NEW FORMS OF STRONG WEAKLY $\mu\text{-}\mathrm{COMPACT}$ IN TERMS OF HEREDITARY CLASSES

Fahad Alsharari¹, Takashi Noiri² and Abdo Qahis³⁴

Abstract. The aim of this paper is to introduce and study new types of strong weakly μ -compact spaces in generalized topological spaces with a hereditary class, called weakly $S\mu\mathcal{H}$ -compact and weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact spaces. Some fundamental properties of these spaces are given. Also, we investigate the invariants of weakly $S\mu\mathcal{H}$ -compact and weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact spaces under functions.

AMS Mathematics Subject Classification (2010): 54A05; 54A08; 54D10 Key words and phrases: generalized topology, hereditary class, weakly μ H-compact, weakly $S\mu$ H-compact, weakly $\mathbf{S} - S\mu$ H-compact, (μ, ν) continuity, $\theta(\mu, \nu)$ -continuity

1. Introduction and Preliminaries

In 2007, Å. Császár [4] defined a class of subsets of a nonempty set called a hereditary class and studied a modification of the generalized topology with hereditary classes. In this paper, we introduce and study strong forms of weakly μ -compact spaces with respect to a hereditary class which was introduced by Qahis et al. in [8].

Let X be a nonempty set and p(X) the power set of X. A subfamily μ of p(X) is called a generalized topology [2] if $\phi \in \mu$ and the arbitrary union of members of μ is again in μ . The pair (X, μ) is called a generalized topological space (briefly GTS). The elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A and by $i_{\mu}(A)$ the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A (see [2, 3]). A nonempty subcollection \mathcal{H} of p(X) is called a hereditary class (briefly HC) (see [4, 10, 5, 14]) if $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$. An HC \mathcal{H} is called an ideal if \mathcal{H} satisfies the additional condition: $A, B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$ [6]. Some useful hereditary classes in X are: p(A), where $A \subseteq X$, \mathcal{H}_f , the HC of all finite subsets of X, and \mathcal{H}_c , the HC of all countable subsets of X. We introduced the notion of weakly $\mu\mathcal{H}$ -compact spaces as follows: A subset A of

¹Department of Mathematics, College of Science and Human Studies at Hotat Sudair, Majmaah university, Majmaah 11952, Saudi Arabia, e-mail: f.alsharari@mu.edu.sa

 $^{^{2}2949\}text{-}1$ Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan, e-mail: t.noiri@nifty.com

³Department of Mathematics, Faculty of Science and Arts, Najran university, Saudi Arabia, e-mail: cahis82@gmail.com

⁴Corresponding author

X is said to be weakly $\mu \mathcal{H}$ -compact [8] (resp. $\mu \mathcal{H}$ -compact [1]) if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A by μ -open sets, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ (resp. $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$). If A = X, then (X, μ) is called a weakly $\mu \mathcal{H}$ -compact (resp. $\mu \mathcal{H}$ -compact) space. A subset A of a GTS (X, μ) is said to be weakly μ -compact [13] if any cover of A by μ -open sets of X has a finite subfamily, the union of the μ -closures of whose members covers A. If A = X, then (X, μ) is called a weakly μ -compact space. Given a generalized topological space (X, μ) with an HC \mathcal{H} , for a subset A of X, the generalized local function of A with respect to \mathcal{H} and μ [4] is defined as follows: $A^*(\mathcal{H}, \mu) = \{x \in X : U \cap A \notin \mathcal{H} \text{ for all } U \in \mu_x\}$, where $\mu_x = \{U : x \in U \text{ and } U \in \mu\}.$ Also, for a subset A of X, $c^*_{\mu}(A)$ is defined by $c^*_{\mu}(A) = A \cup A^*$. The family $\mu^* = \{A \subset X : c^*_{\mu}(X \setminus A) = X \setminus A\}$ is a GT on X which is finer than μ [4]. The elements of μ^* are called μ^* -open and the complement of a μ^* -open set is called a μ^* -closed set. It is clear that a subset A is μ^* -closed if and only if $A^* \subset A$. We call (X, μ, \mathcal{H}) a hereditary generalized topological space and briefly we denote it by HGTS.

