ON CHARACTERIZATION OF MINIMAL k-BI-IDEALS IN k-REGULAR AND COMPLETELY k-REGULAR SEMIRINGS

Kalyan Hansda 12 and Tapas Kumar Mondal 3

Abstract. In this paper, we study k-regular and completely k-regular semirings. We characterize the minimal k-bi-ideals in k-regular semirings via principal k-bi-ideals and also in completely k-regular semirings via k-bi-ideals generated by k-idempotent elements. Finally we characterize the completely k-regular semirings by k-bi-ideals generated via k-idempotents.

AMS Mathematics Subject Classification (2010): 16Y60

Key words and phrases: k-regular semiring; completely k-regular semiring; k-bi-ideal; k-idempotent; k-bi-simple semiring

1. Introduction

The notion of a semiring was introduced by Vandiver [15]. In 1951, Bourne defined a regular semiring as a semiring S in which for all $a \in S$ there exist $x, y \in S$ such that a + axa = aya. In [1], Adhikari, Sen and Weinert renamed it as a k-regular semiring. In [14], Sen and Bhuniya studied k-regular semirings with a semilattice additive reduct, and constructed k-regular semirings. If F is any semigroup, then the set P(F) of all subsets of F is a semiring in \mathcal{SL}^+ , where addition and multiplication are defined by the set union and the usual product of subsets of a semigroup, respectively. In [14], it is shown that P(F) is a k-regular semiring if and only if F is a regular semigroup [Theorem 3.1], and if (F, \cdot) is a regular semigroup, then the k-idempotents of P(F) commute if and only if P(F) is a commutative semiring [Theorem 3.4]. Sen and Bhuniya defined k-idempotents to characterize the k-regular semirings which are distributive lattices of k-semifields [13]. Bhuniya and Jana introduced the notion of k-bi-ideals in a semiring, characterized the k-regular semirings by kbi-ideals, and gave the description of the principal k-bi-ideals in a semiring with semilattice additive reduct [2]. In [9], Jana studied quasi k-ideals in k-regular semirings and characterized the k-regular semirings via their quasi k-ideals. In [12], Sen and Bhuniya defined completely k-regular semirings and presented various interesting properties of classes of such semirings. They characterized

¹Department of Mathematics, Visva-Bharati University, Santiniketan, Bolpur - 731235, West Bengal, India, e-mail: kalyan.hansda@visva-bharati.ac.in

²Corresponding author

³Department of Mathematics, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hat-gobindapur, Burdwan - 713407, West Bengal, India, e-mail: tapumondal@gmail.com

completely k-regular semirings. A semiring S is completely k-regular if and only if S is k-regular and $a \in \overline{a^2S} \cap \overline{Sa^2}$ for all $a \in S$. The structure of such semirings was also given. A semiring is completely k-regular if and only if S is a union of k-semifields.

In this paper we study the semirings with semilattice additive reduct. Such semirings have been studied by Bhuniya and Mondal [3, 4, 5, 10, 11] to give the decompositions of underlying semirings through distributive lattice congruence into simpler components. Here we study k-regular and completely k-regular semirings with semilattice additive reduct and their k-bi-ideals. In Section 2, the preliminaries have been provided. In Section 3, we study completely k-regular semirings and k-regular semirings. We show that in a completely kregular semiring, for any element $a \in S$ there exist two $\overline{\mathcal{H}}$ -related k-idempotent elements. In Section 4, our main intention is to characterize minimal k-bi-ideals in a k-regular and completely k-regular semiring by principal k-bi-ideals generated by k-idempotents. We show that a k-bi-ideal B in a k-regular semiring is minimal if and only if for all $a, b \in B$, the principal k-b-ideals generated by a and b are the same, while a k-bi-ideal B in a completely k-regular semiring S is minimal if and only if the principal k-bi-ideals generated by k-idempotents in Bcoincide. We define k-bi-simple semirings, and characterize the minimal k-biideals by k-bi-simplicity of the semirings. Finally, we characterize completely k-regular semirings by the principal k-bi-ideals generated by k-idempotents of S.

2. Preliminaries

A semiring $(S, +, \cdot)$ is an algebra with two binary operations + and \cdot such that both the *additive reduct* (S, +) and the *multiplicative reduct* (S, \cdot) are semigroups and such that the following distributive laws hold:

$$x(y+z) = xy + xz$$
 and $(x+y)z = xz + yz$.

