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SECOND MULTIPLICATION MODULES

H. Ansari-Toroghy1 and F. Farshadifar23

Abstract. In this paper, we introduce second multiplication modules
and obtain some related results. Also, we provide a counterexample to a
previously published result concerning multiplication modules.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and
Z will denote the ring of integers.

Let M be an R-module. M is said to be a multiplication module if for any
submodule N of M , there exists an ideal I of R such that N = IM [9]. M is
said to be a second module if M ̸= 0 and for each a ∈ R, the endomorphism
M

a→M is either surjective or zero. S is said to be a second submodule of M
if S is a submodule of M which is a second module [19]. The (second) socle of
N is defined as the sum of all second submodules of M contained in N and it
is denoted by soc(N). In case N does not contain any second submodule, the
socle of N is defined to be (0). Also, N ̸= 0 is said to be a socle submodule of
M if soc(N) = N [5].

Set Specs(M) = {S : S is a second submodule of M}. We call this set the
second spectrum of M [7].

The purpose of this paper is to introduce the notion of second multiplication
modules and provide some information concerning this new class of modules.
In Theorem 2.6 of [13], the authors showed that every faithful multiplication
module is finitely generated. We show that this is not true in general (see
Remark 2.18 and Example 2.19).

2. Main Result

Definition 2.1. We say that an R-module M is a second multiplication (s-
multiplication for short) module if M does not have any second submodule or
for every second submodule S of M , we have S = IM , where I is an ideal of
R.
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Lemma 2.2. An R-module M is an s-multiplication module if and only if
S = (S :R M)M for each second submodule S of M .

Proof. Straightforward.

Remark 2.3. It is clear that every multiplicationR-module is an s-multiplication
R-module. However, the converse is not true in general. For example, the Z-
module Q (here Q denotes the field of rational numbers) is an s-multiplication
module while, it is not a multiplication Z-module.

A submodule N of an R-module M is said to be pure if IN = N ∩ IM for
every ideal I of R [1].

A submodule N of an R-module M is said to be copure if (N :M I) =
N + (0 :M I) for every ideal I of R [3].

Proposition 2.4. Let M be an s-multiplication R-module. Then we have the
following.

(a) If N is a pure submodule of M , then N is an s-multiplication R-module.

(b) Every direct summand of M is an s-multiplication R-module.

(c) If AnnR(M) is a prime ideal of R, then every submodule of M is an
s-multiplication R-module.

(d) If every second submodule of M is copure, then every submodule of M
is an s-multiplication module.

(e) If AnnR(M) is a prime ideal of R, then every second submodule of M of
the form (0 :M I) is equal to M .

Proof. (a) Let S be a second submodule of N . Then by hypotheses, S = IM
for some ideal I of R. As N is pure, IN = N ∩ IM . Hence S = N ∩ S = IN .

(b) This follows from part (a) because every direct summand ofM is a pure
submodule of M .

(c) Let N be a submodule of M and S a second submodule of N . Then by
hypotheses, S = IM for some ideal I of R. As S is second, we have IS = 0 or
IS = S. If IS = 0, then 0 = IS = I2M . This implies that S = 0, which is
a contradiction. Therefore, IS = S. Hence S = IS ⊆ IN ⊆ IM = S and so
S = IN .

(d) Let N be a submodule of M and S a second submodule of N . Then
S = IM for some ideal I of R. Since S is copure,M = (S :M I) = S+(0 :M I).
This implies that

S = IM = I(S + (0 :M I)) = IS + I(0 :M I) = IS + 0 = IS.

Thus S = IS ⊆ IN ⊆ IM = S, as required.
(e) Let (0 :M I) be a second submodule of M . Then (0 :M I) ̸= 0 and

by assumption, (0 :M I) = JM for some ideal J of R. Thus JIM = 0.
As (0 :M I) ̸= 0 and AnnR(M) is a prime ideal of R, IM = 0. Hence
(0 :M I) =M .
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It is clear that every homomorphic image of a multiplication R-module is a
multiplication R-module. But in the following example we see that this is not
true for s-multiplication R-modules in general.

