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SUFFICIENT CONDITIONS FOR PERIODICITY OF
MEROMORPHIC FUNCTION AND ITS SHIFT

OPERATOR SHARING ONE OR MORE SETS WITH
FINITE WEIGHT

Abhijit Banerjee12 and Goutam Haldar3

Abstract. In this paper, we investigate the uniqueness property of
meromorphic functions together with its shift counterpart sharing one
or two sets. With the help of the range set introduced in [2], we have
improved the result of Bhusnurmath-Kabbur [3] and obtain the unique
range set corresponding to shift operators. Our paper also improves the
result of Frank-Reinder’s [5] in some sense.

AMS Mathematics Subject Classification (2010): 30D35

Key words and phrases: meromorphic function; shared sets; shift opera-
tor; weighted sharing

1. Introduction Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f − a and g − a have the same
set of zeros with the same multiplicities, we say that f and g share the value a
CM (counting multiplicities), and if we do not consider the multiplicities then
f and g are said to share the value a IM (ignoring multiplicities).

We have used the standard notations from Nevalinna’s theory of value dis-
tribution of meromorphic functions as in [6]. We recall that T (r, f) denotes
the Nevanlinna characteristic function of the non-constant meromorphic func-
tion and N(r, a; f) (N(r, a; f)) denotes the counting function (reduced counting
function) of a-points of meromorphic function f . A meromorphic function a
is said to be a small function of f provided that T (r, a) = S(r, f), that is
T (r, a) = o(T (r, f)) as r −→ ∞, outside of a possible exceptional set of finite
linear measure. Let S(f) be the set of all small functions of f(z). For a set
S ⊂ S(f), we define the following:

Ef (S) =
∪
a∈S

{z|f(z)− a(z) = 0, countingmultiplicities},

Ef (S) =
∪
a∈S

{z|f(z)− a(z) = 0, ignoringmultiplicities}.
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In 2001, an idea of gradation of sharing known as weighted sharing has been
introduced in [8], [9] which measure how close a shared value is to being shared
CM or to being shared IM. In the following definition we explain the notion.

Definition 1.1. [8] Let k be a non-negative integer or infinity. For a ∈ C ∪
{∞}, we denote by Ek(a, f) the set of all a-points of f , where an a point of
multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a, f) = Ek(a, g), we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f, g share the value a with weight
k. Clearly if f, g share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞), respectively.

Definition 1.2. [8] Let S be a set of distinct elements of C ∪ {∞} and k be
a non-negative integer or ∞. We denote by Ef (S, k) the set

∪
a∈S Ek(a, f). If

Ef (S, k) = Eg(S, k), then we say f , g, share the set S with weight k.
Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

The unicity of meromorphic functions sharing sets is an important topic
of the uniqueness theory. First of all, we state the following result of by Li-
Yang[10].

Theorem A. [10] Let m ≥ 2 and n > 2m + 6 with n and n − m having no
common factors. Let a and b be two non-zero constants such that the equation
ωn + aωn−m + b = 0 has no multiple roots. Let S = {ω | ωn + aωn−m + b = 0}.
Then for any two non constant meromorphic functions f and g, the conditions
Ef (S,∞) = Eg(S,∞) and Ef ({∞},∞) = Eg({∞},∞) imply f ≡ g.

Yi-Lin [12] considered the case m = 1 with the condition that two mero-
morphic functions share three sets and got the result as follows.

Theorem B. [12] Let S1 = {ω | ωn+aωn−1+b = 0}, S2 = {0} and S3 = {∞},
where a and b are non-zero constants such that ωn + aωn−1 + b = 0 has no
repeated root and n(≥ 4) an integer. If for two non-constant meromorphic
functions f and g, Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2, 3 and Θ(∞; f) > 0,
then f ≡ g.

Though the standard definitions and notations of the value distribution
theory are available in [6], we explain some definitions and notations which are
used in the paper.

Definition 1.3. [7] For a ∈ C ∪ {∞}, we denote by N(r, a; f |= 1) the count-
ing function of simple a-points of f. For a positive integer m, we denote by
N(r, a; f |≤ m) (N(r, a; f |≥ m)) the counting function of those a-point of f
whose multiplicities are not greater (less) thanm, where each a-point is counted
according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly except that in
counting the a-points of f we ignore the multiplicity. Also N(r, a; f |< m),
N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined similarly.
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Definition 1.4. [9] For a ∈ C ∪ {∞}, we denote by N2(r, a; f) = N(r, a; f) +
N(r, a; f |≥ 2).

Definition 1.5. [9] Let f and g share a value a IM. We denote by N∗(r, a; f, g)
the counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

For, a non-zero complex constant c we define the shift of f(z) by f(z + c).
Recently, a number of papers have focused on shift analogues of the Neva-

linna theory. In particular, there has been an increasing interest in studying
the uniqueness problems related to meromorphic functions and their shift op-
erators.

In 2010, Zhang [14] considered a meromorphic function f(z) sharing sets
with its shift f(z + c) and proved the following result.

Theorem C. [14] Let m ≥ 2 and n ≥ 2m+4 with n and n−m having no com-
mon factors. Let a and b be two non-zero complex constants such that the equa-
tion ωn+aωn−m+b = 0 has no multiple roots. Let S = {ω | ωn+aωn−m+b =
0}. Suppose that f(z) is a non-constant meromorphic function of finite order.
Then Ef(z)(S,∞) = Ef(z+c)(S,∞) and Ef(z)({∞},∞) = Ef(z+c)({∞},∞)
imply f(z) ≡ f(z + c).

Earlier in 1998, Frank-Reinders [5] obtained a result. To demonstrate their
result, we first require the following.

Let the polynomial P∗ be defined as

P∗(ω) =
(n− 1)(n− 2)

2
ωn − n(n− 2)ωn−1 +

n(n− 1)

2
ωn−2 − c,

where n(≥ 3) is an integer and c(̸= 0, 1) is a constant.

Theorem D. [5] Let S = {ω | P∗(ω) = 0}, where P∗(ω) is as defined above and
n(≥ 11) be an integer. Then for any two non-constant meromorphic functions
f and g the condition Ef(z)(S,∞) = Eg(z)(S,∞) implies f ≡ g.

In 2013, Bhusnurmath-Kabbur [3] considered the shift analogue of the above
result with some additional supposition and obtained the following result.

Theorem E. [3] Let n ≥ 8 be an integer and S = {ω | P∗(ω) = 0}. Sup-
pose that f is a non-constant meromorphic function of finite order. Then
Ef(z)(S,∞) = Ef(z+c)(S,∞) and Ef(z)({∞},∞) = Ef(z+c)({∞},∞) implies
f(z) ≡ f(z + c).

Though our main intention is to improve the results of Bhusnurmath-
Kabbur [3] and Frank-Reinders [5] in some sense, we have also explored rig-
orously corresponding three set sharing problems and presented some relevant
issues. In this respect, we have also presented some examples in the last section.

