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ON CHARACTERIZATION OF MINIMAL
k-BI-IDEALS IN k-REGULAR AND COMPLETELY

k-REGULAR SEMIRINGS

Kalyan Hansda12 and Tapas Kumar Mondal3

Abstract. In this paper, we study k-regular and completely k-regular
semirings. We characterize the minimal k-bi-ideals in k-regular semir-
ings via principal k-bi-ideals and also in completely k-regular semirings
via k-bi-ideals generated by k-idempotent elements. Finally we char-
acterize the completely k-regular semirings by k-bi-ideals generated via
k-idempotents.
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1. Introduction

The notion of a semiring was introduced by Vandiver [15]. In 1951, Bourne
defined a regular semiring as a semiring S in which for all a ∈ S there exist
x, y ∈ S such that a + axa = aya. In [1], Adhikari, Sen and Weinert renamed
it as a k-regular semiring. In [14], Sen and Bhuniya studied k-regular semir-
ings with a semilattice additive reduct, and constructed k-regular semirings.
If F is any semigroup, then the set P (F ) of all subsets of F is a semiring in
SL+, where addition and multiplication are defined by the set union and the
usual product of subsets of a semigroup, respectively. In [14], it is shown that
P (F ) is a k-regular semiring if and only if F is a regular semigroup [Theorem
3.1], and if (F, ·) is a regular semigroup, then the k-idempotents of P (F ) com-
mute if and only if P (F ) is a commutative semiring [Theorem 3.4]. Sen and
Bhuniya defined k-idempotents to characterize the k-regular semirings which
are distributive lattices of k-semifields [13]. Bhuniya and Jana introduced the
notion of k-bi-ideals in a semiring, characterized the k-regular semirings by k-
bi-ideals, and gave the description of the principal k-bi-ideals in a semiring with
semilattice additive reduct [2]. In [9], Jana studied quasi k-ideals in k-regular
semirings and characterized the k-regular semirings via their quasi k-ideals. In
[12], Sen and Bhuniya defined completely k-regular semirings and presented
various interesting properties of classes of such semirings. They characterized
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completely k-regular semirings. A semiring S is completely k-regular if and
only if S is k-regular and a ∈ a2S ∩ Sa2 for all a ∈ S. The structure of such
semirings was also given. A semiring is completely k-regular if and only if S is
a union of k-semifields.

In this paper we study the semirings with semilattice additive reduct. Such
semirings have been studied by Bhuniya and Mondal [3, 4, 5, 10, 11] to give the
decompositions of underlying semirings through distributive lattice congruence
into simpler components. Here we study k-regular and completely k-regular
semirings with semilattice additive reduct and their k-bi-ideals. In Section
2, the preliminaries have been provided. In Section 3, we study completely
k-regular semirings and k-regular semirings. We show that in a completely k-
regular semiring, for any element a ∈ S there exist two H-related k-idempotent
elements. In Section 4, our main intention is to characterize minimal k-bi-ideals
in a k-regular and completely k-regular semiring by principal k-bi-ideals gen-
erated by k-idempotents. We show that a k-bi-ideal B in a k-regular semiring
is minimal if and only if for all a, b ∈ B, the principal k-b-ideals generated by a
and b are the same, while a k-bi-ideal B in a completely k-regular semiring S is
minimal if and only if the principal k-bi-ideals generated by k-idempotents in B
coincide. We define k-bi-simple semirings, and characterize the minimal k-bi-
ideals by k-bi-simplicity of the semirings. Finally, we characterize completely
k-regular semirings by the principal k-bi-ideals generated by k-idempotents of
S.

2. Preliminaries

A semiring (S,+, ·) is an algebra with two binary operations + and · such
that both the additive reduct (S,+) and the multiplicative reduct (S, ·) are
semigroups and such that the following distributive laws hold:

x(y + z) = xy + xz and (x + y)z = xz + yz.

Thus the semirings can be regarded as a common generalization of both rings
and distributive lattices. By SL+ we denote the category of all semirings
(S,+, ·) such that (S,+) is a semilattice, i.e. a commutative and idempotent
semigroup. Throughout this paper, unless otherwise stated, S is always a
semiring in SL+.

