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ONE CLASS OF SPECIAL POLYNOMIALS AND

SPECIAL FUNCTIONS IN L2(R) SPACE

Neboj²a Ðuri¢12 and Snjeºana Maksimovi¢3

Abstract. We construct one class of special polynomials and special
functions and give some their interesting propreties. The aim of this
paper is to prove that that these functions form a basis of L2(R) space.
In the end we give some interesting sumation formulas.
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1. Introduction

Spaces Lp, 1 ≤ p ≤ ∞, and their various subspaces, for example Hardy
spaces Hp, 1 ≤ p ≤ ∞, are investigated in many papers and books (see [3],
[8], [9], [10]). Using these subspaces, various very useful bases of Lp spaces,
1 < p <∞, were constructed (see [2], [6], [11]). In this paper we focus only on
L2(R) space. It is proven in [3] that the Hardy space H2(R) is a subspace of
L2(R) and its basis consists of the functions

(1.1)

{
1√
π

(x− i)n

(x+ i)n+1

}∞
n=0

.

Our motivation for this paper is to �nd an ortonormal basis {ψn(x)}∞n=0 of
L2(R) space which consists of real and imaginary parts of functions in (1.1)
(multiplied by a constant) which we call special functions and denote them
by dn, n ∈ N0. In order to construct special functions, dn, n ∈ N0, we use
polynomials Dn, n ∈ N0, which we call special polynomials. We proved that
special polynomialsDn, n ∈ N0, are solutions of the Sturm-Liouville di�erential
equation (see [1],[4],[5])

(1.2) (x2 + 1)y′′(x)− 4nxy′(x) + 2n(2n+ 1)y(x) = 0

and special functions dn, n ∈ N0, are solutions of the Sturm-Liouville di�eren-
tial equation (see [7])

(1.3) (x2 + 1)2y′′(x) + 4x(x2 + 1)y′(x) + (2x2 + 1 + (2n+ 1)2)y(x) = 0.

Using these, we obtain some interesting results and sumation formulas.
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2. Preliminaries

We employ the notation N, R and C for the sets of positive integers, real
and complex numbers, respectively; N0 = N ∪ {0} and C+ = {z ∈ C :
Im(z) > 0}. For the Fourier transform of f ∈ L2(R) we use the symbol
F(f) :=

∫
R f(x)e−ix·dx. We use the folowing notation: D = {w ∈ C : |w| < 1}

for the open unit disc, T = {w ∈ C : |w| = 1} for the unit circle and χ(0,1) = 1
on (0, 1), χ(0,1) = 0 otherwise.

2.1. The Hardy space

Following the approach of [3], we introduce Hardy spaces in the following
way: The Hardy space Hp(D) , 1 ≤ p ≤ ∞, is the space of all analytic functions
f : D→ C such that

‖f‖pHp := sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ, 1 ≤ p ≤ ∞.

Any function inHp(D) has the radial and also the non-tangetial limit on T and,
moreover, the space Hp(D) can be identi�ed with the corresponding subspace
Hp(T) ⊂ Lp(T), 1 < p < ∞. By [8] the space H2(D) is a Hilbert space with
the orthogonal basis {zn}∞n=0 and H2(D) = {f : f =

∑∞
n=0 anz

n, an ∈ l2} with
the norm ‖f‖H2(D) = (

∑∞
n=0 |an|2)1/2.

De�nition 2.1. The Hardy space Hp(C+), 1 < p < ∞, is the space of all
analytic function F : C+ → C such that

‖F‖Hp(C+) = sup
y>0

(∫
R
|F (x+ iy)|p

)1/p

<∞.

Spaces Hp(C+), 1 < p <∞, are Banach spaces and H2(C+) is the Hilbert
space. An isometric isomorphism between H2(D) and H2(C+) is given by

Φ(f)(z) =
1√

π(i+ z)
f

(
z − i
i+ z

)
and ‖f‖H2(D) = ‖Ψ(f)‖H2(C+). The orthogonal basis of the Hilbert space
H2(C+) is given by {

1√
π

(z − i)n

(i+ z)n+1

}∞
n=0

.