Theorem 1.1. [4] Let (X, μ) be a GTS, \mathcal{H} a hereditary class on X and A a subset of X. If A is μ^* -open, then for each $x \in A$ there exist $U \in \mu_x$ and $H \in \mathcal{H}$ such that $x \in U \setminus H \subset A$.

Definition 1.2. [13] A GTS (X, μ) is said to be μ -regular if for each μ -open subset U of X and each $x \in U$, there exist a μ -open subset V of X and a μ -closed subset F of X such that $x \in V \subset F \subset U$.

Definition 1.3. [13] Let A be a subset of a GTS (X, μ) . A point $x \in X$ is called a θ_{μ} -accumulation point of A if $c_{\mu}(V) \cap A \neq \emptyset$ for every μ -open subset V of X that contains x. The set of all θ_{μ} -accumulation points of A is called the θ_{μ} closure of A and is denoted by $(c_{\mu})_{\theta}(A)$. A is called μ_{θ} -closed if $(c_{\mu})_{\theta}(A) = A$. The complement of a μ_{θ} -closed set is said to be μ_{θ} -open.

It is clear that A is μ_{θ} -open if and only if for each $x \in A$, there exists a μ -open set V such that $x \in V \subset c_{\mu}(V) \subset A$.

Definition 1.4. [13] Let A be a subset of a space (X, μ) . Then A is said to be:

- 1. μ -regular closed if $A = c_{\mu}(i_{\mu}(A)),$
- 2. μ -regular open if $X \setminus A$ is μ -regular closed.

Definition 1.5. Let (X, μ) and (Y, ν) be two GTSs, then a function $f : (X, \mu) \to (Y, \nu)$ is said to be.

(1) (μ, ν) -continuous [2] if $U \in \nu$ implies $f^{-1}(U) \in \mu$.

(2) almost (μ, ν) -continuous [7] if for each $x \in X$ and each ν -open set V containing f(x), there exists a μ -open set U containing x such that $f(U) \subseteq i_{\nu}(c_{\nu}(V))$. (3) $\theta(\mu, \nu)$ -continuous [2] if for every $x \in X$ and every ν -open subset V of Y containing f(x), there exists a μ -open subset U in X containing x such that $f(c_{\mu}(U)) \subseteq c_{\nu}(V)$. (4) (μ, ν) -open (or μ -open) [12] if $U \in \mu$ implies $f(U) \in \nu$.

(5) (μ, ν) -closed (or μ -closed) [11] if f(F) is ν -closed in Y for each μ -closed set F of X.

Lemma 1.6. [13] Let $f : (X, \mu) \to (Y, \nu)$ be a function. Then the following are equivalent:

- 1. f is (μ, ν) -continuous;
- 2. for every $x \in X$ and every ν -open set V containing f(x), there exists a μ -open set U containing x such that $f(U) \subset V$;
- 3. $f(c_{\mu}(A)) \subset c_{\nu}(f(A))$ for every subset A of X;
- 4. $c_{\mu}(f^{-1}(B)) \subset f^{-1}(c_{\nu}(B))$ for every subset B of Y.

Definition 1.7. A subset A of X is said to be $\mu\mathcal{H}$ -compact [1] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A by μ -open sets, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$. If A = X, then (X, μ) is called a $\mu\mathcal{H}$ -compact space.