Example 2.5. By Remark 2.3, Q as a Z-module is an s-multiplication R-
module. But its homomorphic image Q/Z is not an s-multiplication R-module
because for the second submodule Zp∞ of Q/Z, we have Zp∞ ̸= I(Q/Z) for
each ideal I of Z.

Lemma 2.6. Let M be a second R-module. Then M is an s-multiplication
R-module if and only if Specs(M) = {M}.

Proof. Let M be an s-multiplication R-module and S be a second submodule
of M . Then by assumption, S = IM for some ideal I of R. As M is second,
IM = 0 or IM = M . If IM = 0, then S = 0, a contradiction. Hence
S = IM =M , as required. The converse is clear.

Example 2.7. Let p be a prime number and considerM = Zp∞ as a Z-module.
Then M is not an s-multiplication module since G1 = ⟨1/p + Z⟩ is a second
submodule of M , but there does not exist an ideal I of Z such that G1 = IM .

A proper submodule N of an R-module M is said to be completely irre-
ducible if N =

∩
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies

that N = Ni for some i ∈ I. It is easy to see that every submodule of M is an
intersection of completely irreducible submodules of M . Thus the intersection
of all completely irreducible submodules of M is zero [12].

Remark 2.8. Let N and K be two submodules of an R-module M . To prove
N ⊆ K, it is enough to show that if L is a completely irreducible submodule
of M such that K ⊆ L, then N ⊆ L.

Recall that an R-module M is said to be a finitely cogenerated R-module if
for any family of submodules {Ni|i ∈ I} of M , if ∩i∈INi = 0, then ∩i∈FNi = 0
for a finite subset F of I.

Let P be a prime ideal of R and N be a submodule of an R-module M .
The P -interior of N relative to M is defined [5, 2.7] as the set

IMP (N) = ∩{L | L is a completely irreducible submodule of M and

rN ⊆ L for some r ∈ R− P}.

Lemma 2.9. (See [5]). Let P be a prime ideal of R and N be a submodule of
an R-module M . If M/IMP (N) is a finitely cogenerated R-module, then there
exists r ∈ R− P such that rN ⊆ IMP (N).

Theorem 2.10. Let R be an integral domain (not a field) and let M be
an s-multiplication R-module such that M/IM0 (M) is finitely cogenerated and
IM0 (M) ̸= 0. Then Specs(M) = {IM0 (M)}.
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Proof. By [5, 2.9], IM0 (M) is a second submodule of M and from the proof
of [5, 2.9] we infer AnnR((0 :M 0)) = AnnR(M) = 0. Thus the conditions of
[5, 2.8] are satisfied in the case when N := M and P := 0. By the proof of
[5, 2.8], we obtain AnnR(I

M
0 (M)) = 0. Thus it is suffices to show that if S

is a second submodule of M , then S = IM0 (M). By hypothesis, S = IM for
some non-zero ideal I of R. Let L be a completely irreducible submodule of
M such that S ⊆ L. Then IM ⊆ L. Since I ̸= 0, it follows that IM0 (M) ⊆ L.
Hence IM0 (M) ⊆ S by Remark 2.8. For the converse, let L be a completely
irreducible submodule ofM such that IM0 (M) ⊆ L. Then by Lemma 2.9, there
exists 0 ̸= r ∈ R such that rM ⊆ L. Since IM0 (M) ⊆ S, hence AnnR(S) ⊆
AnnR(I

M
0 (M)) = 0. Thus we have S = rS ⊆ rM ⊆ L. Hence S ⊆ IM0 (M) by

Remark 2.8. Therefore, S = IM0 (M), as required.

Proposition 2.11. Let I be an ideal of R such that I ⊆ Jac(R), where Jac(R)
denotes the Jacobson radical of R, and M be an s-multiplication R-module
which has a minimal submodule, Then IM ̸=M .

Proof. Assume contrary that IM =M . Let Rm for some m ∈M be a minimal
submodule of M . Then Rm is a second submodule of M . Since M is an s-
multiplication R-module, there exists an ideal J of R such that Rm = JM .
Thus

Rm = JM = JIM = IJM = Im.

Hence (1 − a)m = 0 for some a ∈ I ⊆ Jac(R). This implies that m = 0, a
contradiction.

