =
p(z)− 1

p(z) + 1
,

where p(z) = zf ′(z)
f(z) . ϕ(z) is holomorphic on the unit disc and ϕ(0) = 0. We

show that |ϕ(z)| < 1 for |z| < 1. We suppose that there exists a point z0 ∈ U
such that

max
|z|≤|z0|

|ϕ(z)| = |ϕ(z0)| = 1.

From Jack’s lemma, we have

ϕ(z0) = eiθ,
z0ϕ
′(z0)

ϕ(z0)
= k.

Therefore, from (1.2) we obtain

<

1 + z0f
′′(z0)

f ′(z0)

z0f ′(z0)
f(z0)

 = <
(

1 +
2z0ϕ

′(z0)

(1 + ϕ(z0))2

)

= <
(

1 +
2kϕ(z0)

(1 + ϕ(z0))2

)
= <

(
1 +

2keiθ

(1 + eiθ)2

)
.

Since

eiθ

(1 + eiθ)2
=

eiθ

1 + 2eiθ + e2iθ
=

1

e−iθ + 2 + eiθ
=

1

2 + 2 cos θ
,

we take

<

1 + z0f
′′(z0)

f ′(z0)

z0f ′(z0)
f(z0)

 = 1 +
2k

2 (1 + cos θ)
≥ 3

2
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which is a contradiction to (1.1). This means that there is no point z0 ∈ U
such that |ϕ(z0)| = 1 for all z ∈ U . Thus, we obtain |ϕ(z)| < 1 for z ∈ U . By
the Schwarz lemma, we obtain

|c2| ≤ 2.

The result is sharp and the extremal function is

f(z) =
z

(1− z)2 .

That proves

Lemma 3. If f(z) ∈ M, then we have

(1.3) |c2| ≤ 2.

The result is sharp and the extremal function is

f(z) =
z

(1− z)2 .

This lemma yields a ”M version” of the classical Schwarz lemma for hololo-
morphic function of one complex variable.

It is an elementary consequence of Schwarz lemma that if f extends contin-
uously to some boundary point b with |b| = 1, and if |f(b)| = 1 and f ′(b) exists,
then |f ′(b)| ≥ 1, which is known as the Schwarz lemma on the boundary. In
[20], R. Osserman proposed the boundary refinement of the classical Schwarz
lemma as follows:

Let f : U → U be holomorphic function with f(0) = 0. Assume that there
is a b ∈ ∂U so that f extends continuously to b, |f(b)| = 1 and f ′(b) exists.
Then

(1.4) |f ′(b)| ≥ 2

1 + |f ′(0)|
.

Thus, by the classical Schwarz lemma, it follows that

(1.5) |f ′(b)| ≥ 1.

Inequality (1.4) is sharp, with equality possible for each value of |f ′(0)|. In
addition, for b = 1 in the inequality (1.4), equality occurs for the function
f (z) = z z+γ

1+γz , γ ∈ [0, 1]. Also, |f ′(b)| > 1 unless f(z) = zeiθ, θ real. Inequality

(1.5) and its generalizations have important applications in geometric theory
of functions and they are still hot topics in the mathematics literature [1, 4, 5,
6, 18, 19].

Let us give the definitions needed for our results. A Stolz angle ∆ at b ∈ ∂U
is the interior of any triangle in U symmetric to [0, b] whose closure lies in U
except for the vertex b. Basic for this paper are the notions of the angular limit
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and the angular derivative. Let b ∈ ∂U . We say that the angular limit f(b)
exists if

f(b) = lim
z→b, z∈∆

f(z)

for every Stolz angle ∆ at b and we say that the angular derivative f ′(b) exists
if the angular limit f(b) exists and

f ′(b) = lim
z→b, z∈∆

f(z)− f(b)

z − b

for every Stolz angle ∆ at b.

The following lemma, known as the Julia-Wolff lemma, is needed in the
sequel (see [21]).