Regarding Theorem E, the following question is inevitable.

Question 1.6. In Theorem E, whether the sharing of the range sets can further
be relaxed?
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To seek the possible answer of the above question is the motivation of the
paper. To this end, the following polynomial introduced in [2] renders an useful
resource. Let for d ∈ C,

(1.1) P (z) = zn − 2n

n−m
zn−m +

n

n− 2m
zn−2m − d.

Then

P
′
(z) = nzn−2m−1(zm − 1)2 = nzn−2m−1

m−1∏
j=0

(z − ωj)
2,

where ωj = cos 2jπ
m + i sin 2jπ

m , j = 0, 1, . . . ,m− 1.
Therefore,

P (0) = −d

and

P (ωj) = ωn
j − 2n

n−m
ωn−m
j +

n

n− 2m
ωn−2m
j − d

= ωn
j

(
1− 2n

n−m
+

n

n− 2m

)
− d

=
2m2ωn

j

(n−m)(n− 2m)
− d

= γj − d,

where γj =
2m2ωn

j

(n−m)(n−2m) , j = 0, 1, 2, . . . ,m − 1. Therefore, if d ̸= 0, γj , j =

0, 1, . . . ,m− 1 all the zeros of the polynomial P (z) given by (1.1) are simple.
Now it is clear that P (z)− P (ωj) = (z − ωj)

3Qn−3(z), where Qn−3(z) is a
polynomial of degree n− 3, j = 0, 1, . . . ,m− 1. Hence,

P (f)− P (ωj) = (f − ωj)
3Qn−3(f).

i.e.,

dF − d− (γj − d) = (f − ωj)
3Qn−3(f),

where

F =
f(z)n−2m(f(z)2m − 2n

n−mf(z)m + n
n−2m )

d
.

i.e.,

(1.2) F − γj
d

=
1

d
(f − ωj)

3Qn−3(f).

i.e.,

F − βj =
1

d
(f − ωj)

3Qn−3(f),
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where

(1.3) βj =
γj
d
, j = 0, 1, . . . ,m− 1.

Throughout the paper we shall denote by a = 3m + 2, b = 4 + 2m +
(4m+2)(7n−3)
(n−1)(3n−1) , q = 2m+ 8m+2

n−1 + (n−2m+2)(4m+1)
(n−2m−1)(nk+n−1) , r = 2m+ (n−2m+2)(4m+1)

(n−2m−1)(nk+n−1)+
4m+1
n−1 .

Let us define χ
n
as follows:

χ
n
=

{
1, if n ≥ 11

0, otherwise.

The following four theorems are the main results of the paper.

Theorem 1.7. Let S = {z | P (z) = 0}, where P (z) is a polynomial given
by (1.1), n(≥ 1), m(≥ 1), with gcd(n,m) = 1 be two positive integers and d ∈
C\{0, γ0, γ1, . . . , γm−1}. Let f(z) be a transcendental meromorphic function of
finite order and c be a non-zero complex constant. If Ef(z)(S, 2) = Ef(z+c)(S, 2)
and n > max{3m+ 2, 2m+ 8}, then

f(z) ≡ f(z + c).

Putting m = 1 in the above theorem we can easily obtain the following
corollary.

Corollary 1.8. Let n(≥ 1) be a positive integer and d1 = (n−1)(n−2)
2 d, where

d is a non-zero complex constant such that d1 ̸= 0, 1, 1
2 . Let

S = {z :
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − d1 = 0}.

Let f(z) be a transcendental meromorphic function of finite order and c be a
non-zero complex constant. Suppose Ef(z)(S, 2) = Ef(z+c)(S, 2) and n ≥ 11.
Then

f(z) ≡ f(z + c).

Theorem 1.9. Let S = {z | P (z) = 0}, where P (z) is a polynomial given by
(1.1) and n(≥ 8), m(≥ 1) with gcd(n,m) = 1, be two positive integers and d(̸=
0, γj , j = 0, 1, . . . ,m − 1) be a complex number. Let f(z) be a transcendental
meromorphic function of finite order and c be a non-zero complex constant.
If Ef(z)({∞}, 2) = Ef(z+c)({∞}, 2) and Ef(z)(S, 2) = Ef(z+c)(S, 2) and n >
max{χna, b}, then

f(z) ≡ f(z + c).

Putting m = 1 in the above theorem, we can easily deduce the following
corollary.



46 Abhijit Banerjee, Goutam Haldar

Corollary 1.10. Let n(≥ 8) be a positive integer and d1 = (n−1)(n−2)
2 d, where

d is a non-zero complex constant such that d1 ̸= 0, 1, 1
2 . Let S be defined as in

Corollary 1.8. Let f(z) be a transcendental meromorphic function of finite or-
der and c be a non-zero complex constant. If Ef(z)({∞}, 2) = Ef(z+c)({∞}, 2)
and Ef(z)(S, 2) = Ef(z+c)(S, 2), then

f(z) ≡ f(z + c).

Theorem 1.11. Let S = {z | P (z) = 0}, where P (z) is a polynomial given by
(1.1) and n(≥ 1), m(≥ 1), k, t with gcd(n,m) = 1 be four positive integers. Let
f(z) be a transcendental meromorphic function of finite order and c be a non-
zero complex constant. Suppose f(z), f(z+c) share (0, 0), (∞, k), Ef(z)(S, t) =

Ef(z+c)(S, t), where 1 ≤ k < ∞, t > 3
2 − 3

n−2m−1 − 2
n−1 − n−2m+2

(n−2m−1)(nk+n−1) .

If one of the following conditions hold:

(i) m = 1, n ≥ 5 and d ̸= 0,
2

(n− 1)(n− 2)
,

1

(n− 1)(n− 2)
or

(ii) m ≥ 2, n > max{3m, q} and d ∈ C \ {0, γ0, γ1, . . . , γm−1}, then

f(z) ≡ f(z + c).

Putting m = 1, t = 4 and k = 5 in the above theorem we obtain the
following corollary.

Corollary 1.12. Let n(≥ 5) be a positive integer and d1 = (n−1)(n−2)
2 d, where

d is a non-zero complex constant such that d1 ̸= 0, 1, 1
2 . Let S be defined as

in Corollary 1.8. Let f(z) be a transcendental meromorphic function of finite
order and c be a non-zero complex constant. Suppose f(z), f(z+c) share (0, 0),
(∞, 5) and Ef(z)(S, 4) = Ef(z+c)(S, 4). Then

f(z) ≡ f(z + c).

Theorem 1.13. Let S = {z | P (z) = 0}, where P (z) is a polynomial given by
(1.1) and m(≥ 1), k, t are positive integers such that gcd(n,m) = 1. Let f(z)
be a transcendental meromorphic function of finite order and c be a non-zero
complex constant. Suppose f(z), f(z + c) share (0,∞), (∞, k), Ef(z)(S, t) =

Ef(z+c)(S, t), where 1 ≤ k < ∞, t > 3
2 − 2

n−2m−1 − 2
n−1 − n−2m+1

(n−2m−1)(nk+n−1) .