Let A be a nonempty subset of S. The k-closure of A is defined by

A = {x ∈ S | x + a1 = a2 for some a1, a2 ∈ A}.

We assume that x + a1 = a2. Hence x + a2 = x + x + a1 = a2. So A is also
described by

A = {x ∈ S | x + a = a for some a ∈ A}.

Then we have A ⊆ A and A = A, since (S,+) is a semilattice, A is called a
k-set if A ⊆ A. An ideal (left, right) A of S is called a k-ideal (left, right) if it
is a k-set, i.e. A = A.
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A semiring S is called a k-regular semiring [6] if for every a ∈ S, there
exists an s ∈ S such that a + asa = asa. A semiring S is called a completely
k-regular semiring if for every a ∈ S, there exists an s ∈ S such that a+ asa =
asa, as + as2a = as2a and sa + as2a = as2a, equivalently, a + a2sa2 = a2sa2

[Theorem 5.1 [12]].
For a ∈ S, the principal left k-ideal (resp. principal right k-ideal) generated

by a is the least left k-ideal (resp. least right k-ideal) of S containing a. Bhuniya
and Jana [2] introduced k-bi-ideals in a semiring in SL+. A non-empty subset
B of S is said to be a k-bi-ideal of S if BSB ⊆ B and B is a k-subsemiring of
S. The structures of the principal left k-ideal (resp. principal right k-ideal and
principal k-bi-ideal) are given, respectively, by

Lk(a) = {x ∈ S | x + a + sa = a + sa, for some s ∈ S},

Rk(a) = {x ∈ S | x + a + as = a + as, for some s ∈ S}
and

Bk(a) = {x ∈ S | x + a + a2 + asa = a + a2 + asa, for some s ∈ S}.

Sen and Bhuniya [12] defined four equivalence relations namely L, R, J and
H analogous to the Green’s relations, on a k-regular semiring S in SL+. If a ∈ S
be a k-regular element, then one has Lk(a) = Sa,Rk(a) = aS,Bk(a) = aSa.
Bhuniya and Mondal [4], [11] generalized the Green’s relations L, R, and H on
a semiring S in SL+ and they are

L = {(x, y) ∈ S × S | Lk(x) = Lk(y)},

R = {(x, y) ∈ S × S | Rk(x) = Rk(y)}
and

H = L ∩R.
Mondal and Bhuniya also defined an equivalence relation B [11] by: for a, b ∈ S,

aBb⇔ Bk(a) = Bk(b).

If S ∈ SL+, then both L and R are additive congruences on S and L is a right
congruence and R is a left congruence on S.

An element e ∈ S is said to be k-idempotent if e + e2 = e2 [12]. If A is a
subsemiring of S, then let Ek(A) denote the set of all k-idempotents of A.

For undefined concepts in semigroup theory we refer to [8], for undefined
concepts in semiring theory cf. [7].

3. Completely k-regular semirings

In this section we study completely k-regular semirings and k-regular semir-
ings. In completely k-regular semirings we show that for any given element
a ∈ S we can always find two k-idempotents, depending on a, such that they
are H-related. We also characterize the k-regular semirings by the product of
a principal right k-ideal and a principal left k-ideal of the semirings.
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Lemma 3.1. Let S be a completely k-regular semiring. Then

1. for every a ∈ S, there exists a z ∈ S such that a+aza = asa, a+a2z = a2z
and a + za2 = za2.

2. for every a ∈ S, there exists a u ∈ S such that aHau and aHua.

3. for every a ∈ S, there exist e, f ∈ Ek(S) depending on a such that eHf .