Lemma 4 (Julia-Wolff lemma). Let f be a holomorphic function on U , f(0) =
0 and f(U) ⊂ U . If, in addition, the function f has an angular limit f(b) at
b ∈ ∂U , |f(b)| = 1, then the angular derivative f ′(b) exists and 1 ≤ |f ′(b)| ≤ ∞.

Corollary 1. The holomorphic function f has a finite angular derivative f ′(b)
if and only if f ′ has the finite angular limit f ′(b) at b ∈ ∂U .

D. M. Burns and S. G. Krantz [2] and D. Chelst [3] studied the uniqueness
part of the Schwarz lemma. According to M. Mateljevic’s studies, some other
types of results which are related to the subject can be found in ([14] and [13]).
In addition, [12] was posted on ResearchGate where more general aspects of
these results are discussed.

The inequality (1.5) is a particular case of a result due to Vladimir N.
Dubinin in [4], who strengthened the inequality |f ′(b)| ≥ 1 by involving zeros
of the function f .

X. Tang, T. Liu and J. Lu [22] established a new type of the classical
boundary Schwarz lemma for holomorphic self-mappings of the unit polydisk
En in Cn. They extended the classical Schwarz lemma at the boundary to high
dimensions.

Also, M. Jeong [10] showed some inequalities at a boundary point for a
different form of holomorphic functions and found the condition for equality
and in [11] a holomorphic self map defined on the closed unit disc with fixed
points only on the boundary of the unit disc.

2. Main Results

In this section, we give some results on zf ′(z)
f(z) for certain classes of holo-

morphic functions on the unit disc on ∂U = {z : |z| = 1}. For the function
f(z) = z+ c2z

2 + c3z
3 + ... defined on the unit disc U such that f(z) ∈M, we

estimate a modulus of the angular derivative function zf ′(z)
f(z) at the boundary

point b with f ′(b) = 0. The sharpness of these inequalities is also proved.
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Theorem 2.1. Let f(z) ∈ M. Suppose that, for some b ∈ ∂U , f has an
angular limit f(b) at b, f ′(b) = 0. Then we have the inequality

(2.1)

∣∣∣∣∣
(
zf ′(z)

f(z)

)′
z=b

∣∣∣∣∣ ≥ 1

2
.

The inequality (2.1) is sharp with extremal function

f(z) =
z

(1− z)2 .

Proof. Let us consider the following function

ϕ(z) =
p(z)− 1

p(z) + 1
,

where p(z) = zf ′(z)
f(z) . Then ϕ(z) is holomorphic function on the unit disc U and

ϕ(0) = 0. By Jack’s lemma and since f(z) ∈M, we take |ϕ(z)| < 1 for |z| < 1.
Also, we have |ϕ(b)| = 1 for b ∈ ∂U . It is clear that

ϕ′(z) =
2p′(z)

(p(z) + 1)
2 .

Therefore, we take from (1.5), we obtain

1 ≤ |ϕ′(b)| = 2 |p′(b)|
|p(b) + 1|2

= 2 |p′(b)|

and

|p′(b)| ≥ 1

2
.

Now, we shall show that the inequality (2.1) is sharp. Equality holds true
for Koebe function f given by

(2.2) f(z) =
z

(1− z)2

which is the extremal function for the class of M on U .
Differentiating (2.2) logarithmically, we obtain

ln f(z) = ln
z

(1− z)2 = ln z − ln (1− z)2
= ln z − 2 ln(1− z),

f ′(z)

f(z)
=

1

z
+

2

1− z
and

p(z) =
zf ′(z)

f(z)
= 1 +

2z

1− z
.
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Therefore, we take

p′(z) =
2

(1− z)2

and

|p′(−1)| = 1

2
.

The inequality (2.1) can be strengthened as below by taking into account
c2 which is the second coefficient in the expansion of the function f(z).

Theorem 2.2. Let f(z) ∈ M. Suppose that, for some b ∈ ∂E, f has an
angular limit f(b) at b, f ′(b) = 0. Then we have the inequality

(2.3)

∣∣∣∣∣
(
zf ′(z)

f(z)

)′
z=b

∣∣∣∣∣ ≥ 2

2 + |c2|
.