If one of the following conditions hold:

(i) m = 1, n ≥ 5 and d ̸= 0,
2

(n− 1)(n− 2)
,

1

(n− 1)(n− 2)
or

(ii) m ≥ 2, n > max{3m, r}, d( ̸= 0, γj , j = 0, 1, . . . ,m − 1) be a complex
number, then

f(z) ≡ f(z + c).

Putting m = 1, t = 4 and k = 1 in the above theorem, we get the following
corollary.

Corollary 1.14. Let n(≥ 5) be a positive integer and d1 = (n−1)(n−2)
2 d, where

d is a non-zero complex constant such that d1 ̸= 0, 1, 1
2 . Let S be defined as
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in Corollary 1.8. Let f(z) be a transcendental meromorphic function of finite
order and c be a non-zero complex constant. Suppose f(z), f(z + c) share
(0,∞), (∞, 1) and Ef(z)(S, 4) = Ef(z+c)(S, 4). Then

f(z) ≡ f(z + c).

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.
Let f and g be two non-constant meromorphic functions defined in C. Let us
also define two functions, F and G, in C by

(2.1) F =
fn−2m(f2m − 2n

n−mfm + n
n−2m )

d
,

(2.2) G =
f(z + c)n−2m(f(z + c)2m − 2n

n−mf(z + c)m + n
n−2m )

d
.

We also denote by H, V , H1, V1 and Φ, the following functions

H =
(f ′′

f ′ − 2f
′

f − 1

)
−
(g′′

g′ − 2g
′

g − 1

)
,

V =
f

′

f(f − 1)
− g

′

g(g − 1)
,

H1 =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
,

V1 =
F

′

F (F − 1)
− G

′

G(G− 1)

and

Φ =
F

′

F − 1
− G

′

G− 1
.

Lemma 2.1. [9] Let f , g be two non-constant meromorphic functions such
that they share (1, 1) and H ̸≡ 0. Then

N(r, 1; f |= 1) = N(r, 1; g |= 1) ≤ N(r,H) + S(r, f) + S(r, g).

Lemma 2.2. [1] Let f, g be two non-constant meromorphic functions sharing
(1, t), where 1 ≤ t < ∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +

(
t− 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)].
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Lemma 2.3. Suppose f , g share (1, 0), (∞, 0), (0, 0) and βj, defined as in
(1.3), are non-zero complex numbers. If H ̸≡ 0, then

N(r,H) ≤ N∗(r, 0; f, g) +

m−1∑
j=0

N(r, βj ; f |≥ 2) +

m−1∑
j=0

N(r, βj ; g |≥ 2)

+N∗(r, 1; f, g) +N∗(r,∞; f, g) +N0(r, 0; f
′
) +N0(r, 0; g

′
)

+S(r, f) + S(r, g),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which

are not the zeros of f(f −1)
∏m−1

j=0 (f −βj) and N0(r, 0; g
′
) is similarly defined.

Proof. By the definition of H we verify that the possible poles of H occur
from the following six cases: (i) The common zeros of f and g of different
multiplicities. (ii) The multiple βj- points of f and g for each j = 0, 1, 2, . . . ,m−
1. (iii) Those common poles of f and g, where each such pole of f and g has
different multiplicities related to f and g. (iv) Those common 1-points of f
and g, where each such point has different multiplicities related to f and g. (v)

The zeros of f
′
which are not zeros of f(f − 1)

∏m−1
j=0 (f − βj). (vi) The zeros

of g
′
which are not zeros of g(g − 1)

∏m−1
j=0 (g − βj). Since all poles of H are

simple, the lemma follows.

The next two lemmas are very much similar to the Lemma 2.3. So we only
write the statement of the lemmas in the following.

Lemma 2.4. Suppose f , g share (1, 0), (∞, 0) and βj, defined as in (1.3), are
non-zero complex numbers. If H ̸≡ 0, then,

N(r,H) ≤ N(r, 0; f |≥ 2) +N(r, 0; g |≥ 2) +

m−1∑
j=0

N(r, βj ; f |≥ 2)

+

m−1∑
j=0

N(r, βj ; g |≥ 2) +N∗(r,∞; f, g) +N0(r, 0; f
′
) +N0(r, 0; g

′
)

+N∗(r, 1; f, g) + S(r, f) + S(r, g),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which

are not the zeros of f(f −1)
∏m−1

j=0 (f −βj) and N0(r, 0; g
′
) is similarly defined.

Lemma 2.5. Suppose f , g be two non-constant meromorphic functions sharing
(1, 0) and βj, defined as in (1.3), are non-zero complex numbers. If H ̸≡ 0,
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then

N(r,H)

≤ N(r, 0; f |≥ 2) +N(r, 0; g |≥ 2) +

m−1∑
j=0

N(r, βj ; f |≥ 2) +N∗(r, 1; f, g)

+

m−1∑
j=0

N(r, βj ; g |≥ 2) +N(r,∞; f) +N(r,∞; g) +N0(r, 0; f
′
)

+N0(r, 0; g
′
) + S(r, f) + S(r, g),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which

are not the zeros of f(f −1)
∏m−1

j=0 (f −βj) and N0(r, 0; g
′
) is similarly defined.

Lemma 2.6. [11] Let f be a non-constant meromorphic function and P (f) =
a0+a1f +a2f

2+ . . .+anf
n, where a0, a1, a2, . . . , an are constants and an ̸= 0.

Then
T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.7. [4] Let f be a transcendental meromorphic function of finite order
and c ∈ C− {0} be fixed. Then

T (r, f(z + c)) = T (r, f(z)) + S(r, f(z)).

Lemma 2.8. Let f be a transcendental meromorphic function of finite order
and c ∈ C− {0} be fixed. Then

S(r, f(z + c)) = S(r, f(z)).

Proof. Using Lemma 2.6, it can be easily seen that

S(r, f(z + c)) = o(T (r, f(z + c))) = o(T (r, f(z))) = S(r, f(z)).

Lemma 2.9. Let F and G be given by (2.1) and (2.2), n(≥ 1) an integer and
Φ ̸≡ 0. If F and G share (1,m), f(z) and f(z + c) share (0, p), (∞, k), where
0 ≤ k < ∞, then

{(n− 2m)(p+ 1)− 1}N(r, 0; f |≥ p+ 1)

= {(n− 2m)(p+ 1)− 1}N(r, 0; f(z + c) |≥ p+ 1)

≤ N∗(r, 1;F,G) +N∗(r,∞;F,G) + S(r, f) + S(r, f(z + c)).