Proof. (1) Since S is completely k-regular, for a ∈ S, there exists a x ∈
S such that a + a2xa2 = a2xa2. Adding a3xa2xa2 on both sides one gets
a+a(a+a2xa2)xa2 = a(a+a2xa2)xa2. This implies a+a3xa2xa2 = a3xa2xa2.
Again adding a3xa2xa2xa3 on both sides we get of a + a3xa2x(a + a2xa2)a =
a3xa2x(a + a2xa2)a so that a + a3xa2xa2xa3 = a3xa2xa2xa3. For
z = a2xa2xa2xa2, we get a + aza = aza. Again adding a4xa2xa2xa2 on
both sides of a + a3xa2xa2 = a3xa2xa2 we get a + a2(a + a2xa2)xa2xa2 =
a2(a + a2xa2)xa2xa2. This yields a + a2a2xa2xa2xa2 = a2a2xa2xa2xa2, i.e.
a + a2z = a2z. Similarly one can show that a + za2 = za2.
(2) For a ∈ S, there exists a x ∈ S such that a+axa = axa, ax+ax2a = ax2a
and xa + ax2a = ax2a. Now we can write a + axa = axa as a + as = as
and a + ta = ta, where s = xa, t = ax. Then we have a + au = au and
a + ua = ua, where u = s + t. Adding xa2 on both sides of a + axa = axa,
one gets a + xa2 + axa = xa2 + axa. Now adding ax2a2 on both sides we get
a+xa2 + (ax+ax2a)a = (ax+ax2a)a, giving a+xaa+axxaa = axxaa which
yields a + sa + ax(sa) = sa + ax(sa). Similarly adding a2x on both sides of
a+ axa = axa and proceeding as above one gets a+ at+ (at)xa = at+ (at)xa.
Now adding ta+axta and as+asxa, respectively on a+sa+ax(sa) = sa+ax(sa)
and a+ at+ (at)xa = at+ (at)xa, we have a+ ua+ ax(ua) = ua+ ax(ua) and
a+au+(au)xa = au+(au)xa. These two relations yield a ∈ Lk(ua)∩Rk(au).
Also ua ∈ Lk(a) and au ∈ Rk(a). Thus Lk(a) = Lk(ua) and Rk(a) = Rk(au).
The relation xa+ ax2a = ax2a can be written as s+ ts = ts, and ax+ ax2a =
ax2a as t + ts = ts. Then we get (s + t) + ts = ts, i.e. u + ts = ts.
Now au + ats = ats, and ua + tsa = tsa, i.e. au + (atx)a = (atx)a, and
ua + a(xsa) = a(xsa). These two yield au ∈ Sa = Lk(a), ua ∈ aS = Rk(a),
since S is k-regular. Therefore, Lk(au) ⊆ Lk(a) and Rk(ua) ⊆ Rk(a). Also
from a + axa = axa, we have a + a(xa + ax) = a(xa + ax), a + (ax + xa)a =
(ax + xa)a, i.e. a + au = au ∈ Lk(au), a + ua = ua ∈ Rk(ua) so that
a ∈ Lk(au), a ∈ Rk(ua). Therefore, Lk(a) ⊆ Lk(au) and Rk(a) ⊆ Rk(ua).
Consequently, Lk(a) = Lk(au) = Lk(ua), and Rk(a) = Rk(au) = Rk(ua). Fi-
nally, we get aHau and aHua.
(3) Let a ∈ S. Then from the proof of (1), one has a + aza = aza. Then
az + (az)2 = (az)2 and za + (za)2 = (za)2 yield e(= za), f(= az) ∈ Ek(S).
Now a + aza = aza, i.e a + ae = ae ∈ Se ⊆ Lk(e), whence a ∈ Lk(e). Also
e = za ∈ Lk(a). Therefore, aLe. Now a + za2 = za2, i.e a + ea = ea ∈ Rk(e)
so that a ∈ Rk(e). Again za + zaza = zaza, i.e. e + a2xa2xa2xa2za =
a2xa2xa2xa2za ∈ Rk(a) so that e ∈ Rk(a). Thus aRe. Consequently, aHe.
Similarly, one can get aHf , whence eHf , since H is an equivalence relation on
S.
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Lemma 3.2. If A,B are two subsemirings of a semiring S, then

1. for x ∈ S, a1, a2 ∈ A, b1, b2 ∈ B with x + a1b1 = a2b2, there exist u ∈
A, v ∈ B such that x + uv = uv.