De�nition 2.2. The Hardy space Hp(R), 1 < p <∞, is de�ned by

Hp(R) := {f ∈ Lp(R) : F(f)(w) = 0,∀w < 0}.

By [3] each function in Hp(C+), 1 < p < ∞, has non-tangential limits on
the real line and, moreover, spaces Hp(C+), 1 < p <∞, can be identi�ed with
the corresponding subspaces Hp(R) of Lp(R), 1 < p <∞. The space H2(R) is
the Hilbert space with the orthogonal basis {en(x)}∞n=0 given by (1.1).
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3. Special polynomials and special functions

3.1. Special polynomials

De�nition 3.1. We de�ne polynomials D2n(x) and D2n+1(x), n ∈ N0, in the
following way:

D2n(x) :=

n∑
k=0

(−1)n+k+1

(
2n+ 1

2k

)
x2k,

D2n+1(x) :=

n∑
k=0

(−1)n+k
(

2n+ 1

2k + 1

)
x2k+1.

First several polynomials are:

D0(x) = −1, D1(x) = x, D2(x) = −3x2 + 1,

D3(x) = x3 − 3x, D4(x) = −5x4 + 10x2 − 1, D5(x) = x5 − 10x3 + x, . . .

Remark 3.2. Polynomials D2n(x) and D2n+1(x), n ∈ N0, we call special poly-
nomials and they satisfy:

D0(x) = −1, D′′2n(x) = (2n+ 1)2nD2n−2(x),

D1(x) = x, D′′2n+1(x) = (2n+ 1)2nD2n−1(x).

In addition we give some interesting poperties of special polynomials Dn(x),
n ∈ N0.

Proposition 3.3. Polynomials D2n(x) and D2n+1(x), n ∈ N0, satisfy:

(3.1) D2n+1(x) =
x2 + 1

2n+ 1
D′2n(x)− xD2n(x)

and

(3.2) D2n(x) = −x
2 + 1

2n+ 1
D′2n+1(x) + xD2n+1(x).

Proof. Notice that

(3.3) D2n+1(x) + iD2n(x) = (x− i)2n+1,

from which we have

(3.4) D′2n+1(x) + iD′2n(x) = (2n+ 1)(x− i)2n.

Multiplying (3.4) by x− i and taking real and imaginary parts we obtain

(3.5) xD′2n+1(x) +D′2n(x) = (2n+ 1)D2n+1(x)

and

(3.6) −D′2n+1(x) + xD′2n(x) = (2n+ 1)D2n(x).

From (3.5) and (3.6) we obtain (3.1) and (3.2).
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Corollary 3.4. For D2n(x) and D2n+1(x), n ∈ N0, it holds that

(3.7) D2
2n+1(x) +D2

2n(x) = (x2 + 1)2n+1.

Proof. Using (3.3) we obtain the assertion.

Theorem 3.5. Polynomials Dn(x), n ∈ N0, are solutions the Sturm-Liouville
di�erential equation (1.2). Moreover, yn(x) = C1D2n+1(x)+C2D2n(x) are the
only solutions of (1.2).

Proof. We will prove the assertion only for polynomials D2n(x), since the proof
for D2n+1(x), n ∈ N0, is the same. If we di�erentiate (3.1), we obtain

(x2 + 1)D′′2n(x) + (−2n+ 1)xD′2n(x) = (2n+ 1)D2n(x) + (2n+ 1)D2n+1(x).

From (3.5), (3.6) and (3.7) we obtain

(x2 + 1)D′′2n(x)− 4nxD′2n(x) + 2n(2n+ 1)D2n(x) = 0.

Conversely, it is well known that y1(x) = D2n+1(x) is the particular solution
of (1.2). General solution is of the form y(x) = C1y1(x) + C2y2(x), where

y2(x) = D2n+1(x)

∫
(x2 + 1)2n

D2
2n+1(x)

dx.