Proof. Suppose 0 is an e.v.p. of f(z) and f(z + c). Then the lemma follows
immediately. Next suppose 0 is not an e.v.p. of f(z) and f(z + c). Let z0 be
a zero of f with multiplicity q and a zero of f(z+ c) with multiplicity r. Then
from (2.1) and (2.2), we know that z0 is a zero of F with multiplicity (n−2m)q
and a zero of G with multiplicity (n − 2m)r. We note that F and G have no
zero of multiplicity t, where (n− 2m)p < t < (n− 2m)(p+ 1).
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So, from definition of Φ, it is clear that z0 is a zero of Φ with multiplicity
at least (n− 2m)(p+ 1)− 1.

So, we have,

{(n− 2m)(p+ 1)− 1}N(r, 0; f(z) |≥ p+ 1)

= {(n− 2m)(p+ 1)− 1}N(r, 0; f(z + c) |≥ p+ 1)

≤ N∗(r,∞; f(z), f(z + c)) +N∗(r, 1;F,G) + S(r, f) + S(r, f(z + c)).

Lemma 2.10. Let F, G be given by (2.1) and (2.2), where n(≥ 8) is an integer
and H1 ̸≡ 0. Suppose α1, α2, . . . , α2m are the roots of the equation z2m −
2n

n−mzm + n
n−2m = 0. Suppose also that F, G share (1, t) and f(z), f(z + c)

share (∞, k), (0, 0), where 2 ≤ t < ∞. Then, for the complex numbers βj given
by (1.3), we have

n

(
m+

1

2

)
{T (r, f(z)) + T (r, f(z + c))}

≤ N(r, 0; f(z)) +N(r, 0; f(z + c)) +N∗(r, 0; f(z), f(z + c)) +N(r,∞; f)

+

2m∑
j=1

N2(r, αj ; f(z)) +

2m∑
j=1

N2(r, αj ; f(z + c)) +N(r,∞; f(z + c))

+

m−1∑
j=0

N2(r, βj ;F ) +

m−1∑
j=0

N2(r, βj ;G) +N∗(r,∞; f(z), f(z + c))

−
(
t− 3

2

)
N∗(r, 1;F,G) + S(r, f(z)) + S(r, f(z + c)).

Proof. By the Second Fundamental Theorem of Nevalinna, we have

(m+ 1){T (r, F ) + T (r,G)}

≤ N(r, 0;F ) +N(r, 1;F ) +N(r,∞;F ) +

m−1∑
j=0

N(r, βj ;F ) +N(r, 0;G)

+N(r, 1;G) +N(r,∞;G) +

m−1∑
j=0

N(r, βj ;G)−N0(r, 0;F
′
)−N0(r, 0;G

′
)

+S(r, F ) + S(r,G).
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Now using Lemma 2.1, Lemma 2.2 and Lemma 2.3 and Lemma 2.6, we have

n

(
m+

1

2

)
{T (r, f(z)) + T (r, f(z + c))}

≤ N(r, 0; f(z)) +N(r, 0; f(z + c)) +N∗(r, 0; f(z), f(z + c)) +N(r,∞; f)

+

2m∑
j=1

N2(r, αj ; f(z)) +

2m∑
j=1

N2(r, αj ; f(z + c)) +N(r,∞; f(z + c))

+

m−1∑
j=0

N2(r, βj ;F ) +

m−1∑
j=0

N2(r, βj ;G) +N∗(r,∞; f(z), f(z + c))

−
(
t− 3

2

)
N∗(r, 1;F,G) + S(r, f(z)) + S(r, f(z + c)).

The next two lemmas are very much similar to the Lemma 2.10. So we only
write the statement of the lemmas in the following.

Lemma 2.11. Let F, G be given by (2.1) and (2.2), where n(≥ 8) is an integer
and H1 ̸≡ 0. Suppose α1, α2, . . . , α2m are the same as defined in Lemma 2.10.
Suppose also that F, G share (1, t) and f(z), f(z + c) share (∞, k), where
2 ≤ t < ∞. Then, for the complex numbers βj given by (1.3), we have

n

(
m+

1

2

)
{T (r, f(z)) + T (r, f(z + c))}

≤ 2{N(r, 0; f(z)) +N(r, 0; f(z + c))}+
2m∑
j=1

N2(r, αj ; f(z)) +N(r,∞; f)

+

2m∑
j=1

N2(r, αj ; f(z + c)) +N(r,∞; f(z + c)) +

m−1∑
j=0

N2(r, βj ;F )

+

m−1∑
j=0

N2(r, βj ;G) +N∗(r,∞; f(z), f(z + c))−
(
t− 3

2

)
N∗(r, 1;F,G)

+S(r, f(z)) + S(r, f(z + c)).

Lemma 2.12. Let F, G be given by (2.1) and (2.2), where n ≥ 8 is an integer
and H1 ̸≡ 0 and let α1, α2, . . . , α2m be the same as defined in Lemma 2.10.
Suppose F, G share (1, t). Then, for the complex numbers βj as given by (1.3),
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we have

n

(
m+

1

2

)
{T (r, f(z)) + T (r, f(z + c))}

≤ 2{N(r, 0; f(z)) +N(r, 0; f(z + c))}

+
2m∑
j=1

N2(r, αj ; f(z)) +
m−1∑
j=0

N2(r, βj ;F )

+

2m∑
j=1

N2(r, αj ; f(z + c)) + 2{N(r,∞; f(z)) +N(r,∞; f(z + c))}

+

m−1∑
j=0

N2(r, βj ;G)−
(
t− 3

2

)
N∗(r, 1;F,G) + S(r, f(z)) + S(r, f(z + c)).

Lemma 2.13. Let F, G be given by (2.1) and (2.2), n ≥ 8 is an integer and
V1 ̸≡ 0. Suppose also F, G share (1, t), and f(z), f(z + c) share (∞, k), (0, 0),
where t, k and p are non-negative integers. Then the poles of F and G are
zeros of V1 and

(nk + n− 1)N(r,∞; f(z) |≥ k + 1)

= (nk + n− 1)N(r,∞; f(z + c)) |≥ k + 1)

≤ N∗(r, 0; f(z), f(z + c)) +

2m∑
j=1

N(r, αj ; f(z)) +

2m∑
j=1

N(r, αj ; f(z + c))

+N∗(r, 1;F,G) + S(r, f(z)) + S(r, f(z + c)),

where αi, i = 1, 2, . . . , 2m has the same meaning as in Lemma 2.11.

Proof. Since f(z), f(z+c) share (∞; k), it follows that F, G share (∞;nk) and
so a pole of F with multiplicity p(≥ nk + 1) is a pole of G with multiplicity
r(≥ nk+1) and vice versa. We note that F and G have no pole of multiplicity
q where nk < q < nk + n. Now using the Milloux Theorem [[6], p. 55], we get
from the definition of V1,

m(r, V1) = S(r, f(z)) + S(r, f(z + c)).
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Hence

(nk + n− 1)N(r,∞; f |≥ k + 1)

= (nk + n− 1)N(r,∞; f(z + c) |≥ k + 1)

≤ N(r, 0;V1)

≤ T (r, V1) +O(1)

≤ N(r,∞;V1) +m(r, V1) +O(1)

≤ N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f(z)) + S(r, f(z + c))

≤ N∗(r, 0; f(z), f(z + c)) +

2m∑
j=1

N(r, αj ; f(z)) +

2m∑
j=1

N(r, αj ; f(z + c))

+N∗(r, 1;F,G) + S(r, f(z)) + S(r, f(z + c)),

where αi, i = 1, 2, . . . , 2m has the same meaning as in Lemma 2.11.