2. if a, b, u, v, s, t ∈ S satisfying u + as = as and v + ta = ta, then there
exists a w ∈ S such that u + aw = aw and v + wa = wa.

Proof. (1) Follows if we take u = a1 + a2, v = b1 + b2.
(2) w = s + t serves our purpose.

Lemma 3.3. [Theorem 3.2 [9]] A semiring S is k-regular if and only if for
every right k-ideal R and left k-ideal L of S, RL = R ∩ L.

Lemma 3.4. Let S be a k-regular semiring. Then

1. for every a ∈ S,Bk(a) = Rk(a)Lk(a).

2. for any subset A of S, SA ∩AS = SA ∩AS.

Proof. (1) Let a ∈ S and x ∈ Bk(a). Then there exists an s ∈ S such
that x + asa = asa. Since S is a k-regular, there exists a u ∈ S such that
a+aua = aua. Adding asaua+auasa+auasaua on both sides of x+asa = asa,
we get x + (a + aua)s(a + aua) = (a + aua)s(a + aua), i.e., x + (auas)(aua) =
(auas)(aua) ∈ Rk(a)Lk(a). This implies that x ∈ Rk(a)Lk(a). Therefore
Bk(a) ⊆ Rk(a)Lk(a). Conversely, suppose that x ∈ Rk(a)Lk(a). Then by
Lemma 3.2, there are u ∈ Rk(a), v ∈ Lk(a) such that x + uv = uv. Also there
is a w ∈ S such that u + aw = aw, v + wa = wa. Adding uwa + awv + awwa
on both sides of x+uv = uv, one gets x+(u+aw)(v+wa) = (u+aw)(v+wa)
so that x + awwa = awwa ∈ aSa = Bk(a). This implies x ∈ Bk(a). Thus
Rk(a)Lk(a) ⊆ Bk(a). Consequently, Bk(a) = Rk(a)Lk(a).
(2) Let x ∈ SA∩AS. Then using Lemma 3.2, we get x+sa = sa, x+as = as for
some s ∈ S. Since S is k-regular, there exists a z ∈ S such that x+xzx = xzx.
Adding xzsa + aszx + aszsa on both sides we get x + (x + as)z(x + sa) =
(x + as)z(x + sa), i.e., x + aszsa = aszsa ∈ SA ∩ AS yielding x ∈ SA ∩AS.
Conversely, for x ∈ SA ∩AS, there are u, v ∈ SA∩AS such that x+u = v. Now
there are s1, s2, s3, s4 ∈ S, a1, a2, a3, a4 ∈ A such that u = s1a1 = a2s2, v =
s3a3 = a4s4. Then one gets x + s1a1 = s3a3, x + a2s2 = a4s4 so that x ∈
SA∩AS. Therefore SA ∩AS ⊆ SA∩AS. Consequently, SA ∩AS = SA∩AS.

4. Characterization of minimal k-bi-ideals

In this section we find a necessary and sufficient condition for a k-bi-ideal to
be minimal in a semiring, k-regular semiring as well as in completely k-regular
semiring.
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Lemma 4.1. Let S be a k-regular semiring. A k-bi-ideal B of S is minimal if
and only if Bk(a) = Bk(b) for all a, b ∈ B.

Proof. Let B be a minimal k-bi-ideal. Then for a, b ∈ B one has Bk(a) ⊆
B,Bk(b) ⊆ B so that Bk(a) = B = Bk(b). Conversely, suppose that the given
condition holds. Let C be a k-bi-ideal of S with C ⊆ B. For x ∈ C, y ∈ B,
we have x, y ∈ B. This implies Bk(x) = Bk(y) so that y ∈ Bk(x) ⊆ C, i.e.,
B ⊆ C. Consequently, B is minimal.

In the following lemma we find that in a k-regular semiring the relation B
coincides with the relation H.