On the other hand, using (3.7) we obtain(
D2n(x)

D2n+1(x)

)′
= (2n+ 1)

(x2 + 1)2n

D2
2n+1(x)

from which it follows that

y2(x) =
D2n(x)

2n+ 1
.

So, y(x) = C1D2n(x) + C2D2n+1(x).

3.2. Special functions

Using De�nition 3.1 we de�ne special functions as follows:

De�nition 3.6. Special functions d2n and d2n+1, n ∈ N0, are de�ned in the
following way:

d2n(x) =
D2n(x)

(x2 + 1)n+1
, d2n+1(x) =

D2n+1(x)

(x2 + 1)n+1
.

Notice that

(3.8) en(x) =
d2n+1(x) + id2n(x)√

π
.
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Proposition 3.7. Special functions d2n(x) and d2n+1(x), n ∈ N0, are given
by

(3.9) d2n(x) = (−1)n+1 cos((2n+ 1) arctanx)√
x2 + 1

and

(3.10) d2n+1(x) = (−1)n
sin((2n+ 1) arctanx)√

x2 + 1
.

Proof. It is well known that

cos(arctanx) =
1√

x2 + 1
, sin(arctanx) =

x√
x2 + 1

,

so by the using of De Moivire's formula we obtain(
1 + ix

x2 + 1

)2n+1

=

(
cos(arctanx) + i sin(arctanx)√

x2 + 1

)2n+1

=
cos((2n+ 1) arctanx) + i sin((2n+ 1) arctanx)

√
x2 + 1

2n+1 .

Taking real and imaginary parts of the previous equation we obtain the desired
conclusion.

Proposition 3.8. Functions d2n(x) and d2n+1(x), n ∈ N0, satisfy:

(3.11) (x2 + 1)d′2n+1(x) + xd2n+1(x) = −(2n+ 1)d2n(x)

and

(3.12) (x2 + 1)d′2n(x) + xd2n(x) = (2n+ 1)d2n+1(x).

Proof. From

e′n(x) = nen(x)
x+ i

x− i
− (n+ 1)en(x)

we obtain

d′2n+1(x) + id′2n(x) = n(d2n+1(x) + id2n(x))(x2 − 1 + 2i)

− (x2 + 1)(n+ 1)(d2n+1(x) + id2n(x)).

Taking real and imaginary parts in the previous equation we obtain (3.11) and
(3.12).

From Corollary 3.4 we obtain the following result

Corollary 3.9. For d2n(x) and d2n+1(x), n ∈ N0, it holds that

(3.13) d22n+1(x) + d22n(x) =
1

x2 + 1
.
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Theorem 3.10. Functions dn(x), n ∈ N0, are solutions of the Sturm-Liouville
di�erential equation (1.3). Moreover, yn(x) = C1d2n+1(x) + C2d2n(x) are the
only solutions of (1.3).

Proof. We will prove the assertion only for functions d2n+1(x), since the proof
for functions d2n(x), n ∈ N0, is the same. If we derivate (3.11), we obtain

(3.14) (x2 + 1)d′′2n+1(x) + 3xd′2n+1(x) = d2n+1(x)− (2n+ 1)d2n(x).

From (3.11), (3.12) and (3.14) it holds that

(x2 + 1)2d′′2n+1(x) + 4x(x2 + 1)d′2n+1(x) + (2x2 + 1 + (2n+ 1)2)d2n+1(x) = 0.

Using a similar proof like in Theorem 3.5 we obtain the converse part.

Lemma 3.11. (Orthogonality) Special functions dn(x), n ∈ N0, satisfy∫ ∞
−∞

dm(x)dn(x)dx =
π

2
δmn,

where δm,n is the Kronecker delta.