The proof of the following lemma is similar to that of Lemma 2.13. So we
omit the details.

Lemma 2.14. Let F, G be given by (2.1) and (2.2), n ≥ 8 is an integer and
V1 ̸≡ 0. If F, G share (1, t), and f(z), f(z+ c) share (∞, k), where 0 ≤ k < ∞,
then the poles of F and G are zeros of V1 and

(nk + n− 1)N(r,∞; f(z) |≥ k + 1)

= (nk + n− 1)N(r,∞; f(z + c)) |≥ k + 1)

≤ N(r, 0; f(z)) +N(r, 0; f(z + c)) +

2m∑
j=1

N(r, αj ; f(z)) +N∗(r, 1;F,G)

+

2m∑
j=1

N(r, αj ; f(z + c)) + S(r, f(z)) + S(r, f(z + c)),

where αi, i = 1, 2, . . . , 2m has the same meaning as in Lemma 2.11.

Lemma 2.15. Let F and G be defined as in (2.1) and (2.2). Then FG ̸≡ 1
for n ≥ 5.

Proof. Suppose on the contrary FG ≡ 1. Then by Mokhon’ko’s Lemma

T (r, f(z)) = T (r, f(z + c)) +O(1).

Also

(f(z))n−2m
2m∏
j=1

(f(z)− αj)(f(z + c))n−2m
2m∏
j=1

(f(z + c)− αj) ≡ d2,

where α1, α2, . . . , α2m have the same meaning as in Lemma 2.10.
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Let z0 be a αj-point of f(z) of order p. Then z0 is a pole of f(z + c) of
order q such that p = nq ≥ n. Therefore,

N(r, αj ; f(z)) ≤
1

n
N(r, αj ; f(z)).

Again let z0 be a zero of f(z) of order t. Then z0 is a pole of f(z + c) of order
s such that

(n− 2m)t = ns.

This implies t > s and 2ms = (n−2m)(t−s) ≥ n−2m. Therefore, (n−2m)t =
ns gives t ≥ n

2m . So

N(r, 0; f(z)) ≤ 2m

n
N(r, 0; f(z)).

Again

N(r,∞; f(z)) ≤ N(r, 0; f(z + c)) +

2m∑
j=1

N(r, αj ; f(z + c))

≤ 2m

n
N(r, 0; f(z + c)) +

1

n

2m∑
j=1

N(r, αj ; f(z + c))

≤ 4m

n
T (r, f(z + c)).

Therefore, by the Second Fundamental Theorem of Nevanlinna, we get

2mT (r, f(z))

≤ N(r,∞; f(z)) +N(r, 0; f(z)) +

2m∑
j=1

N(r, αj ; f(z)) + S(r, f(z))

≤ 8m

n
T (r, f) + S(r, f),

which is a contradiction for n ≥ 5.

Lemma 2.16. Let m(≥ 1) and n(> 2m) be two positive integers. Then the
polynomial

ϕ(h) = (n−m)2(hn − 1)(hn−2m − 1)− n(n− 2m)(hn−m − 1)2

of degree 2n− 2m has m roots of multiplicity 4 and all other zeros are simple.

Proof. Let F (t) = 1
2ϕ(e

t)e−(n−m)t for t ∈ C.
An elementary calculation gives

F (t) = m2 cosh(n−m)t− (n−m)2 coshmt+ n(n− 2m).
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Assume that ϕ(ω) = ϕ
′
(ω) = 0 for some ω ∈ C.

Then F (t) = F
′
(t) = 0 for every t ∈ C satisfying et = ω. From F (t) = 0,

we get

(2.3) m2 cosh(n−m)t = (n−m)2 coshmt− n(n− 2m)

From F
′
(t) = 0, we get

(2.4) m2 sinh(n−m)t = m(n−m) sinhmt

Therefore, from (2.3) and (2.4) we have

m4 = {(n−m)2 coshmt− n(n− 2m)}2 − {m(n−m) sinhmt}2

= (n−m)4 cosh2 mt+ {n(n− 2m)}2 − 2n(n− 2m)(n−m)2 coshmt

−{m(n−m)}2(cosh2 mt− 1)

= {(n−m)4 −m2(n−m)2} cosh2 mt+ {n(n− 2m)}2 +m2(n−m)2

−2n(n− 2m)(n−m)2 coshmt

or,

(n−m)2n(n− 2m) cosh2 mt+ {n(n− 2m)}2 +m2(n−m)2

−2n(n− 2m)(n−m)2 coshmt−m4 + {n(n− 2m)}2 = 0

or,

(n−m)2n(n− 2m)(coshmt− 1)2 − (n−m)2n(n− 2m) +m2(n−m)2

−m4 + {n(n− 2m)}2 = 0

or,

(n−m)2n(n− 2m)(coshmt− 1)2 − n(n− 2m){(n−m)2 − n(n− 2m)}
+m2n(n− 2m) = 0

or,

(n−m)2n(n− 2m)(coshmt− 1)2 = 0

or,

(coshmt− 1)2 = 0

or, (
emt + e−mt

2
− 1

)2

= 0

or,

(ωm − 1)4 = 0,

which shows that the roots of the equation ωm = 1 are of multiplicity 4.
Therefore, ϕ(h) has m zeros of multiplicity 4 and all other zeros are simple.
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Lemma 2.17. [13] Let f , g share (∞, 0) and V ≡ 0. Then f ≡ g.

Lemma 2.18. Let m(≥ 1) and (2 ≤ n ≤ 10) are integers. Then

3m+ 2 < 4 + 2m+
(4m+ 2)(7n− 3)

(n− 1)(3n− 1)
.

Proof. Let P (m) be the statement

P (m) : 3m+ 2 < 4 + 2m+
(4m+ 2)(7n− 3)

(n− 1)(3n− 1)
.

Then, clearly P (1) is true. Suppose that P (k) is true for k ≥ 1.
i.e.,

3k + 2 < 4 + 2k +
(4k + 2)(7n− 3)

(n− 1)(3n− 1)
.

Now

P (k + 1) = 4 + 2(k + 1) +
(4(k + 1) + 2)(7n− 3)

(n− 1)(3n− 1)

= 4 + 2k +
(4k + 2)(7n− 3)

(n− 1)(3n− 1)
+ 2 +

4(7n− 3)

(n− 1)(3n− 1)

> 3k + 2 + (2 +
4(7n− 3)

(n− 1)(3n− 1)
)

> 3k + 2 + 3

= 3(k + 1) + 2.

Hence P (m) is true for all m ∈ N. Therefore, the lemma follows.