The inequality (2.3) is sharp with extremal function

f(z) =
z

z2 + 2az + 1
,

where a = |c2|
2 is an arbitrary number from [0, 1] (see, (1.3)).

Proof. Let ϕ(z) be the same as in the proof of Theorem 2.1. From (1.4) we
obtain

2

1 + |ϕ′(0)|
≤ |ϕ′(b)| = 2 |p′(b)|

|p(b) + 1|2
= 2 |p′(b)| .

Since

ϕ(z) =
p(z)− 1

p(z) + 1
=

zf ′(z)
f(z) − 1

zf ′(z)
f(z) + 1

=
c2z +

(
2c3 − c22

)
z2 + ...

2 + c2z + (2c3 − c22) z2 + ...
,

and

|ϕ′(0)| = |c2|
2
,

we take
2

1 + |c2|
2

≤ 2 |p′(b)|

and ∣∣∣∣∣
(
zf ′(z)

f(z)

)′
z=b

∣∣∣∣∣ ≥ 2

2 + |c2|
.

Now, we shall show that the inequality (2.3) is sharp. Let

(2.4) f(z) =
z

z2 + 2az + 1
.
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Differentiating (2.4) logarithmically, we obtain

ln f(z) = ln z − ln
(
z2 + 2az + 1

)
,

f ′(z)

f(z)
=

1

z
− 2z + 2a

z2 + 2az + 1

and

p(z) =
zf ′(z)

f(z)
= 1− 2z2 + 2za

z2 + 2az + 1
=

1− z2

z2 + 2az + 1
.

Thus, since a = |c2|
2 we get

p′(z) =
−2z

(
z2 + 2az + 1

)
− (2z + 2a)

(
1− z2

)
(z2 + 2az + 1)

2

and

|p′(1)| = 2

2 + |c2|
.

The inequality (2.3) can be strengthened as below by taking into account
c3 which is the third coefficient in the expansion of the function f(z).

Theorem 2.3. Let f(z) ∈ M. Suppose that, for some b ∈ ∂E, f has an
angular limit f(b) at b, f ′(b) = 0. Then we have the inequality

(2.5)

∣∣∣∣∣
(
zf ′(z)

f(z)

)′
z=b

∣∣∣∣∣ ≥ 1

2

(
1 +

2 (2− |c2|)2

4− |c2|2 + |4c3 − 3c22|

)
.

The equality in (2.5) occurs for the function

f(z) =
z

1− z2
.

Proof. Let ϕ(z) be the same as in the proof of Theorem 2.1. Let us consider
the function

g(z) =
ϕ(z)

B(z)
,

where B(z) = z. The function g(z) is holomorphic on U . According to the
maximum princible, we have |g(z)| < 1 for each z ∈ U. In particular, we have

(2.6) |g(0)| = |c2|
2
≤ 1

and

|h′(0)| =
∣∣4c3 − 3c22

∣∣
4

.
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Furthermore, it can be seen that

bϕ′(b)

ϕ(b)
= |ϕ′(b)| ≥ |B′(b)| = bB′(b)

B(b)
.

Consider the function

t(z) =
g(z)− g(0)

1− g(0)g(z)
.

This function is holomorphic on U, |t(z)| ≤ 1 for |z| < 1, t(0) = 0, and |t(b)| = 1
for b ∈ ∂U. From (1.4), we obtain

2

1 + |t′(0)|
≤ |t′(b)| = 1− |g(0)|2∣∣∣1− g(0)g(b)

∣∣∣2 |g′(b)|
≤ 1 + |g(0)|

1− |g(0)|
{|ϕ′(b)| − |B′(b)|} .