Thus the semirings can be regarded as a common generalization of both rings and distributive lattices. By $S\mathcal{L}^+$ we denote the category of all semirings $(S, +, \cdot)$ such that (S, +) is a semilattice, i.e. a commutative and idempotent semigroup. Throughout this paper, unless otherwise stated, S is always a semiring in $S\mathcal{L}^+$.

Let A be a nonempty subset of S. The k-closure of A is defined by

$$\overline{A} = \{ x \in S \mid x + a_1 = a_2 \text{ for some } a_1, a_2 \in A \}.$$

We assume that $x + a_1 = a_2$. Hence $x + a_2 = x + x + a_1 = a_2$. So \overline{A} is also described by

 $\overline{A} = \{ x \in S \mid x + a = a \text{ for some } a \in A \}.$

Then we have $A \subseteq \overline{A}$ and $\overline{A} = \overline{\overline{A}}$, since (S, +) is a semilattice, A is called a k-set if $\overline{A} \subseteq A$. An ideal (left, right) A of S is called a k-ideal (left, right) if it is a k-set, i.e. $\overline{A} = A$.

A semiring S is called a k-regular semiring [6] if for every $a \in S$, there exists an $s \in S$ such that a + asa = asa. A semiring S is called a completely k-regular semiring if for every $a \in S$, there exists an $s \in S$ such that $a + asa = asa, as + as^2a = as^2a$ and $sa + as^2a = as^2a$, equivalently, $a + a^2sa^2 = a^2sa^2$ [Theorem 5.1 [12]].

For $a \in S$, the principal left k-ideal (resp. principal right k-ideal) generated by a is the least left k-ideal (resp. least right k-ideal) of S containing a. Bhuniya and Jana [2] introduced k-bi-ideals in a semiring in $S\mathcal{L}^+$. A non-empty subset B of S is said to be a k-bi-ideal of S if $BSB \subseteq B$ and B is a k-subsemiring of S. The structures of the principal left k-ideal (resp. principal right k-ideal and principal k-bi-ideal) are given, respectively, by

$$L_k(a) = \{x \in S \mid x + a + sa = a + sa, \text{ for some } s \in S\},\$$
$$R_k(a) = \{x \in S \mid x + a + as = a + as, \text{ for some } s \in S\}$$

and

$$B_k(a) = \{x \in S \mid x + a + a^2 + asa = a + a^2 + asa, \text{ for some } s \in S\}.$$

Sen and Bhuniya [12] defined four equivalence relations namely $\overline{\mathcal{L}}$, $\overline{\mathcal{R}}$, $\overline{\mathcal{J}}$ and $\overline{\mathcal{H}}$ analogous to the Green's relations, on a k-regular semiring S in \mathcal{SL}^+ . If $a \in S$ be a k-regular element, then one has $L_k(a) = \overline{Sa}, R_k(a) = \overline{aS}, B_k(a) = \overline{aSa}$. Bhuniya and Mondal [4], [11] generalized the Green's relations $\overline{\mathcal{L}}, \overline{\mathcal{R}}$, and $\overline{\mathcal{H}}$ on a semiring S in \mathcal{SL}^+ and they are

$$\mathcal{L} = \{ (x, y) \in S \times S \mid L_k(x) = L_k(y) \},\$$
$$\overline{\mathcal{R}} = \{ (x, y) \in S \times S \mid R_k(x) = R_k(y) \}$$

and

 $\overline{\mathcal{H}} = \overline{\mathcal{L}} \cap \overline{\mathcal{R}}.$

Mondal and Bhuniya also defined an equivalence relation $\overline{\mathcal{B}}$ [11] by: for $a, b \in S$,

$$a\mathcal{B}b \Leftrightarrow B_k(a) = B_k(b).$$

If $S \in \mathcal{SL}^+$, then both $\overline{\mathcal{L}}$ and $\overline{\mathcal{R}}$ are additive congruences on S and $\overline{\mathcal{L}}$ is a right congruence and $\overline{\mathcal{R}}$ is a left congruence on S.

An element $e \in S$ is said to be k-idempotent if $e + e^2 = e^2$ [12]. If A is a subsemiring of S, then let $E_k(A)$ denote the set of all k-idempotents of A.

For undefined concepts in semigroup theory we refer to [8], for undefined concepts in semiring theory cf. [7].