Lemma 4.2. The following results hold in a semiring S:

1. B ⊆ H.

2. If S is k-regular, then B = H.

Proof. (1) Let a, b ∈ S with aBb. Then there are s, t ∈ S such that a + b +
b2 + bsb = b + b2 + bsb and b + a + a2 + ata = a + a2 + ata. Then we have
a + b + (b + bs)b = b + (b + bs)b and b + a + (a + at)a = a + (a + at)a yielding
a ∈ Lk(b), b ∈ Lk(a) so that Lk(a) = Lk(b), i.e., aLb. Again we can write
a + b + b(b + sb) = b + b(b + sb) and b + a + a(a + ta) = a + a(a + ta) yielding
a ∈ Rk(b), b ∈ Rk(a) so that Rk(a) = Rk(b). Thus aRb. Consequently, B ⊆ H.
(2) Let S be k-regular, and xHy. Then one has Lk(a) = Lk(b), Rk(a) = Rk(b).
Since S is k-regular, by Lemmas 3.3 and 3.4, we get Bk(a) = Rk(a)Lk(a) =
Rk(a)∩Lk(a). Then Bk(a) = Rk(a)∩Lk(a) = Rk(b)∩Lk(b) = Bk(b) yielding
aBb. Consequently, B = H.

In the following theorem we characterize the minimal k-bi-ideals in a semir-
ing via the relation B.

Theorem 4.3. A k-bi-ideal B of a semiring S is minimal if and only if it is
a B-class.

Proof. Let B be a minimal k-bi-ideal of a semiring S, and a, b ∈ B. Then
by Lemma 4.1, one gets Bk(a) = Bk(b). This implies that aBb. Thus B is
a B-class. Conversely, suppose that B is a B-class, and K a k-bi-ideal of S
such that K ⊆ B. Let x ∈ B, y ∈ K. Then x, y ∈ B giving that xBy, i.e.,
Bk(x) = Bk(y). Then x ∈ Bk(x) = Bk(y) ⊆ K. Therefore x ∈ K. Thus
B ⊆ K. Consequently, B is minimal.

Theorem 4.4. A k-bi-ideal B in a k-regular semiring S is minimal if and only
if B is an H-class of S.

Proof. Let B be a minimal k-ideal of S. Then by Lemma 4.1 and Theorem
4.3, we find that B is an H-class of S. Converse part follows from the Lemma
4.2 and Theorem 4.3.

In the following theorem we characterize the minimal k-bi-ideals in a com-
pletely k-regular semiring via k-bi-ideals generated by k-idempotent elements.
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Theorem 4.5. A k-bi-ideal B of a completely k-regular semiring S is minimal
if and only if Bk(a) = Bk(e) for all a ∈ B and for all e ∈ Ek(B).

Proof. Let B be a minimal k-bi-ideal of S, and a ∈ B, e ∈ Ek(B). Then
a, e ∈ B, and so by Lemma 4.1, one gets Bk(a) = Bk(e). Conversely suppose
that the given conditions hold, and let K be a k-bi-ideal of S such that K ⊆ B.
Let x ∈ K, b ∈ B. Since S is completely k-regular, there exists an s ∈ S such
that x+xsx = xsx, xs+xs2x = xs2x, sx+xs2x = xs2x. Then xs, sx ∈ Ek(S).
Now xs + xs2x = xs2x ∈ xSx = Bk(x) implies xs ∈ Bk(x) ⊆ B so that
xs ∈ Ek(B). By hypothesis, b, xs ∈ B implies Bk(b) = Bk(xs). Similarly,
Bk(b) = Bk(sx). Now b ∈ Bk(xs) ensures the existence of some w ∈ S such that
b+xswxs = xswxs. Adding xswxs2x on both sides we get b+xsw(xs+xs2x) =
xsw(xs+ xs2x). This implies b+ xswxs2x = xswxs2x ∈ xSx = Bk(x) so that
b ∈ Bk(x) ⊆ K, i.e., b ∈ K. Therefore B ⊆ K. Consequently, B is minimal.