A family {Ni}i∈I of submodules of an R-module M is said to be an inverse
family of submodules of M if the intersection of two of its submodules again
contains a module in {Ni}i∈I . Also, M satisfies the Grothendieck’s condition
AB5∗ (the property AB5∗ in short) if for every submodule K of M and every
inverse family {Ni}i∈I of submodules of M , K + ∩i∈INi = ∩i∈I(K + Ni).
Artinian and uniserial modules are examples of modules which satisfies the
property AB5∗ [18, p.435].

Recall that an R-module M is said to be fully copure if every submodule of
M is copure [4].

Theorem 2.12. Let M be an s-multiplication R-module. Then we have the
following.

(a) If M is a fully copure R-module which satisfies the property AB5∗, then
M is a multiplication R-module.

(b) If M is a semisimple R-module, then M is a multiplication R-module.

Proof. (a) Let N be a non-zero submodule of M . By [5, 3.6], soc(N) = N .
Thus

N = soc(N) =
∑

S∈Specs(N)

S =
∑

S∈Specs(N)

(S :M)M = (
∑

S∈Specs(N)

(S :M))M.
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Set J =
∑

S∈Specs(N)(S :M). Then N = JM , as required.

(b) SinceM is an s-multiplication R-module, AnnR(M) ̸= AnnR(M/S) for
each second submodule S of M . Thus the result follows from [2, 3.6].

Let M be an R-module. A prime ideal P of R is said to be associated with
M if there exists x ∈ M such that P is equal to the annihilator of x. The set
of prime ideals associated with M is denoted by AssR(M), or simply Ass(M)
[10].

An R-module M is said to be a weak comultiplication module if M does
not have any second submodule or for every second submodule S of M there
exists an ideal I of R such that S = (0 :M I), equivalently M is a weak
comultiplication module if and only if S = (0 :M AnnR(S)) for every second
submodule S of M or Specs(M) = ∅ [6].

Theorem 2.13. Let R be a Noetherian ring and M be a weak comultiplication
s-multiplication faithful R-module. Then M has at most a finite number of
second submodules.

Proof. Let S be a second submodule of M . Then there exists an ideal I of R
such that S = IM . Thus as M is faithful,

AnnR(S) = AnnR(IM) = AnnR(I) = AnnR(
∑
a∈I

Ra) = ∩a∈IAnnR(Ra).

Since S is second, AnnR(S) is a prime ideal of R. Therefore, AnnR(S) =
AnnR(Ra) for some a ∈ I because I is a finitely generated ideal of R and
so {Ra}a∈I is a finite set. Hence AnnR(S) ∈ AssR(R). As R is Noetherian,
AssR(R) is a finite set [14, 7.G]. Since M is a weak comultiplication module,
there is a bijective correspondence between the set of second submodules of M
and the set of their annihilators. So the number of second submodules of M is
finite.

Let M be an R-module and c the function from M to the set of ideals of R
defined by

c(x) = ∩{I : I is an ideal of R and x ∈ IM}.

M is said to be a content R-module if x ∈ c(x)M , for all x ∈M [15].

Lemma 2.14. (See [15]). Let M be an R-module. The following statements
are equivalent:

(1) M is a content R-module.

(2) For any non-empty family of ideals {Ii}i∈I of R, ∩i∈IIiM = (∩i∈IIi)M .

Recall that a topological space X is Noetherian provided that the open (re-
spectively, closed) subsets of X satisfy the ascending (respectively, descending)
chain condition, or the maximal (respectively, minimal) condition [8] and [10].

Let N be a submodule of an R-module M , V s(N) = {S ∈ Specs(M) :
AnnR(N) ⊆ AnnR(S)} and Set ζs(M) = {V s(N) : N ≤ M}. Then there
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exists a topology, τs say, on Specs(M) having ζs(M) as the family of all closed
sets. We call the topology τs the Zariski topology on Specs(M)[7].

The Zariski socle of a submoduleN of anR-moduleM , denoted by Z.soc(N)
is the sum of all members of V s(N), that is,

Z.soc(N) =
∑

{S : S ∈ V s(N)} =
∑

{S : AnnR(N) ⊆ AnnR(S), S ∈ Specs(M)}.