3. Completely *k*-regular semirings

In this section we study completely k-regular semirings and k-regular semirings. In completely k-regular semirings we show that for any given element $a \in S$ we can always find two k-idempotents, depending on a, such that they are $\overline{\mathcal{H}}$ -related. We also characterize the k-regular semirings by the product of a principal right k-ideal and a principal left k-ideal of the semirings.

Lemma 3.1. Let S be a completely k-regular semiring. Then

- 1. for every $a \in S$, there exists $a z \in S$ such that $a + aza = asa, a + a^2z = a^2z$ and $a + za^2 = za^2$.
- 2. for every $a \in S$, there exists $a \ u \in S$ such that $a \overline{\mathcal{H}} a u$ and $a \overline{\mathcal{H}} u a$.
- 3. for every $a \in S$, there exist $e, f \in E_k(S)$ depending on a such that $e\overline{\mathcal{H}}f$.

Proof. (1) Since S is completely k-regular, for $a \in S$, there exists a $x \in S$ such that $a + a^2xa^2 = a^2xa^2$. Adding $a^3xa^2xa^2$ on both sides one gets $a + a(a + a^2xa^2)xa^2 = a(a + a^2xa^2)xa^2$. This implies $a + a^3xa^2xa^2 = a^3xa^2xa^2$. Again adding $a^3xa^2xa^2xa^3$ on both sides we get of $a + a^3xa^2x(a + a^2xa^2)a = a^3xa^2x(a + a^2xa^2)a$ so that $a + a^3xa^2xa^2xa^3 = a^3xa^2xa^2xa^3$. For $z = a^2xa^2xa^2xa^2$, we get a + aza = aza. Again adding $a^4xa^2xa^2xa^2$ and both sides of $a + a^3xa^2xa^2 = a^3xa^2xa^2$ are $a^2(a + a^2xa^2)xa^2xa^2 = a^3xa^2xa^2$. This yields $a + a^2a^2xa^2xa^2xa^2 = a^2a^2xa^2xa^2xa^2$, i.e. $a + a^2z = a^2z$. Similarly one can show that $a + za^2 = za^2$.

(2) For $a \in S$, there exists a $x \in S$ such that a + axa = axa, $ax + ax^2a = ax^2a$ and $xa + ax^2a = ax^2a$. Now we can write a + axa = axa as a + as = asand a + ta = ta, where s = xa, t = ax. Then we have a + au = au and a + ua = ua, where u = s + t. Adding xa^2 on both sides of a + axa = axa, one gets $a + xa^2 + axa = xa^2 + axa$. Now adding ax^2a^2 on both sides we get $a + xa^2 + (ax + ax^2a)a = (ax + ax^2a)a$, giving a + xaa + axxaa = axxaa which yields a + sa + ax(sa) = sa + ax(sa). Similarly adding a^2x on both sides of a + axa = axa and proceeding as above one gets a + at + (at)xa = at + (at)xa. Now adding ta + axta and as + asxa, respectively on a + sa + ax(sa) = sa + ax(sa)and a + at + (at)xa = at + (at)xa, we have a + ua + ax(ua) = ua + ax(ua) and a + au + (au)xa = au + (au)xa. These two relations yield $a \in L_k(ua) \cap R_k(au)$. Also $ua \in L_k(a)$ and $au \in R_k(a)$. Thus $L_k(a) = L_k(ua)$ and $R_k(a) = R_k(au)$. The relation $xa + ax^2a = ax^2a$ can be written as s + ts = ts, and $ax + ax^2a =$ ax^2a as t + ts = ts. Then we get (s + t) + ts = ts, i.e. u + ts = ts. Now au + ats = ats, and ua + tsa = tsa, i.e. au + (atx)a = (atx)a, and ua + a(xsa) = a(xsa). These two yield $au \in \overline{Sa} = L_k(a), ua \in \overline{aS} = R_k(a)$, since S is k-regular. Therefore, $L_k(au) \subseteq L_k(a)$ and $R_k(ua) \subseteq R_k(a)$. Also from a + axa = axa, we have a + a(xa + ax) = a(xa + ax), a + (ax + xa)a = a(xa + ax)(ax + xa)a, i.e. $a + au = au \in L_k(au), a + ua = ua \in R_k(ua)$ so that $a \in L_k(au), a \in R_k(ua)$. Therefore, $L_k(a) \subseteq L_k(au)$ and $R_k(a) \subseteq R_k(ua)$. Consequently, $L_k(a) = L_k(au) = L_k(ua)$, and $R_k(a) = R_k(au) = R_k(ua)$. Finally, we get $a\overline{\mathcal{H}}au$ and $a\overline{\mathcal{H}}ua$.