Proof. Let m 6= n. Then fromm (3.9), (3.10) follows∫ ∞
−∞

(−1)n+md2n(x)d2m(x)dx

=

∫ ∞
−∞

cos((2n+ 1) arctanx) cos((2m+ 1) arctanx)

x2 + 1
dx

=

∫ π/2

−π/2
cos((2n+ 1)x) cos((2m+ 1)x)dx = 0.

Similarly∫ ∞
−∞

d2n+1(x)d2m+1(x)dx = 0,

∫ ∞
−∞

d2n(x)d2m+1(x)dx = 0.

Also ∫ ∞
−∞

d22n+1(x)dx =

∫ ∞
−∞

d22n(x)dx =
π

2
.

Theorem 3.12. The set {dn(x)}∞n=0 is a complete orthogonal system in L2(R).

Proof. It is enough to prove that from∫ ∞
−∞

f(x)
x2n+k

(x2 + 1)n+1
= 0, k = 0, 1,

it follows that f = 0 almost everywhere. Suppose that f ∈ L2(R) is an even
function and ∫ ∞

−∞
f(x)

x2n+k

(x2 + 1)n+1
= 0, k ∈ {0, 1}.



One class of special polynomials and special functions in L2(R) space 87

From

F (z) =

∫ ∞
−∞

f(x)

x2 + 1
e

x2

x2+1
z
dx =

∞∑
n=0

zn

n!

∫ ∞
−∞

f(x)

x2 + 1

(
x2

x2 + 1

)n
dx = 0,

it is obvious that

0 = F (−it) =

∫ ∞
−∞

f(x)

x2 + 1
e

x2

x2+1
(−it)

dx = 2

∫ ∞
0

f(x)

x2 + 1
e

x2

x2+1
(−it)

dx

=

∫ 1

0

f(
√

u
1−u )√

u(1− u)
e−itudu = F(g)(t)

where g(u) =
f(
√

u
1−u )√

u(1−u)
χ(0,1)(u). From F(g)(t) = 0 follows that g(u) = 0 almost

everywhere, so f(
√

u
1−u ) = 0 almost everywhere for u ∈ (0, 1). Now, f(x) = 0

almost everywhere for x ∈ (0,∞), so f = 0 almost everywhere on (−∞,∞),
because f is an even function. The proof is similar when f ∈ L2(R) is an odd
function.

Corollary 3.13. The set {
ψ2n(x), ψ2n+1(x)

}∞
n=0

is the orthonormal basis for L2(R), where

ψn(x) =

√
2

π
dn(x).

4. On summation of special polynomials and special func-

tions

Theorem 4.1. Special polynomials D2n(x) and D2n+1(x), n ∈ N0, are given
by the exponential generating functions:

(4.1)

∞∑
n=0

D2n+1(x)t2n+1

(2n+ 1)!
= cos(t) sinh(xt)

and

(4.2)

∞∑
n=0

D2n(x)t2n+1

(2n+ 1)!
= − sin(t) cosh(xt).

Proof. If we take the real and the imaginary part in

sinh(t(x− i)) =

∞∑
n=0

(x− i)2n+1

(2n+ 1)!
t2n+1 =

∞∑
n=0

D2n+1(x)

(2n+ 1)!
t2n+1 + i

D2n(x)

(2n+ 1)!
t2n+1

we obtain (4.1) and (4.2).
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Using Cauchy's integral formula on the closed contour C encircling the
origin in (4.1) and (4.2) we have

Corollary 4.2. Special polynomials D2n+1(x) and D2n(x), n ∈ N0, satisfy:

D2n+1(x) =
(2n+ 1)!

2πi

∮
C

cos(z) sinh(xz)

z2n+2
dz

and

D2n(x) =
(2n+ 1)!

2πi

∮
C

− sin(z) cosh(xz)

z2n+2
dz.