2. Weakly $S\mu H$ -Compact and Weakly $S - S\mu H$ -Compact Spaces

In this section we define strong forms of weakly $\mu \mathcal{H}$ -compact spaces, called weakly $S\mu \mathcal{H}$ -compact and weakly $\mathbf{S} - S\mu \mathcal{H}$ -compact spaces as follows:

Definition 2.1. Let (X, μ) be a GTS with HC. A subset A of an HGTS (X, μ, \mathcal{H}) is said to be:

- 1. weakly $S\mu\mathcal{H}$ -compact if for every family $\{V_{\alpha} : \alpha \in \Delta\}$ of μ -open sets with $A \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) \in \mathcal{H}$. If A = X, then (X, μ) is called a weakly $S\mu\mathcal{H}$ compact space;
- 2. weakly $\mathbf{S} S\mu\mathcal{H}$ -compact if for every family $\{V_{\alpha} : \alpha \in \Delta\}$ of μ -open sets with $A \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \subseteq \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha})$. If A = X, then (X, μ) is called a weakly $\mathbf{S} - S\mu\mathcal{H}$ compact space.

Remark 2.2. (1) The following properties are equivalent by Definition 2.1:

- (i) (X, μ) is weakly μ -compact;
- (*ii*) $(X, \mu, \{\emptyset\})$ is weakly $S\mu\{\emptyset\}$ -compact;
- (*iii*) $(X, \mu, \{\emptyset\})$ is weakly $\mathbf{S} \mathcal{S}\mu\{\emptyset\}$ -compact;
- (*iv*) (X, μ) is weakly $\mu\{\emptyset\}$ -compact.
- (2) The following diagram holds:

Example 2.3. Let μ be the Khalimsky topology, i.e., the topology on the set of integers \mathbb{Z} generated by the set of all triplets of the form $\{\{2n-1, 2n, 2n+1\}: n \in \mathbb{Z}\}$ as subbase and the hereditary class $\mathcal{H} = \{A : A \subseteq \mathbb{Z}\}$. Now it is clear that (\mathbb{Z}, μ) is not weakly μ -compact but it is evidently weakly $S\mu\mathcal{H}$ -compact.

A hereditary class \mathcal{H} is said to be μ -condense [4] if $\mu \cap \mathcal{H} = \emptyset$.

Theorem 2.4. Let (X, μ, \mathcal{H}) be an HGTS. Then the following properties hold.

- If (X, μ, H) is weakly μH-compact and H is μ-codense, then (X, μ) is weakly μ-compact.
- 2. If (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact and \mathcal{H} is μ -codense, then (X, μ, \mathcal{H}) is weakly $\mathbf{S} S\mu\mathcal{H}$ -compact.

Proof. (1) Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a cover of μ -open subsets of X. Then there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) \in \mathcal{H}$. Since \mathcal{H} is μ -codense, then $i_{\mu}(X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha})) = X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) = \emptyset$ which implies $X \subseteq \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha})$. Hence (X, μ) is weakly μ -compact.

(2) Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of μ -open subsets of X such that $X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. \mathcal{H} . There exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\alpha}(V_{\alpha}) \in \mathcal{H}$. Since, \mathcal{H} is μ -codense, then $i_{\mu}(X \setminus \bigcup_{\alpha \in \Delta_0} c_{\alpha}(V_{\alpha})) = X \setminus \bigcup_{\alpha \in \Delta_0} c_{\alpha}(V_{\alpha}) = \emptyset$. It follows that $X \subseteq \bigcup_{\alpha \in \Delta_0} c_{\alpha}(V_{\alpha})$ and hence (X, μ, \mathcal{H}) is weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact. \Box

Proposition 2.5. For an HGTS (X, μ, \mathcal{H}) , the following properties hold.

- 1. (X, μ, \mathcal{H}) is weakly $\mathcal{S}\mu\mathcal{H}$ -compact if and only if for any family $\{V_{\alpha} : \alpha \in \Delta\}$ of μ -regular open subsets of X such that $X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) \in \mathcal{H}$.
- 2. (X, μ, \mathcal{H}) is weakly $\mathbf{S} S\mu\mathcal{H}$ -compact if and only if for any family of $\{V_{\alpha} : \alpha \in \Delta\}$ of μ -regular open subsets of X such that $X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $X \subseteq \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha})$.