(3) Let $a \in S$. Then from the proof of (1), one has a + aza = aza. Then $az + (az)^2 = (az)^2$ and $za + (za)^2 = (za)^2$ yield $e(=za), f(=az) \in E_k(S)$. Now a + aza = aza, i.e $a + ae = ae \in \overline{Se} \subseteq L_k(e)$, whence $a \in L_k(e)$. Also $e = za \in L_k(a)$. Therefore, $a\overline{\mathcal{L}}e$. Now $a + za^2 = za^2$, i.e $a + ea = ea \in R_k(e)$ so that $a \in R_k(e)$. Again za + zaza = zaza, i.e. $e + a^2xa^2xa^2za^2za = a^2xa^2xa^2za^2za \in R_k(a)$ so that $e \in R_k(a)$. Thus $a\overline{\mathcal{R}}e$. Consequently, $a\overline{\mathcal{H}}e$. Similarly, one can get $a\overline{\mathcal{H}}f$, whence $e\overline{\mathcal{H}}f$, since $\overline{\mathcal{H}}$ is an equivalence relation on S. **Lemma 3.2.** If A, B are two subsemirings of a semiring S, then

- 1. for $x \in S$, $a_1, a_2 \in A$, $b_1, b_2 \in B$ with $x + a_1b_1 = a_2b_2$, there exist $u \in A$, $v \in B$ such that x + uv = uv.
- 2. if $a, b, u, v, s, t \in S$ satisfying u + as = as and v + ta = ta, then there exists $a w \in S$ such that u + aw = aw and v + wa = wa.

Proof. (1) Follows if we take $u = a_1 + a_2, v = b_1 + b_2$. (2) w = s + t serves our purpose.

Lemma 3.3. [Theorem 3.2 [9]] A semiring S is k-regular if and only if for every right k-ideal R and left k-ideal L of S, $\overline{RL} = R \cap L$.

Lemma 3.4. Let S be a k-regular semiring. Then

- 1. for every $a \in S$, $B_k(a) = \overline{R_k(a)L_k(a)}$.
- 2. for any subset A of $S, \overline{SA} \cap \overline{AS} = \overline{SA \cap AS}$.

Proof. (1) Let $a \in S$ and $x \in B_k(a)$. Then there exists an $s \in S$ such that x + asa = asa. Since S is a k-regular, there exists a $u \in S$ such that a+aua = aua. Adding asaua+auasa+auasaua on both sides of x+asa = asa, we get x + (a + aua)s(a + aua) = (a + aua)s(a + aua), i.e., $x + (auas)(aua) = (auas)(aua) \in R_k(a)L_k(a)$. This implies that $x \in \overline{R_k(a)L_k(a)}$. Therefore $B_k(a) \subseteq \overline{R_k(a)L_k(a)}$. Conversely, suppose that $x \in \overline{R_k(a)L_k(a)}$. There by Lemma 3.2, there are $u \in R_k(a), v \in L_k(a)$ such that x + uv = uv. Also there is a $w \in S$ such that u + aw = aw, v + wa = wa. Adding uwa + awv + awwa on both sides of x + uv = uv, one gets x + (u + aw)(v + wa) = (u + aw)(v + wa) so that $x + awwa = awwa \in \overline{aSa} = B_k(a)$. This implies $x \in B_k(a)$. Thus $\overline{R_k(a)L_k(a)} \subseteq B_k(a)$. Consequently, $B_k(a) = \overline{R_k(a)L_k(a)}$.

(2) Let $x \in \overline{SA} \cap \overline{AS}$. Then using Lemma 3.2, we get x+sa = sa, x+as = as for some $s \in S$. Since S is k-regular, there exists a $z \in S$ such that x + xzx = xzx. Adding xzsa + aszx + aszsa on both sides we get x + (x + as)z(x + sa) = (x + as)z(x + sa), i.e., $x + aszsa = aszsa \in SA \cap AS$ yielding $x \in \overline{SA} \cap AS$. Conversely, for $x \in \overline{SA} \cap \overline{AS}$, there are $u, v \in SA \cap AS$ such that x+u = v. Now there are $s_1, s_2, s_3, s_4 \in S, a_1, a_2, a_3, a_4 \in A$ such that $u = s_1a_1 = a_2s_2, v = s_3a_3 = a_4s_4$. Then one gets $x + s_1a_1 = s_3a_3, x + a_2s_2 = a_4s_4$ so that $x \in \overline{SA} \cap \overline{AS}$. Consequently, $\overline{SA} \cap \overline{AS} = \overline{SA} \cap \overline{AS}$.