3. Proof of the theorems

Proof of Theorem 1.11. Let F and G be two functions defined in (2.1) and
(2.2).

Since Ef(z)(S, t) = Ef(z+c)(S, t) and Ef(z)({∞}, k) = Ef(z+c)({∞}, k), it
follows that F , G share (1, t) and (∞, nk).

Since

F − βj =
1

d
(f − ωj)

3Qn−3(f),

where Qn−3(f) is a polynomial in f of degree n− 3, for j = 0, 1, 2, . . . ,m− 1,
we have

N2

(
r, βj ;F

)
≤ 2N(r, ωj ; f) +N(r, 0;Qn−3(f))(3.1)

≤ 2N(r, ωj ; f) + (n− 3)T (r, f) + S(r, f).



Sufficient conditions for periodicity... 57

Similarly,

N2

(
r, βj ;G

)
≤ 2N(r, ωj ; f(z + c)) + (n− 3)T (r, f(z + c))(3.2)

+S(r, f(z + c)),

for each j = 0, 1, 2, . . . ,m− 1.

Case 1: Suppose H1 ̸≡ 0. Then F ̸≡ G. So, it follows from Lemma 2.17
that V1 ̸≡ 0.

Hence using (3.1), (3.2) and Lemma 2.1, Lemma 2.2, Lemma 2.3, Lemma
2.9 and Lemma 2.10 and Lemma 2.13, we have

n

(
m+

1

2

)
{T (r, f(z)) + f(z + c)}

≤ 3N(r, 0; f) + 2N(r,∞; f) + {2m+m(n− 1)}{T (r, f) + T (r, f(z + c))}

+N∗(r,∞; f(z), f(z + c))−
(
t− 3

2

)
N∗(r, 1;F,G) + S(r, f)

+S(r, f(z + c))
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i.e., (n
2
−m

)
{T (r, f(z)) + T (r, f(z + c))}

≤ 3

n− 2m− 1
{N∗(r,∞; f(z), f(z + c)) +N∗(r, 1, F,G)}

+
2

n− 1
{N∗(r, 0; f(z), f(z + c)) +N∗(r, 1;F,G) + 2mT (r, f(z))

+2mT (r, f(z + c))}+N∗(r,∞; f(z), f(z + c))−
(
t− 3

2

)
N∗(r, 1;F,G)

+S(r, f) + S(r, f(z + c))

≤
(
1 +

3

n− 2m− 1

)
N∗(r,∞; f(z), f(z + c)) +

2

n− 1

(
2m+

1

2

)
{T (r, f)

+T (r, f(z + c))} −
(
t− 3

2
− 3

n− 2m− 1
− 2

n− 1

)
N∗(r, 1;F,G)

+S(r, f) + S(r, f(z + c))

≤ n− 2m+ 2

(n− 2m− 1)(nk + n− 1)
{N∗(r, 0; f(z), f(z + c) + 2m(T (r, f)

+T (r, f(z + c))) +N∗(r, 1;F,G)}+ 4m+ 1

n− 1
{T (r, f) + T (r, f(z + c))}

−
(
t− 3

2
− 3

n− 2m− 1
− 2

n− 1

)
N∗(r, 1;F,G) + S(r, f) + S(r, f(z + c))

≤ n− 2m+ 2

(n− 2m− 1)(nk + n− 1)
{N∗(r, 0; f(z), f(z + c) + 2m(T (r, f(z + c))

+T (r, f(z)))}+ 4m+ 1

n− 1
{T (r, f) + T (r, f(z + c))} −

(
t− 3

2
− 2

n− 1

− 3

n− 2m− 1
− n− 2m+ 2

(n− 2m− 1)(nk + n− 1)

)
N∗(r, 1;F,G) + S(r, f)

+S(r, f(z + c)).

Therefore, from the condition over t and k in the theorem, we get from above{n
2
−m− 4m+ 1

n− 1
− (n− 2m+ 2)(4m+ 1)

2(n− 2m− 1)(nk + n− 1)

}
{T (r, f)

+T (r, f(z + c))} ≤ S(r, f) + S(r, f(z + c)),

which is a contradiction.
Case 2: Suppose H1 ≡ 0. Then by integration we have

(3.3) F ≡ AG+B

CG+D
,

where A,B,C,D are complex constants satisfying AD −BC ̸= 0.
Therefore, from (3.3), F , G share (1,∞). Since F , G share (∞, nk), it fol-

lows that F , G share (∞,∞). Also from Lemma 2.9, we obtain N(r, 0; f(z)) =
N(r, 0; f(z + c)) = S(r, f) + S(r, f(z + c)).
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Subcase 2.1: Suppose AC ̸= 0. Then F − A
C = −(AD−BC)

C(CG+D) ̸= 0. So F omits

the value A
C .

Therefore, by the Second Fundamental Theorem, we have

nT (r, f) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r,
A

C
;F ) + S(r, F )

≤ (2m+ 1)T (r, f) + S(r, f).

i.e.,

(n− 2m− 1)T (r, f) ≤ S(r, f),

which is a contradiction.
Subcase 2.2: Suppose AC = 0. Since AD−BC ̸= 0, both A and C can not

be simultaneously zero.
Subcase 2.2.1: Suppose A ̸= 0 and C = 0. Then (3.3) becomes

(3.4) F ≡ αG+ β,

where α = A
D and β = B

D .
If F has no 1-point, then by the Second Fundamental Theorem of Nevalinna,

we have

T (r, F ) ≤ N(r, 0;F ) +N(r, 1;F ) +N(r,∞;F ) + S(r, F )

or,

(n− 2m− 1)T (r, f) ≤ S(r, f),

which is not possible.
Let F has some 1-points. Then α + β = 1. Therefore from (3.4), we have

F = αG+ 1− α.
Subcase 2.2.1.1: Suppose α ̸= 1. We consider the following subcases.
Subcase 2.2.1.1.1: Suppose m = 1. So ω0 = 1. Noting that n ≥ 5, from

(1.3), we have β0 =
γ0
d

=
2ωn

0

(n− 1)(n− 2)d
=

2

(n− 1)(n− 2)d
and therefore, in

view of (1.2) we must have

F − β0 =
1

d
(f(z)− 1)3Qn−3(f(z)),

where Qn−3(f(z)) is a polynomial in f(z) of degree n− 3. Therefore, we have

N(r, β0;F ) ≤ N(r, 1; f(z)) + (n− 3)T (r, f(z)) + S(r, f(z)).