Corollary 4.3. Special polynomials D2n+1(x) and D2n(x), n ∈ N0, are given
by:

D2n+1(x) =
d2n+1

dt2n+1

(
cos(t) sinh(xt)

)∣∣∣∣∣
t=0

and

D2n(x) =
d2n+1

dt2n+1

(
− sin(t) cosh(xt)

)∣∣∣∣∣
t=0

.

Proposition 4.4. For |t| < 1, the special functions d2n(x) and d2n+1(x),
n ∈ N0, are given by generating functions:

∞∑
n=0

d2n+1(x)tn =
x− xt

(x− xt)2 + (1 + t)2
,

∞∑
n=0

d2n(x)tn =
−(1 + t)

(x− xt)2 + (1 + t)2
.

Proof. The assertion follows by thaking real and imaginary parts in

1

x+ i

∞∑
n=0

(
x− i
x+ i

)n
tn =

x− xt
(x− xt)2 + (1 + t)2

− i (1 + t)

(x− xt)2 + (1 + t)2
.

5. Appendix

Theorem 5.1. The mapping Λ : L2(−π/2, π/2)→ L2(R) given by

Λ(f)(x) =
f(arctan(x))√

x2 + 1

is an isometric isomorphism.

Theorem 5.2. Let f0(x) = 1√
x2+1

and, for n ∈ N,

f2n(x) := (−1)n
cos((2n) arctanx)√

x2 + 1
,

f2n−1(x) := (−1)n+1 sin((2n) arctanx)√
x2 + 1

.

The set

{√
2
πf0(x),

√
2
πf2n(x),

√
2
πf2n−1(x)

}∞
n=1

is the orthonormal basis in

L2(R).
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Proof. The set

{√
2
π cos((2n)x),

√
2
π sin((2n)x)

}∞
n=0

is the orthonormal basis

in L2(−π/2, π/2). Using Theorem 5.1 we obtain the assertion.

Remark 5.3. Notice that

f2n−1(x) =
F2n−1(x)

(x2 + 1)n+1/2
, f2n(x) =

F2n(x)

(x2 + 1)n+1/2
, n ∈ N,

where

F2n(x) = <((x− i)2n) =

n∑
k=0

(−1)n+k
(

2n

2k

)
x2k

and

F2n−1(x) = =((x− i)2n) =

n∑
k=1

(−1)n+k+1

(
2n

2k − 1

)
x2k−1.

The following theorems are given without the proof. We are refering same
methods as in Section 3 and Section 4.

Theorem 5.4. Special functions fn(x), n ∈ N0, are solutions of the Sturm-
Liouville di�erential equation

(5.1) (x2 + 1)2y′′(x) + 4x(x2 + 1)y′(x) + (2x2 + 1 + 4n2)y(x) = 0.

Moreover, yn(x) = C1f2n−1(x) + C2f2n(x), n ∈ N, are the only solutions of
(5.1).

Theorem 5.5. Special polynomials F2n−1(x) and F2n(x), n ∈ N, are given by
the exponential generating functions:

(5.2)

∞∑
n=1

F2n−1(x)t2n

(2n)!
= − sin(t) sinh(xt)

and

(5.3)

∞∑
n=0

F2n(x)t2n

(2n)!
= cos(t) cosh(xt).

Using Cauchy's integral formula on the closed contour C encircling the
origin in (5.2) and (5.3) we have

Corollary 5.6. Special polynomials D2n+1(x) and D2n(x), n ∈ N0, satisfy:

F2n+1(x) =
(2n)!

2πi

∮
C

− sin(z) sinh(xz)

z2n+2
dz

and

F2n(x) =
(2n)!

2πi

∮
C

cos(z) cosh(xz)

z2n+2
dz.
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Corollary 5.7. Special polynomials F2n+1(x) and F2n(x), n ∈ N0, are given
by:

F2n+1(x) =
d2n

dt2n

(
− sin(t) sinh(xt)

)∣∣∣∣∣
t=0

and

F2n(x) =
d2n

dt2n

(
cos(t) cosh(xt)

)∣∣∣∣∣
t=0

.
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