4. Characterization of minimal k-bi-ideals

In this section we find a necessary and sufficient condition for a k-bi-ideal to be minimal in a semiring, k-regular semiring as well as in completely k-regular semiring.

 \square

Lemma 4.1. Let S be a k-regular semiring. A k-bi-ideal B of S is minimal if and only if $B_k(a) = B_k(b)$ for all $a, b \in B$.

Proof. Let *B* be a minimal *k*-bi-ideal. Then for $a, b \in B$ one has $B_k(a) \subseteq B$, $B_k(b) \subseteq B$ so that $B_k(a) = B = B_k(b)$. Conversely, suppose that the given condition holds. Let *C* be a *k*-bi-ideal of *S* with $C \subseteq B$. For $x \in C, y \in B$, we have $x, y \in B$. This implies $B_k(x) = B_k(y)$ so that $y \in B_k(x) \subseteq C$, i.e., $B \subseteq C$. Consequently, *B* is minimal. \Box

In the following lemma we find that in a k-regular semiring the relation $\overline{\mathcal{B}}$ coincides with the relation $\overline{\mathcal{H}}$.

Lemma 4.2. The following results hold in a semiring S:

1.
$$\overline{\mathcal{B}} \subseteq \overline{\mathcal{H}}$$
.

2. If S is k-regular, then $\overline{\mathcal{B}} = \overline{\mathcal{H}}$.

Proof. (1) Let $a, b \in S$ with $a\overline{B}b$. Then there are $s, t \in S$ such that $a + b + b^2 + bsb = b + b^2 + bsb$ and $b + a + a^2 + ata = a + a^2 + ata$. Then we have a + b + (b + bs)b = b + (b + bs)b and b + a + (a + at)a = a + (a + at)a yielding $a \in L_k(b), b \in L_k(a)$ so that $L_k(a) = L_k(b)$, i.e., $a\overline{\mathcal{L}}b$. Again we can write a + b + b(b + sb) = b + b(b + sb) and b + a + a(a + ta) = a + a(a + ta) yielding $a \in R_k(b), b \in R_k(a)$ so that $R_k(a) = R_k(b)$. Thus $a\overline{\mathcal{R}}b$. Consequently, $\overline{\mathcal{B}} \subseteq \overline{\mathcal{H}}$. (2) Let S be k-regular, and $x\overline{\mathcal{H}}y$. Then one has $L_k(a) = L_k(b), R_k(a) = R_k(b)$. Since S is k-regular, by Lemmas 3.3 and 3.4, we get $B_k(a) = \overline{R_k(a)L_k(a)} = R_k(a) \cap L_k(a)$. Then $B_k(a) = R_k(a) \cap L_k(a) = R_k(b) \cap L_k(b) = B_k(b)$ yielding $a\overline{\mathcal{B}b}$. Consequently, $\overline{\mathcal{B}} = \overline{\mathcal{H}}$.

In the following theorem we characterize the minimal k-bi-ideals in a semiring via the relation $\overline{\mathcal{B}}$.

Theorem 4.3. A k-bi-ideal B of a semiring S is minimal if and only if it is a $\overline{\mathcal{B}}$ -class.

Proof. Let B be a minimal k-bi-ideal of a semiring S, and $a, b \in B$. Then by Lemma 4.1, one gets $B_k(a) = B_k(b)$. This implies that $a\overline{B}b$. Thus B is a \overline{B} -class. Conversely, suppose that B is a \overline{B} -class, and K a k-bi-ideal of S such that $K \subseteq B$. Let $x \in B, y \in K$. Then $x, y \in B$ giving that $x\overline{B}y$, i.e., $B_k(x) = B_k(y)$. Then $x \in B_k(x) = B_k(y) \subseteq K$. Therefore $x \in K$. Thus $B \subseteq K$. Consequently, B is minimal. \Box

Theorem 4.4. A k-bi-ideal B in a k-regular semiring S is minimal if and only if B is an $\overline{\mathcal{H}}$ -class of S.

Proof. Let B be a minimal k-ideal of S. Then by Lemma 4.1 and Theorem 4.3, we find that B is an $\overline{\mathcal{H}}$ -class of S. Converse part follows from the Lemma 4.2 and Theorem 4.3.