Proof. (1) Necessity is obvious from the definition. To show sufficiency, assume $\{V_{\alpha} : \alpha \in \Delta\}$ is a family of μ -open subsets of X such that $X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Then $\{i_{\mu}(c_{\mu}(V_{\alpha})) : \alpha \in \Delta\}$ is a family of μ -regular open sets. Since $V_{\alpha} \subseteq i_{\mu}(c_{\mu}(V_{\alpha}))$, then $X \setminus \bigcup_{\alpha \in \Delta} i_{\mu}(c_{\mu}(V_{\alpha})) \in \mathcal{H}$. Thus there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(i_{\mu}(c_{\mu}(V_{\alpha}))) \in \mathcal{H}$. Since $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) \subseteq X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(i_{\mu}(c_{\mu}(V_{\alpha})))$, then $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) \in \mathcal{H}$. This implies that (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact. (2) The proof is similar to (1)

Proposition 2.6. For an HGTS (X, μ, \mathcal{H}) , the following properties are equivalent:

- 1. (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact;
- 2. For any family $\{F_{\alpha} : \alpha \in \Delta\}$ of μ -closed subsets of X such that $\cap_{\alpha \in \Delta} F_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $\cap_{\alpha \in \Delta_0} i_{\mu}(F_{\alpha}) \in \mathcal{H}$;

3. For any family $\{F_{\alpha} : \alpha \in \Delta\}$ of μ -regular closed subsets of X such that $\bigcap_{\alpha \in \Delta} F_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $\bigcap_{\alpha \in \Delta_0} i_{\mu}(F_{\alpha}) \in \mathcal{H}$.

Proof. (1) \Rightarrow (2): Let $\{F_{\alpha} : \alpha \in \Delta\}$ be a family of μ -closed subsets of X such that $\cap_{\alpha \in \Delta} F_{\alpha} \in \mathcal{H}$. Then $\{X \setminus F_{\alpha} : \alpha \in \Delta\}$ is a family of μ -open subsets of X. Since

$$\cap_{\alpha \in \Delta} F_{\alpha} = X \setminus \bigcup_{\alpha \in \Delta} (X \setminus F_{\alpha}) \in \mathcal{H},$$

there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} c_\mu (X \setminus F_\alpha) \in \mathcal{H}$. Now we have

$$\begin{aligned} X \setminus \cup_{\alpha \in \Delta_0} c_\mu \left(X \setminus F_\alpha \right) &= \cap_{\alpha \in \Delta_0} (X \setminus c_\mu \left(X \setminus F_\alpha \right)) \\ &= \cap_{\alpha \in \Delta_0} i_\mu \left(X \setminus (X \setminus F_\alpha) \right) = \cap_{\alpha \in \Delta_0} i_\mu \left(F_\alpha \right) \in \mathcal{H}. \end{aligned}$$

 $(2) \Rightarrow (3)$: It is obvious

(3) \Rightarrow (1): Let $\{V_{\alpha} : \alpha \in \Delta\}$ be any family of μ -open subsets of X such that $X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Now $\{X \setminus i_{\mu} (c_{\mu}(V_{\alpha})) : \alpha \in \Delta\}$ is a family of μ -regular closed sets and

$$\cap_{\alpha \in \Delta} (X \setminus i_{\mu} (c_{\mu} (V_{\alpha}))) = \cap_{\alpha \in \Delta} c_{\mu} (i_{\mu} (X \setminus V_{\alpha})) \in \mathcal{H}.$$

By assumption there exists a finite subset Δ_0 of Δ such that

$$\bigcap_{\alpha \in \Delta_0} i_\mu(c_\mu(X \setminus V_\alpha))) \in \mathcal{H}.$$

Now

$$\bigcap_{\alpha \in \Delta_0} i_{\mu}(c_{\mu}(i_{\mu}(X \setminus V_{\alpha}))) \supset \bigcap_{\alpha \in \Delta_0} i_{\mu}(X \setminus V_{\alpha}) \\ = \bigcap_{\alpha \in \Delta_0} (X \setminus c_{\mu}(V_{\alpha})) = X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}).$$

Therefore, $X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(V_{\alpha}) \in \mathcal{H}$. Hence, (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact.