In a similar manner, we write G − β0 =
1

d
(f(z + c) − 1)3Q∗

n−3(f(z + c)),

Q∗
n−3(f(z + c)) is a polynomial in f(z + c) of degree n− 3 and

N(r, β0;G) ≤ N(r, 1; f(z + c)) + (n− 3)T (r, f(z + c)) + S(r, f(z + c)).
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If 1− α ̸= β0, then by the Second Fundamental Theorem, Lemma 2.7 and
Lemma 2.8, we have

2T (r, F )

≤ N(r, 0;F ) +N(r, 1− α;F ) +N(r, β0;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f(z)) + 2T (r, f(z)) +N(r, 0; f(z + c)) + 2T (r, f(z + c))

+N(r, 1; f(z)) + (n− 3)T (r, f(z)) +N(r,∞; f(z)) + S(r, f)

≤ (n+ 3)T (r, f) + S(r, f).

i.e.,

(n− 3)T (r, f) ≤ S(r, f),

which is not possible.
If 1 − α = β0, then we have from (3.4) that F = (1 − β0)G + β0. Since

d ̸= 1
(n−1)(n−2) , by the Second Fundamental Theorem, Lemma 2.7 and Lemma

2.8 we have,

2T (r,G) ≤ N(r, 0;G) +N(r,
β0

β0 − 1
;G) +N(r, β0;G) +N(r,∞;G)

+S(r,G)

≤ N(r, 0; f(z + c)) + 2T (r, f(z + c)) +N(r, 0; f) + 2T (r, f)

+N(r, 1; f(z + c)) + (n− 3)T (r, f(z + c)) +N(r,∞; f(z + c))

+S(r, f) + S(r, f(z + c)).

i.e.,

(n− 3)T (r, f) ≤ S(r, f),

which is not possible.
Subcase 2.2.1.1.2: Next suppose m ≥ 2. Then by the Second Fundamental

Theorem of Nevanlinna, Lemma 2.7 and Lemma 2.8, we have,

(m+ 1)T (r, F )

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1− α;F ) +

m−1∑
j=0

N(r, βj ;F ) + S(r, F )

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +
m−1∑
j=0

N(r, βj ;F ) + S(r, F )

≤ N(r, 0; f) + 2mT (r, f) + T (r, f) +N(r, 0; f(z + c)) + 2mT (r, f(z + c))

+m(n− 2)T (r, f) + S(r, f).

i.e.,

(n− 2m− 1)T (r, f) ≤ S(r, f),
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which is not possible.
Subcase 2.2.1.2: Suppose α = 1. Then F ≡ G.
i.e.,

f(z)n−2m(f(z)2m − 2n

n−m
f(z)m +

n

n− 2m
)

≡ f(z + c)n−2m(f(z + c)2m − 2n

n−m
f(z + c)m +

n

n− 2m
).

i.e.,

f(z + c)n − 2n

n−m
f(z + c)n−m +

n

n− 2m
f(z + c)n−2m

≡ f(z)n − 2n

n−m
f(z)n−m +

n

n− 2m
f(z)n−2m.

Suppose that h(z) = f(z+c)
f(z) . Then we have from above,

(hn − 1)f2m − 2n

n−m
(hn−m − 1)fm +

n

n− 2m
(hn−2m − 1) = 0.

i.e.,
(3.5)
(n−m)(n− 2m)

2
(hn−1)g21−n(n−2m)(hn−m−1)g1+

n(n−m)

2
(hn−2m−1) = 0,

where g1 = fm.
Suppose h(z) is not constant. Then from (3.5) we have,

(3.6) {(n−m)(n−2m)(hn−1)g1−n(n−2m)(hn−m−1)}2 = −n(n−2m)Φ(h),

where Φ(h) = (n − m)2(hn − 1)(hn−2m − 1) − n(n − 2m)(hn−m − 1)2 is a
polynomial of degree 2n− 2m. Therefore, in view of Lemma 2.16, (3.6) can be
written as

{(n−m)(n− 2m)(hn − 1)g1 − n(n− 2m)(hn−m − 1)}2

= −n(n− 2m)

m∏
j=1

(h− ωj)
4
2n−6m∏
i=1

(h− ηi),

where ωj = cos 2jπ
m + i sin 2jπ

m , j = 0, 1, 2, . . . ,m− 1 and η1, η2, . . . , η2n−6m are
the simple zeros of Φ(h).

It can easily be seen from the above equation that all the zeros of h − ηj
have order at least 2. Since f(z), f(z + c) share (0,∞) and (∞,∞), it follows
that h omits the value 0 and ∞.

Therefore, applying the Second Fundamental Theorem to h, we have

(2n− 6m)T (r, h) ≤
2n−6m∑
j=1

N(r, ηj ;h) +N(r, 0;h) +N(r,∞;h) + S(r, h)

≤ 1

2

2n−6m∑
j=1

N(r, ηj ;h) + S(r, h)

≤ (n− 3m)T (r, h) + S(r, h).
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i.e.,

(n− 3m)T (r, h) ≤ S(r, h),

which is impossible.
So, h is constant. Hence, from (3.5), we have hn−1 = 0, hn−m−1 = 0 and

hn−2m − 1 = 0. Since gcd(n,m) = 1, we must have h ≡ 1.
i.e.,

f(z + c) ≡ f(z).

Subcase 2.2.2: Suppose A = 0 and C ̸= 0.
Then (3.1) becomes

F ≡ 1

γG+ δ
,

where γ = C
B and δ = D

B .
If F has no 1-point, the case can be treated in the same way as done in

Subcase 2.2.1.
So let F has some 1-point. Then γ + δ = 1.
Now, γ can not be equal to 1. For otherwise FG ≡ 1 which is not possible

by Lemma 2.15.
Therefore,

F ≡ 1

γG+ 1− γ
.

Since C ̸= 0, γ ̸= 0, G omits the value − 1−γ
γ .

By the Second Fundamental Theorem, we have

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N(r,−1− γ

γ
;G) + S(r,G).

i.e.,

(n− 2m− 1)T (r, f(z + c)) ≤ S(r, f(z + c)),

which is a contradiction. This completes the proof of the theorem.

Proof of Theorem 1.13. Since f(z) and f(z+c) share (0,∞), N∗(r, 0; f(z), f(z+
c)) = 0. Therefore, the proof of the theorem can be carried out along the lines
of the proof of Theorem 1.11. So we omit the details.

Proof of Theorem 1.9. Let F and G be two functions defined in (2.1) and (2.2).
Since Ef(z)(S, 2) = Ef(z+c)(S, 2) and Ef(z)({∞}, 2) = Ef(z+c)({∞}, 2), it

follows that F , G share (1, 2) and (∞, 3n− 1).
Case 1: Suppose H1 ̸≡ 0. Then F ̸≡ G. So, it follows from Lemma 2.17

that V1 ̸≡ 0.
Hence using (3.1), (3.2) and Lemma 2.11, for t = 2 and Lemma 2.14 for

k = 0 and k = 2,
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we obtain

n

(
m+

1

2

)
{T (r, f) + T (r, f(z + c))}

≤ (2m+ 2){T (r, f(z) + T (r, f(z + c))}+ (mn−m){T (r, f(z + c)

+T (r, f(z))}+ 4m+ 2

n− 1
{T (r, f(z) + T (r, f(z + c))}+ 2m+ 1

3n− 1
T (r, f(z))

+
2m+ 1

3n− 1
T (r, f(z + c)) + S(r, f(z)) + S(r, f(z + c)).