In the following theorem we characterize the minimal k-bi-ideals in a completely k-regular semiring via k-bi-ideals generated by k-idempotent elements. **Theorem 4.5.** A k-bi-ideal B of a completely k-regular semiring S is minimal if and only if $B_k(a) = B_k(e)$ for all $a \in B$ and for all $e \in E_k(B)$.

Proof. Let B be a minimal k-bi-ideal of S, and $a \in B, e \in E_k(B)$. Then $a, e \in B$, and so by Lemma 4.1, one gets $B_k(a) = B_k(e)$. Conversely suppose that the given conditions hold, and let K be a k-bi-ideal of S such that $K \subseteq B$. Let $x \in K, b \in B$. Since S is completely k-regular, there exists an $s \in S$ such that $x + xsx = xsx, xs + xs^2x = xs^2x, sx + xs^2x = xs^2x$. Then $xs, sx \in E_k(S)$. Now $xs + xs^2x = xs^2x \in \overline{xSx} = B_k(x)$ implies $xs \in B_k(x) \subseteq B$ so that x = xswxs. Adding $xswxs^2x$ on both sides we get $b + xsw(xs + xs^2x) = xsw(xs + xs^2x)$. This implies $b + xswxs^2x \in \overline{xSx} = B_k(x)$ so that $b \in B_k(x) \subseteq K$, i.e., $b \in K$. Therefore $B \subseteq K$. Consequently, B is minimal. \Box

Corollary 4.6. A k-bi-ideal B of a completely k-regular semiring S is minimal if and only if $B_k(e) = B_k(f)$ for all $e, f \in E_k(B)$.

Proof. Let B be a minimal k-bi-ideal of S, and $e, f \in E_k(B)$. Then by Lemma 4.1, one gets $B_k(e) = B_k(f)$. Conversely, suppose that the given conditions hold, and $a \in B, e \in E_k(B)$. Then as in the proof of (1) of Lemma 3.1, for this $a \in B$, there is $z = a^2xa^2xa^2xa^2$ such that $a + aza = aza, a + a^2z = a^2z$ and $a + za^2 = za^2$. Since B is a k-bi-ideal of $S, z = a(axa^2xa^2xa)a \in BSB \subseteq B$. Consequently, $az \in E_k(B)$. Since $e, az \in E_k(B)$, one gets $B_k(az) = B_k(e)$. Now adding aza^2z on both sides of a + aza = aza, we get $a + az(a + a^2z) = az(a + a^2z)$, that is, a + az(a)az = az(a)az. This yields $a \in B_k(az)$. Also az + azaz = azaz gives $az + a(zaa^2xa^2xa^2xa)a = a(zaa^2xa^2xa^2xa)a$, and so $az \in B_k(a)$. Now $B_k(a) = B_k(az) = B_k(e)$, and then by Theorem 4.5, B is a minimal k-bi-ideal of S.

In [11], Mondal and Bhuniya defined \mathcal{B} -simple semirings. In this paper we rename it by k-bi-simple semirings. Then a semiring S is called k-bi-simple if it has no non-trivial proper k-bi-ideal.

Example 4.7. Let \mathbb{R}^+ denote the set of all positive real numbers, and consider the group (\mathbb{R}^+, \cdot) . Let $P_f(\mathbb{R}^+)$ be the set of all finite subsets of \mathbb{R}^+ . Define + and \cdot on $P_f(\mathbb{R}^+)$ by: $A + B = A \cup B$ and $A \cdot B = \{ab \mid a \in A, b \in B\}$ for all $A, B \in P_f(\mathbb{R}^+)$. Then $(P_f(\mathbb{R}^+), +, \cdot)$ is a k-bi-simple semiring.

Then we have the following lemma:

Lemma 4.8. [Lemma 3.1 [11]] In a semiring S the following conditions are equivalent:

- 1. S is a t-k-simple semiring;
- 2. S is a k-bi-simple $(\overline{\mathcal{B}}$ -simple) semiring;
- 3. S is a $\overline{\mathcal{H}}$ -simple semiring.

Now as in Remark 2.6 [11], we find that that every k-bi-simple semiring is a k-regular semiring. Now we are in a position to characterize the k-bi-simple semirings via k-bi-ideals generated by k-idempotent elements.

Theorem 4.9. A semiring S is k-bi-simple if and only if S is k-regular and for all $e, f \in E_k(S), B_k(e) = B_k(f)$.