Proposition 2.7. For an HGTS (X, μ, \mathcal{H}) , the following properties are equivalent:

- 1. (X, μ, \mathcal{H}) is weakly $\mathbf{S} \mathcal{S}\mu\mathcal{H}$ -compact;
- 2. For any family $\{F_{\alpha} : \alpha \in \Delta\}$ of μ -closed subsets of X such that $\bigcap_{\alpha \in \Delta} F_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $\bigcap_{\alpha \in \Delta_0} i_{\mu}(F_{\alpha}) = \emptyset$;
- 3. For any family $\{F_{\alpha} : \alpha \in \Delta\}$ of μ -regular closed subsets of X such that $\bigcap_{\alpha \in \Delta} F_{\alpha} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $\bigcap_{\alpha \in \Delta_0} i_{\mu}(F_{\alpha}) = \emptyset$.

Proof. The proof is similar to Proposition 2.6.

Theorem 2.8. Let (X, μ) be a μ -regular GTS. If (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ compact (resp. weakly $S - S\mu\mathcal{H}$ -compact), then (X, μ, \mathcal{H}) is $\mu\mathcal{H}$ -compact.

Proof. We prove for weakly $\mathcal{S}\mu\mathcal{H}$ -compact only and the proof for the other one is similar. Suppose X is μ -regular, weakly $\mathcal{S}\mu\mathcal{H}$ -compact and $\{V_{\alpha} : \alpha \in \Delta\}$ is a cover of μ -open subsets of X. Then for each $x \in X$, there exists $\alpha_x \in \Delta$ such that $x \in V_{\alpha_x}$. Since X is μ -regular, there exists a μ -open set U_x containing x such that $U_x \subset c_\mu(U_x) \subset V_{\alpha_x}$. Then $\{U_x : x \in X\}$ is a cover of μ -open subsets of X and $X \setminus \bigcup_{x \in X} U_x = \emptyset \in \mathcal{H}$. By hypothesis, there exists a finite subset X_0 of X such that $X \setminus \bigcup_{x \in X_0} c_\mu(U_x) \in \mathcal{H}$. Since $X \setminus \bigcup_{x \in X_0} V_{\alpha_x} \subset X \setminus \bigcup_{x \in X_0} c_\mu(U_x)$, then $X \setminus \bigcup_{x \in X_0} V_{\alpha_x} \in \mathcal{H}$. Hence, (X, μ, \mathcal{H}) is $\mu\mathcal{H}$ -compact. \Box

Theorem 2.9. If a HGTS (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact (resp. weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact), then for every cover $\{V_{\alpha} : \alpha \in \Delta\}$ of X by μ_{θ} -open sets, there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha} \in \mathcal{H}$ (resp. $X \subseteq \bigcup_{\alpha \in \Delta_0} V_{\alpha}$).

Proof. We prove for weakly $\mathcal{S}\mu\mathcal{H}$ -compact only and the proof for the other one is similar. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a cover of X by μ_{θ} -open sets. For each $x \in X$, there exists $\alpha_x \in \Delta$ such that $x \in V_{\alpha_x}$. Since V_{α_x} is μ_{θ} -open, there exists a μ -open set U_{α_x} such that $x \in U_{\alpha_x} \subset c_{\mu}(U_{\alpha_x}) \subset V_{\alpha_x}$. Then $\{U_{\alpha_x} : \alpha_x \in \Delta\}$ is a cover of X by μ -open subsets and so $X \setminus \bigcup_{\alpha_x \in \Delta} U_{\alpha_x} = \emptyset \in \mathcal{H}$. By hypothesis, there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup_{\alpha_x \in \Delta_0} c_{\mu}(U_{\alpha_x}) \in \mathcal{H}$. Since $X \setminus \bigcup_{\alpha_x \in \Delta_0} V_{\alpha_x} \subset X \setminus \bigcup_{\alpha_x \in \Delta_0} c_{\mu}(U_{\alpha_x})$, then $X \setminus \bigcup_{\alpha_x \in \Delta_0} V_{\alpha_x} \in \mathcal{H}$.