Corollary 4.6. A k-bi-ideal B of a completely k-regular semiring S is minimal
if and only if Bk(e) = Bk(f) for all e, f ∈ Ek(B).

Proof. Let B be a minimal k-bi-ideal of S, and e, f ∈ Ek(B). Then by Lemma
4.1, one gets Bk(e) = Bk(f). Conversely, suppose that the given conditions
hold, and a ∈ B, e ∈ Ek(B). Then as in the proof of (1) of Lemma 3.1, for this
a ∈ B, there is z = a2xa2xa2xa2 such that a + aza = aza, a + a2z = a2z and
a + za2 = za2. Since B is a k-bi-ideal of S, z = a(axa2xa2xa)a ∈ BSB ⊆ B.
Consequently, az ∈ Ek(B). Since e, az ∈ Ek(B), one gets Bk(az) = Bk(e).
Now adding aza2z on both sides of a + aza = aza, we get a + az(a + a2z) =
az(a + a2z), that is, a + az(a)az = az(a)az. This yields a ∈ Bk(az). Also
az + azaz = azaz gives az + a(zaa2xa2xa2xa)a = a(zaa2xa2xa2xa)a, and so
az ∈ Bk(a). Now Bk(a) = Bk(az) = Bk(e), and then by Theorem 4.5, B is a
minimal k-bi-ideal of S.

In [11], Mondal and Bhuniya defined B-simple semirings. In this paper we
rename it by k-bi-simple semirings. Then a semiring S is called k-bi-simple if
it has no non-trivial proper k-bi-ideal.

Example 4.7. Let R+ denote the set of all positive real numbers, and consider
the group (R+, ·). Let Pf (R+) be the set of all finite subsets of R+. Define +
and · on Pf (R+) by: A + B = A ∪ B and A · B = {ab | a ∈ A, b ∈ B} for all
A,B ∈ Pf (R+). Then (Pf (R+),+, ·) is a k-bi-simple semiring.

Then we have the following lemma:

Lemma 4.8. [Lemma 3.1 [11]] In a semiring S the following conditions are
equivalent:

1. S is a t-k-simple semiring;

2. S is a k-bi-simple(B-simple) semiring;

3. S is a H-simple semiring.
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Now as in Remark 2.6 [11], we find that that every k-bi-simple semiring is
a k-regular semiring. Now we are in a position to characterize the k-bi-simple
semirings via k-bi-ideals generated by k-idempotent elements.

Theorem 4.9. A semiring S is k-bi-simple if and only if S is k-regular and
for all e, f ∈ Ek(S), Bk(e) = Bk(f).

Proof. Let S be a k-bi-simple semiring and e, f ∈ Ek(S). Then by hypoth-
esis, we have Bk(e) = Bk(f). Also, every k-bi-simple semiring is k-regular.
Conversely, suppose that the given conditions hold, and let B be a k-bi-ideal
of S. We are interested to show B = S. For, let s ∈ S, b ∈ B. Since S is
k-regular, there are x, y ∈ S such that s + sxs = sxs and b + byb = byb. Then
sx, xs, by, yb are all in Ek(S). By hypothesis, we get Bk(sx) = Bk(by) and
Bk(xs) = Bk(yb). This implies sxBby and xsByb. Then by Lemma 4.2, one
gets sxHby and xsHyb so that sxRby and xsLyb. Now there exist u, v ∈ S
such that sx + byu = byu and xs + vyb = vyb. Now adding sxsxs on both
sides of s + sxs = sxs we have s + sx(s + sxs) = sx(s + sxs). This im-
plies s + sxsxs = sxsxs. Again adding sxsvyb + byusxs + byusvyb on both
sides one can write s + (sx + byu)s(xs + vyb) = (sx + byu)s(xs + vyb), i.e.,
s + byusvyb = byusvyb ∈ bSb = Bk(b) so that s ∈ Bk(b) ⊆ B yielding s ∈ B.
Thus S ⊆ B so that S = B, whence B is k-bi-simple.