Proof. Let S be a k-bi-simple semiring and $e, f \in E_k(S)$. Then by hypothesis, we have $B_k(e) = B_k(f)$. Also, every k-bi-simple semiring is k-regular. Conversely, suppose that the given conditions hold, and let B be a k-bi-ideal of S. We are interested to show B = S. For, let $s \in S, b \in B$. Since S is k-regular, there are $x, y \in S$ such that s + sxs = sxs and b + byb = byb. Then sx, xs, by, yb are all in $E_k(S)$. By hypothesis, we get $B_k(sx) = B_k(by)$ and $B_k(xs) = B_k(yb)$. This implies $sx\overline{B}by$ and $xs\overline{L}yb$. Now there exist $u, v \in S$ such that sx + byu = byu and xs + vyb = vyb. Now there exist $u, v \in S$ such that sx + sxs = sxs we have s + sx(s + sxs) = sx(s + sxs). This implies s + sxsx = sxsx and both sides on can write s + (sx + byu)s(xs + vyb) = (sx + byu)s(xs + vyb), i.e., $s + byusvyb = byusvyb \in \overline{bSb} = B_k(b)$ so that $s \in B_k(b) \subseteq B$ yielding $s \in B$. Thus $S \subseteq B$ so that S = B, whence B is k-bi-simple.

In the following theorem we characterize the minimal k-bi-ideals by its k-bi-simplicity. Before that we have the lemma:

Lemma 4.10. If B is a k-bi-ideal of a semiring S, then for $a \in S$, \overline{aBa} is a k-bi-ideal of S.

Proof. Let $x, y \in \overline{aBa}$. Then there exist $b_1, b_2 \in B$ such that $x + ab_1a = ab_1a, y + ab_2a = ab_2a$. These yield x + aba = aba, y + aba = aba, where $b = b_1 + b_2 \in B$. Then $(x + y) + aba = aba \in \overline{aBa}$ implies that $x + y \in \overline{aBa}$. If $s \in S, b \in \overline{aBa}$, then there exists a $z \in B$ such that b + aza = aza. Now $zasaz \in B$, since B is a k-bi-ideal of S. Multiplying both sides of b + aza = aza by sb on the right, we have bsb + azasb = azasb. Adding azasaza on both sides we get bsb + azas(b + aza) = azas(b + aza). This implies $bsb + azasaza = azasaza \in aBa$ so that $bsb \in \overline{aBa}$. Thus $\overline{aBa}S\overline{aBa} \subseteq \overline{aBa}$. Now to show that \overline{aBa} is a k-set, suppose that $x \in S, y \in \overline{aBa}$ satisfying x + y = y. Now there exists a $b \in B$ such that y + aba = aba. This implies x + y + aba = aba, that is, $x + aba = aba \in aBa$ yielding $x \in \overline{aBa}$. Consequently, \overline{aBa} is a k-bi-ideal of S.

Theorem 4.11. Let S be a semiring. Then a k-bi-ideal B is minimal if and only if it is k-bi-simple.

Proof. Let B be a minimal k-bi-ideal of S, and T a k-bi-ideal of B. Let $t \in T$. then one gets $\overline{tBt} \subseteq \overline{TBT} \subseteq \overline{T} = T \subseteq B$. By Lemma 4.10, \overline{tBt} is a k-bi-ideal of S, and B is minimal in S, we get $\overline{tBt} = B$. This implies T = B, whence B is k-bi-simple. Conversely, suppose that B is a k-bi-simple, and C a k-bi-ideal of S with $C \subseteq B$. Let $c \in C$. Then \overline{cBc} is a k-bi-ideal of B. Since B is a *k*-bi-simple, $\overline{cBc} = B$. Then $B = \overline{cBc} \subseteq \overline{CBC} \subseteq \overline{CSC} \subseteq \overline{C} = C$ yielding B = C. Consequently, B is minimal.

Finally we characterize the completely k-regular semirings via k-bi-ideals generated by k-idempotent elements.

Theorem 4.12. A semiring S is completely k-regular semiring if and only if (1) for every k-bi-ideal B of S, there is some $e \in E_k(S)$ such that $B = B_k(e)$, and

(2) for every $x \in B$, $B_k(x^2) = B_k(e)$.

Proof. Let S be a completely k-regular semiring.