Since

t′(z) =
1− |g(0)|2(

1− g(0)g(z)
)2 g

′(z)

and

|t′(0)| = |g′(0)|
1− |g(0)|2

=

|4c3−3c22|
4

1−
(
|c2|
2

)2 =

∣∣4c3 − 3c22
∣∣

4− |c2|2
,

we take

2

1 +
|4c3−3c22|
4−|c2|2

≤
1 + |c2|

2

1− |c2|2

{2 |p′(b)| − 1} ,

2
(

4− |c2|2
)

4− |c2|2 + |4c3 − 3c22|
≤ 2 + |c2|

2− |c2|
{2 |p′(b)| − 1}

2 (2− |c2|)2

4− |c2|2 + |4c3 − 3c22|
≤ 2 |p′(b)| − 1

1 +
2 (2− |c2|)2

4− |c2|2 + |4c3 − 3c22|
≤ 2 |p′(b)|

and

|p′(b)| ≥ 1

2

(
1 +

2 (2− |c2|)2

4− |c2|2 + |4c3 − 3c22|

)
.

Now, we shall show that the inequality (2.3) is sharp. Let

(2.7) f(z) =
z

1− z2
.
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Differentiating (2.7) logarithmically, we obtain

ln f(z) = ln z − ln
(
1− z2

)
,

f ′(z)

f(z)
=

1

z
+

2z

1− z2
=

1 + z2

z (1− z2)

and

p(z) =
zf ′(z)

f(z)
=

1 + z2

1− z2
.

Therefore, we take

p′(z) =
2z
(
1− z2

)
− 2z

(
1 + z2

)
(1− z2)

2 =
4z

(1− z2)
2 ,

p′(i) =
4i

(1− i2)
2 = i

and
|p′(i)| = 1.

Since c2 = 0 and c3 = 1, we take

1

2

(
1 +

2 (2− |c2|)2

4− |c2|2 + |4c3 − 3c22|

)
= 1.

If f(z)− z has no zeros different from z = 0 in Theorem 2.3, the inequality
(2.5) can be further strengthened. This is given by the following Theorem.

Theorem 2.4. Let f(z) ∈ M, f(z) − z has no zeros on U except z = 0 and
c2 > 0. Suppose that, for some b ∈ ∂U , f has an angular limit f(b) at b,
f ′(b) = 0. Then we have the inequality

(2.8)

∣∣∣∣∣
(
zf ′(z)

f(z)

)′
z=b

∣∣∣∣∣ ≥ 1

2

(
1−

4c2 ln2
(
c2
2

)
4c2 ln

(
c2
2

)
− |4c3 − 3c22|

)
.

Proof. Let c2 > 0 and let us consider the function g(z) as in Theorem 2.3.
Taking account of the equality (2.6), we denote by ln g(z) the holomorphic
branch of the logarithm normed by condition

ln g(0) = ln
(c2

2

)
= ln

∣∣∣c2
2

∣∣∣+ i arg
(c2

2

)
< 0, c2 > 0

and
ln
(c2

2

)
< 0.

Take the following auxiliary function

r(z) =
ln g(z)− ln g(0)

ln g(z) + ln g(0)
.
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It is obvious that r(z) is a holomorphic function on U, r(0) = 0, |r(z)| < 1 for
|z| < 1, and also |r(b)| = 1 for b ∈ ∂U. So, we can apply (1.4) to the function
r(z). Since

r′(z) = 2 ln g(0)
g′(z)

g(z) (ln g(z) + ln g(0))
2 ,

and

r′(b) = 2 ln g(0)
g′(b)

g(b) (ln g(b) + ln g(0))
2 ,

we obtain

2

1 + |r′(0)|
≤ |r′(b)| = 2 |ln g(0)|

|ln g(b) + ln g(0)|2

∣∣∣∣g′(b)g(b)

∣∣∣∣ ,
=

−2 ln g(0)

ln2 g(0) + arg2 g(b)

∣∣∣∣ϕ′(b)B(b)
− ϕ(b)B′(b)

B(b)2

∣∣∣∣
=

−2 ln g(0)

ln2 g(0) + arg2 g(b)

∣∣∣∣ϕ(b)

b2

∣∣∣∣ ∣∣∣∣bϕ′(b)ϕ(b)
− bB′(b)

B(b)

∣∣∣∣
=

−2 ln g(0)

ln2 g(0) + arg2 g(b)
{|ϕ′(b)| − |B′(b)|}

≤ −2 ln g(0)

ln2 g(0)
{2 |p′(b)| − 1}

=
−2

ln
(
c2
2

) {2 |p′(b)| − 1} .