Therefore, {n
2
− 2−m− 4m+ 2

n− 1
− 2m+ 1

3n− 1

}
{T (r, f) + T (r, f(z + c))}

≤ S(r, f) + S(r, f(z + c)),

i.e.,

(n− b){T (r, f) + T (r, f(z + c))} ≤ S(r, f) + S(r, f(z + c)),

which is a contradiction since n > max{χ
n
a, b}.

Case 2: Suppose H1 ≡ 0. We omit the rest of the proof as by using Lemma
2.18, the same can be carried out along the lines of the proof of Theorem
1.7.

Proof of Theorem 1.7. Let F and G be two functions defined in (2.1) and (2.2).
Since Ef(z)(S, 2) = Ef(z+c)(S, 2), it follows that F , G share (1, 2).
Case 1: Suppose H1 ̸≡ 0. Hence using Lemma 2.12 for t = 2 and equations
(3.1), (3.2), we have

n

(
m+

1

2

)
{T (r, f) + T (r, f(z + c))}

≤ (2m+ 2){T (r, f(z) + T (r, f(z + c))}+ (mn−m){T (r, f(z)
+T (r, f(z + c))}+ 2{T (r, f(z) + T (r, f(z + c))}+ S(r, f(z))

+S(r, f(z + c)).

i.e.,

(n− 2m− 8){T (r, f(z)) + T (r, f(z + c))} ≤ S(r, f(z)) + S(r, f(z + c)),

which is a contradiction since n > max{3m+ 2, 2m+ 8}.
Case 2: Suppose H1 ≡ 0. We omit the rest of the proof as it can be carried

out along the lines of the proof of Theorem 1.7.

4. Some relevant issues

Putting m = 1, n = 5 and d = 1
12 in (1.1), we have P (z) = z5− 5

2z
4+ 5

3z
3−

1
12 . Suppose f and g are two non-constant meromorphic functions defined on
C satisfying f + g = 1. We claim that f and g share the set

(4.1) S = {z : z5 − 5

2
z4 +

5

3
z3 − 1

12
= 0}.
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Proof of claim:

P (f) = f5 − 5

2
f4 +

5

3
f3 − 1

6

= (1− g)5 − 5

2
(1− g)4 +

5

3
(1− g)3 − 1

12

= (1− g)3
{
(1− g)2 − 5

2
(1− g) +

5

3

}
− 1

12

= (1− 3g + 3g2 − g3)(g2 +
1

2
g +

1

6
)− 1

12

= −(g5 − 5

2
g4 +

5

3
g3 − 1

12
)

= −P (g).

Therefore, Ef (S,∞) = Eg(S,∞). But f ̸≡ g.
Now putting d1 = 1

2 and n = 5 in Corollary 1.12, we obtain

(4.2) S∗ = {z : 6z5 − 15z4 + 10z3 − 1

2
= 0}.

Then by the same procedure as above we can show that for two non-constant
meromorphic functions f and g in C with f + g = 1, Ef (S∗,∞) = Eg(S∗,∞).

Now we note that if the function g(z) ̸≡ f(z + c), the following counter
example can be produced corresponding to Theorem 1.11 and Corollary 1.12
for d = 1

12 and d1 = 1
2 , respectively.

Example 4.1. Suppose f(z) = ez

1+ez , g(z) =
1

1+ez . Then f and g are of finite
order sharing (0,∞), (∞,∞). Also f and g share the set S as well as S∗ CM.
But f ̸≡ g.

However, we were not able to find the case when g(z) = f(z + c), c is a
non-zero complex constant.

Next we consider the case when f is of infinite order. It is interesting to
investigate whether in Theorem 1.11 and Corollary 1.12, respectively for the
case d = 1

12 and d1 = 1
2 such counter example exists at all.

The following example shows that such situation is feasible.

Example 4.2. Let f(z) = 1
eez+1

. Then f(z + c) = ee
z

eez+1 , where c is chosen

such that ec = −1. Clearly f(z), f(z + c) share (0,∞), (∞,∞) and the sets S
and S∗ CM, but f(z) ̸≡ f(z + c).

However, unfortunately when d ̸= 1
12 or d1 ̸= 1

2 , we were again unsuccessful
to find out the counter example in this case.

Acknowledgement

The authors wish to thank the referee for his/her valuable remarks and sug-
gestions to-wards the improvement of the paper.



Sufficient conditions for periodicity... 65

References

[1] Banerjee, A. Uniqueness of meromorphic functions sharing two sets with finite
weight II. Tamkang J. Math. 41, 4 (2010), 379–392.

[2] Banerjee, A., and Chakraborty, B. Further results on the uniqueness of
meromorphic functions and their derivative counterpart sharing one or two sets.
Jordan J. Math. Stat. 9, 2 (2016), 117–139.

[3] Bhusnurmath, S. S., and Kabbur, S. R. Value distributions and uniqueness
theorems for difference of entire and meromorphic functions. Int. J. Anal. Appl.
2, 2 (2013), 124–136.

[4] Chiang, Y.-M., and Feng, S.-J. On the Nevanlinna characteristic of f(z+ η)
and difference equations in the complex plane. Ramanujan J. 16, 1 (2008),
105–129.

[5] Frank, G., and Reinders, M. A unique range set for meromorphic functions
with 11 elements. Complex Variables Theory Appl. 37, 1-4 (1998), 185–193.

[6] Hayman, W. K. Meromorphic functions. Oxford Mathematical Monographs.
Clarendon Press, Oxford, 1964.

[7] Lahiri, I. Value distribution of certain differential polynomials. Int. J. Math.
Math. Sci. 28, 2 (2001), 83–91.

[8] Lahiri, I. Weighted sharing and uniqueness of meromorphic functions. Nagoya
Math. J. 161 (2001), 193–206.

[9] Lahiri, I. Weighted value sharing and uniqueness of meromorphic functions.
Complex Variables Theory Appl. 46, 3 (2001), 241–253.

[10] Li, P., and Yang, C.-C. Some further results on the unique range sets of
meromorphic functions. Kodai Math. J. 18, 3 (1995), 437–450.

[11] Yang, C. C. On deficiencies of differential polynomials. II. Math. Z. 125 (1972),
107–112.

[12] Yi, H.-X., and Lin, W.-C. Uniqueness theorems concerning a question of
Gross. Proc. Japan Acad. Ser. A Math. Sci. 80, 7 (2004), 136–140.

[13] Yi, H.-X., and Yang, L.-Z. Meromorphic functions that share two sets. Kodai
Math. J. 20, 2 (1997), 127–134.

[14] Zhang, J. Value distribution and shared sets of differences of meromorphic
functions. J. Math. Anal. Appl. 367, 2 (2010), 401–408.

Received by the editors November 3, 2017
First published online June 6, 2018


	Introduction Definitions and Results
	Lemmas
	Proof of the theorems
	Some relevant issues