If V s(N) = ∅, then Z.soc(N) = 0. We say that a submodule N of M is a
Zariski socle submodule if N = Z.soc(N) [11].

Theorem 2.15. Let R be an Artinian ring andM be a content s-multiplication
R-module. Then we have the following.

(a) M satisfies dcc on socle submodules.

(b) M has only a finite number of maximal second submodules.

(c) τs is a Noetherian space.

Proof. (a) By the proof of Theorem 2.12 (a), for each socle submodule N of
M , N = soc(N) = IM for some ideal I of R. Now let

I1M ⊇ I2M ⊇ I3M ⊇ ....

be a descending chain of socle submodules of M . Then since M is a content
module, ∩∞

i=1IiM = (∩∞
i=1Ii)M . AsR is an Artinian ring, there exists a positive

integer n such that ∩∞
i=1IiM = (∩n

i=1Ii)M = InM , as required.
(b) Since by part (a),M satisfies dcc on socle submodules, this follows from

[5, 2.5].
(c) This follows from [11, 4.1], part (a), and the fact that every Zariski socle

submodule of M is a socle submodule of M .

Recall that a commutative ring R satisfies the double annihilator property
if for each ideal I of R we have I = AnnRAnnR(I) [1].

Proposition 2.16. Suppose R satisfies the double annihilator property andM
is a faithful s-multiplicationR-module. Then the natural map ψs : Specs(M) →
Spec(R/AnnR(M)) defined by S 7→ AnnR(S)/AnnR(M) is injective.

Proof. Let S1 and S2 be two second submodules of M such that ψs(S1) =
ψs(S2). Then by assumption, there exist ideals I and J of R such that S1 = IM
and S2 = JM . Now since M is faithful,

AnnR(I) = AnnR(IM) = AnnR(S1) = AnnR(S2) = AnnR(JM) = AnnR(J).

Thus as R satisfies the double annihilator property, I = J , as required.

Lemma 2.17. Let M be an R-module. Then M is a finitely generated R-
module if and only if M is a finitely generated R/AnnR(M)-module.

Proof. This is clear.
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Remark 2.18. In Theorem 2.6 of [13], the authors showed that every faithful
multiplication module M is finitely generated. This implies that every mul-
tiplication R-module is finitely generated by Lemma 2.17. But the following
example shows that this is not true in general (this mistake in the proof of The-
orem 2.6 occurs because the authors accepted that the product of Pq, where
P and q are maximal ideals of R, is a prime ideal without any justification.
Clearly, the product of two maximal ideals need not be a prime ideal in general.
Hence they can not use the Theorem 2.3 to complete the proof).

Example 2.19. (See [17, 4.30]) Let K be a field, R be the polynomial ring
K[x1, x2, x3, ...] in a countably infinite set of indeterminates x1, x2, x3, .., A =
x1R + x2R + x3R + ..., B = (x1 − x21)R + (x2 − x22)R + (x3 − x23)R + ..., and
M = A/B. Then M is a multiplication R-module. But M is not finitely
generated.

The following lemma is known, but we write it here for the sake of references.

Lemma 2.20. Let M be a finitely generated second R-module. Then M is a
semisimple R-module.

Proof. Since M is second, M ̸= 0. Since M is finitely generated, M has
a maximal submodule, U say. Thus M/U is a simple R-module and hence
P := AnnR(M/U) is a maximal ideal of R. Clearly, AnnR(M) ⊆ P . Now let
r ∈ P . Then r(M + U)/U = 0. As M is second, rM = M or rM = 0. If
rM = M , then M = U which is a contradiction. Thus r ∈ AnnR(M). Hence
AnnR(M) = P . Thus by [16, 3.7], M is a semisimple R/P -module. Hence M
is a semisimple R-module.

Theorem 2.21. LetM be a finitely generated second s-multiplication R-module.
Then M is a simple R-module.

Proof. By Lemma 2.20, M is a semisimple R-module. Thus by Theorem 2.12
(b), M is a multiplication R-module. Now let N be a submodule of M . Then
N = IM for some ideal I of R. As M is second, IM = 0 or IM = M , as
desired.
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