In the following theorem we characterize the minimal k-bi-ideals by its k-
bi-simplicity. Before that we have the lemma:

Lemma 4.10. If B is a k-bi-ideal of a semiring S, then for a ∈ S, aBa is a
k-bi-ideal of S.

Proof. Let x, y ∈ aBa. Then there exist b1, b2 ∈ B such that x + ab1a =
ab1a, y + ab2a = ab2a. These yield x + aba = aba, y + aba = aba, where
b = b1 + b2 ∈ B. Then (x + y) + aba = aba ∈ aBa implies that x + y ∈ aBa.
If s ∈ S, b ∈ aBa, then there exists a z ∈ B such that b + aza = aza. Now
zasaz ∈ B, since B is a k-bi-ideal of S. Multiplying both sides of b+aza = aza
by sb on the right, we have bsb + azasb = azasb. Adding azasaza on both
sides we get bsb+azas(b+aza) = azas(b+aza). This implies bsb+azasaza =
azasaza ∈ aBa so that bsb ∈ aBa. Thus aBaSaBa ⊆ aBa. Now to show that
aBa is a k-set, suppose that x ∈ S, y ∈ aBa satisfying x + y = y. Now there
exists a b ∈ B such that y + aba = aba. This implies x + y + aba = aba, that
is, x + aba = aba ∈ aBa yielding x ∈ aBa. Consequently, aBa is a k-bi-ideal
of S.

Theorem 4.11. Let S be a semiring. Then a k-bi-ideal B is minimal if and
only if it is k-bi-simple.

Proof. Let B be a minimal k-bi-ideal of S, and T a k-bi-ideal of B. Let t ∈ T .
then one gets tBt ⊆ TBT ⊆ T = T ⊆ B. By Lemma 4.10, tBt is a k-bi-ideal
of S, and B is minimal in S, we get tBt = B. This implies T = B, whence B
is k-bi-simple. Conversely, suppose that B is a k-bi-simple, and C a k-bi-ideal
of S with C ⊆ B. Let c ∈ C. Then cBc is a k-bi-ideal of B. Since B is a
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k-bi-simple, cBc = B. Then B = cBc ⊆ CBC ⊆ CSC ⊆ C = C yielding
B = C. Consequently, B is minimal.

Finally we characterize the completely k-regular semirings via k-bi-ideals
generated by k-idempotent elements.

Theorem 4.12. A semiring S is completely k-regular semiring if and only if
(1) for every k-bi-ideal B of S, there is some e ∈ Ek(S) such that B = Bk(e),
and
(2) for every x ∈ B,Bk(x2) = Bk(e).

Proof. Let S be a completely k-regular semiring.
(1): Let B be a k-bi-ideal of S, and a ∈ B. Now by the proof of (1) of
Lemma 3.1, one has a + aza = aza, a + a2z = a2z and a + za2 = za2, where
z = a2xa2xa2xa2. Now adding aza2z on both sides of a + aza = aza one gets
a+ az(a+ a2z) = az(a+ a2z), i.e. a+ azaaz = azaaz = eae ∈ eSe = Bk(e) so
that a ∈ Bk(e) yielding B ⊆ Bk(e). Now suppose that y ∈ Bk(e) = eSe. Then
there exists a u ∈ S such that y + azuaz = azuaz, i.e. y + azua3xa2xa2xa2 =
azua3xa2xa2xa2 ∈ aSa = Bk(a) ⊆ B yielding Bk(a) = B = Bk(e).
(2): Let x ∈ B. Then x2 ∈ B, whence by (1), there exists an f ∈ Ek(S) such
that B = Bk(x2) = Bk(f). Consequently, Bk(x2) = Bk(f) = B = Bk(e), by
(1).
Conversely, suppose that the conditions hold, and a ∈ S. Consider the k-bi-
ideal Bk(a) of S. Then there exists an e ∈ Ek(S) such that Bk(a) = Bk(e).
Since a2 ∈ Bk(a), by condition (2), it follows that Bk(e) = Bk(a2). Then
a+ a2sa2 = a2sa2 yielding a is completely k-regular element. Consequently, S
is completely k-regular.
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