(1): Let B be a k-bi-ideal of S, and $a \in B$. Now by the proof of (1) of Lemma 3.1, one has $a + aza = aza, a + a^2z = a^2z$ and $a + za^2 = za^2$, where $z = a^2xa^2xa^2xa^2$. Now adding aza^2z on both sides of a + aza = aza one gets $a + az(a + a^2z) = az(a + a^2z)$, i.e. $a + azaaz = azaaz = eae \in e\overline{Se} = B_k(e)$ so that $a \in B_k(e)$ yielding $B \subseteq B_k(e)$. Now suppose that $y \in B_k(e) = e\overline{Se}$. Then there exists a $u \in S$ such that y + azuaz = azuaz, i.e. $y + azua^3xa^2xa^2xa^2 = azua^3xa^2xa^2xa^2 \in \overline{aSa} = B_k(a) \subseteq B$ yielding $B_k(a) = B = B_k(e)$.

(2): Let $x \in B$. Then $x^2 \in B$, whence by (1), there exists an $f \in E_k(S)$ such that $B = B_k(x^2) = B_k(f)$. Consequently, $B_k(x^2) = B_k(f) = B = B_k(e)$, by (1).

Conversely, suppose that the conditions hold, and $a \in S$. Consider the k-biideal $B_k(a)$ of S. Then there exists an $e \in E_k(S)$ such that $B_k(a) = B_k(e)$. Since $a^2 \in B_k(a)$, by condition (2), it follows that $B_k(e) = B_k(a^2)$. Then $a + a^2sa^2 = a^2sa^2$ yielding a is completely k-regular element. Consequently, S is completely k-regular.

Acknowledgement

We express our deepest gratitude to the assigned journal editor Prof. Petar Marković for communicating the paper and to the referees of the paper for their important valuable comments.

References

- ADHIKARI, M. R., SEN, M. K., AND WEINERT, H. J. On k-regular semirings. Bull. Calcutta Math. Soc. 88, 2 (1996), 141–144.
- [2] BHUNIYA, A. K., AND JANA, K. Bi-ideals in k-regular and intra k-regular semirings. Discuss. Math. Gen. Algebra Appl. 31, 1 (2011), 5–25.
- [3] BHUNIYA, A. K., AND MONDAL, T. K. Distributive lattice decompositions of semirings with a semilattice additive reduct. *Semigroup Forum 80*, 2 (2010), 293–301.
- [4] BHUNIYA, A. K., AND MONDAL, T. K. Semirings which are distributive lattices of k-simple semirings. Southeast Asian Bull. Math. 36, 3 (2012), 309–318.
- [5] BHUNIYA, A. K., AND MONDAL, T. K. On the least distributive lattice congruence on a semiring with a semilattice additive reduct. Acta Math. Hungar. 147, 1 (2015), 189–204.

- [6] BOURNE, S. The Jacobson radical of a semiring. Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 163–170.
- [7] HEBISCH, U., AND WEINERT, H. J. Semirings: algebraic theory and applications in computer science, vol. 5 of Series in Algebra. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. Translated from the 1993 German original.
- [8] HOWIE, J. M. Fundamentals of semigroup theory, vol. 12 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications.
- [9] JANA, K. Quasi k-ideals in k-regular and intra k-regular semirings. Pure Math. Appl. (PU.M.A.) 22, 1 (2011), 65–74.
- [10] MONDAL, T. K. Distributive lattices of t-k-Archimedean semirings. Discuss. Math. Gen. Algebra Appl. 31, 2 (2011), 147–158.
- [11] MONDAL, T. K., AND BHUNIYA, A. K. Semirings which are distributive lattices of t-k-simple semirings. Tbilisi Math. J. 8, 2 (2015), 149–157.
- [12] SEN, M. K., AND BHUNIYA, A. K. On additive idempotent k-regular semirings. Bull. Calcutta Math. Soc. 93, 5 (2001), 371–384.
- [13] SEN, M. K., AND BHUNIYA, A. K. On additive idempotent k-Clifford semirings. Southeast Asian Bull. Math. 32, 6 (2008), 1149–1159.
- [14] SEN, M. K., AND BHUNIYA, A. K. On semirings whose additive reduct is a semilattice. *Semigroup Forum* 82, 1 (2011), 131–140.
- [15] VANDIVER, H. S. Note on a simple type of algebra in which the cancellation law of addition does not hold. *Bull. Amer. Math. Soc.* 40, 12 (1934), 914–920.

Received by the editors June 2, 2017 First published online June 5, 2018