Since

r′(0) =
g′(0)

2g(0) ln g(0)

and thus,

|r′(0)| =
|4c3−3c22|

4

−2 c22 ln
(
c2
2

) =

∣∣4c3 − 3c22
∣∣

−4c2 ln
(
c2
2

) ,
we have

2

1− |4c3−3c22|
4c2 ln( c2

2 )

≤ −2

ln
(
c2
2

) {2 |p′(b)| − 1} ,

1−
4c2 ln2

(
c2
2

)
4c2 ln

(
c2
2

)
− |4c3 − 3c22|

≤ 2 |p′(b)| ,

and

|p′(b)| ≥ 1

2

(
1−

4c2 ln2
(
c2
2

)
4c2 ln

(
c2
2

)
− |4c3 − 3c22|

)
.

If f(z)−z a have zeros different from z = 0, taking into account these zeros,
the inequality (2.5) can be strengthened in another way. This is given by the
following Theorem.
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Theorem 2.5. Let f(z) ∈ M. Suppose that, for some b ∈ ∂U , f has an
angular limit f(b) at b, f ′(b) = 0. Let z1, z2, ..., zn be zeros of the function
f(z)− z on U that are different from zero. Then we have the inequality∣∣∣∣∣

(
zf ′(z)

f(z)

)′
z=b

∣∣∣∣∣
≥ 1

2

(
1 +

n∑
k=1

1− |zk|2

|b− zk|

+

2

(
2

n∏
k=.

|zk| − |c2|
)2

4

(
n∏
k=1

|zk|
)2

− |c2|2 +
n∏
k=1

|zk|
∣∣∣∣4c3 − 3c22 + 2c2

n∑
k=1

1−|zk|2
zk

∣∣∣∣

 .(2.9)

The equality in (2.9) occurs for the function

f(z) = e

z∫
0

1−t2
n∏

k=1

t−zk
1−zkt(

1+t2
n∏

k=1

t−zk
1−zkt

)
t

dt

,

where z1, z2, ..., zn are positive real numbers.

Proof. Let ϕ(z) be as in the proof of Theorem 2.1 and z1, z2, ..., zn be zeros of
the function f(z)− z on U that are different from zero.

B1(z) = z

n∏
k=1

z − zk
1− zkz

is a holomorphic function on U and |B1(z)| < 1 for z ∈ U . By the maximum
principle for each z ∈ U , we have |ϕ(z)| ≤ |B1(z)|. Consider the function

m(z) =
ϕ(z)

B1(z)

is holomorphic on U and |m(z)| ≤ 1 for z ∈ U . In particular, we have

|m(0)| = |c2|

2
n∏
k=1

|zk|

and

|m′(0)| =

∣∣∣∣4c3 − 3c22 + 2c2
n∑
k=1

1−|zk|2
zk

∣∣∣∣
4

n∏
k=1

|zk|
.

Moreover, it can be seen that

bϕ′(b)

ϕ(b)
= |ϕ′(b)| ≥ |B′1(b)| = bB′1(b)

B1(b)
.
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In addition, with the simple calculations, we take

|B′1(b)| = 1 +

n∑
k=1

1− |zk|2

|b− zk|
.

The composite function

Θ(z) =
m(z)−m(0)

1−m(0)m(z)

is holomorphic on the unit disc U , |Θ(z)| < 1 for z ∈ U , Θ(0) = 0 and |Θ(b)| = 1
for b ∈ ∂U . From (1.4), we obtain

2

1 + |Θ′(0)|
≤ |Θ′(b)| = 1− |m(0)|2∣∣∣1−m(0)m(b)

∣∣∣2 |m′(b)|
≤ 1 + |m(0)|

1− |m(0)|
(|ϕ′(b)| − |B′1(b)|)

=

1 + |c2|

2
n∏

k=1

|zk|

1− |c2|

2
n∏

k=1

|zk|

{
2 |p′(b)| −

(
1 +

n∑
k=1

1− |zk|2

|b− zk|

)}

=

2
n∏
k=1

|zk|+ |c2|

2
n∏
k=1

|zk| − |c2|

{
2 |p′(b)| −

(
1 +

n∑
k=1

1− |zk|2

|b− zk|

)}
.

Since

|Θ′(0)| =
|m′(0)|

1− |m(0)|2
=

∣∣∣∣4c3−3c22+2c2
n∑

k=1

1−|zk|2
zk

∣∣∣∣
4

n∏
k=1

|zk|

1−

 |c2|

4
n∏

k=1

|zk|

2

=

n∏
k=1

|zk|

∣∣∣∣4c3 − 3c22 + 2c2
n∑
k=1

1−|zk|2
zk

∣∣∣∣
2

(
n∏
k=1

|zk|
)2

− |c2|2
,

we take
2

1+
n∏

k=1

|zk|

∣∣∣∣∣∣∣4c3−3c22+2c2
n∑

k=1

 1−|z2k|
zk


∣∣∣∣∣∣∣

4

(
n∏

k=1
|zk|

)2

−|c2|2

≤

2
n∏

k=1

|zk|+|c2|

2
n∏

k=1

|zk|−|c2|

{
2 |p′(b)| −

(
1 +

n∑
k=1

1−|zk|2
|b−zk|

)}
,
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2

(
4

(
n∏

k=1

|zk|
)2

−|c2|2
)

4

(
n∏

k=1

|zk|
)2

−|c2|2+
n∏

k=1

|zk|

∣∣∣∣∣4c3−3c22+2c2
n∑

k=1

(
1−|z2k|

zk

)∣∣∣∣∣
≤

2
n∏

k=1

|zk|+|c2|

2
n∏

k=1

|zk|−|c2|

{
2 |p′(b)| −

(
1 +

n∑
k=1

1−|zk|2
|b−zk|

)}
,

2

(
2

n∏
k=1

|zk|−|c2|
)2

4

(
n∏

k=1

|zk|
)2

−|c2|2+
n∏

k=1

|zk|

∣∣∣∣∣4c3−3c22+2c2
n∑

k=1

(
1−|z2k|

zk

)∣∣∣∣∣
≤ 2 |p′(b)| −

(
1 +

n∑
k=1

1−|zk|2
|b−zk|

)
and

|p′(b)| ≥ 1
2

(
1 +

n∑
k=1

1−|zk|2
|b−zk|

)

+ 1
2

 2

(
2

n∏
k=1

|zk|−|c2|
)2

4

(
n∏

k=1

|zk|
)2

−|c2|2+
n∏

k=1

|zk|

∣∣∣∣∣4c3−3c22+2c2
n∑

k=1

(
1−|z2k|

zk

)∣∣∣∣∣

 .

Now, we shall show that the inequality (2.9) is sharp. Let

(2.10) f(z) = e

z∫
0

1−t2
n∏

k=1

t−zk
1−zkt(

1+t2
n∏

k=1

t−zk
1−zkt

)
t

dt

.

Differentiating (2.10) logarithmically, we obtain

ln f(z) = ln e

z∫
0

1−t2
n∏

k=1

t−zk
1−zkt(

1+t2
n∏

k=1

t−zk
1−zkt

)
t

dt

=

z∫
0

1− t2
n∏
k=1

t−zk
1−zkt(

1 + t2
n∏
k=1

t−zk
1−zkt

)
t

dt,

f ′(z)

f(z)
=

1− z2
n∏
k=1

z−zk
1−zkz(

1 + z2
n∏
k=1

z−zk
1−zkz

)
z

and

p(z) =
zf ′(z)

f(z)
=

1− z2
n∏
k=1

z−zk
1−zkz

1 + z2
n∏
k=1

z−zk
1−zkz

.

Therefore, we take

|p′(1)| = 1

2

(
2 +

n∑
k=1

1 + zk
1− zk

)
.

Since |p′(0)| = |c2| = 0 and |c3| =
n∏
k=1

|zk|, (2.9) is satisfied with equality.
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