Theorem 2.10. Every μ_{θ} -closed subset of a weakly $S\mu\mathcal{H}$ -compact (resp. weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact) space (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact (resp. weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact).

Proof. We prove for weakly $S\mu\mathcal{H}$ -compact only and the proof for the other one is similar. Let F be a μ_{θ} -closed subset of X, $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of μ open subsets of X such that $F \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Since $X \setminus F$ is μ_{θ} -open, for each $x \in X \setminus F$, there exists a μ -open set U_x such that $x \in U_x \subset c_{\mu}(U_x) \subset X \setminus F$. Then $\{V_{\alpha} : \alpha \in \Delta\} \cup \{U_x : x \in X \setminus F\}$ is a collection of μ -open subsets of Xand

$$X \setminus [(\cup_{\alpha \in \Delta} V_{\alpha}) \cup (\cup_{x \in X \setminus F} U_x)] = X \setminus [(\cup_{\alpha \in \Delta} V_{\alpha}) \cup (X \setminus F)]$$

= $(X \setminus (\cup_{\alpha \in \Delta} V_{\alpha})) \cap F = F \setminus \cup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$

By hypothesis, there exists a finite subset Δ_0 of Δ and finite points, say $x_1, x_2, ..., x_n \in X \setminus F$, such that $X \setminus [(\bigcup_{\alpha \in \Delta_0} c_\mu(V_\alpha)) \cup (\bigcup_{i=1}^n c_\mu(U_{x_i}))] \in \mathcal{H}$. Then

$$X \setminus \left[\left(\bigcup_{\alpha \in \Delta_0} c_{\mu} \left(V_{\alpha} \right) \right) \cup \left(\bigcup_{i=1}^{n} c_{\mu} \left(U_{x_i} \right) \right) \right] \\ = \left(X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu} \left(V_{\alpha} \right) \right) \cap \left(X \setminus \bigcup_{i=1}^{n} c_{\mu} \left(U_{x_i} \right) \right) \\ \supset \left(X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu} \left(V_{\alpha} \right) \right) \cap X \setminus \left(X \setminus F \right) \\ = \left(X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu} \left(V_{\alpha} \right) \right) \cap F \\ = F \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu} \left(V_{\alpha} \right),$$

which implies $F \setminus \bigcup_{\alpha \in \Delta_0} c_\mu(V_\alpha) \in \mathcal{H}$. Therefore, F is weakly $S \mu \mathcal{H}$ -compact. \Box

Theorem 2.11. For an HGTS (X, μ, \mathcal{H}) , the following properties hold.

- If A₁ and A₂ are weakly SµH-compact subsets of (X, µ, H) and H is an ideal, then A₁ ∪ A₂ is weakly SµH-compact.
- 2. If A_1 and A_2 are weakly $\mathbf{S} S\mu \mathcal{H}$ -compact subsets of (X, μ, \mathcal{H}) , then $A_1 \cup A_2$ is weakly $\mathbf{S} S\mu \mathcal{H}$ -compact.

Proof. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of μ -open subsets of X such that $(A_1 \cup A_2) \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H}$. Since $A_1 \setminus \bigcup_{\alpha \in \Delta} V_\alpha \subseteq (A_1 \cup A_2) \setminus \bigcup_{\alpha \in \Delta} V_\alpha$ and $A_2 \setminus \bigcup_{\alpha \in \Delta} V_\alpha \subseteq (A_1 \cup A_2) \setminus \bigcup_{\alpha \in \Delta} V_\alpha$, then $A_1 \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H}$ and $A_2 \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H}$.

(1) Since A_1 and A_2 are weakly $\mathcal{S}\mu\mathcal{H}$ -compact, then there exist finite subsets Δ_0 and Δ_1 of Δ with $A_1 \setminus \bigcup_{\alpha \in \Delta_0} c_\mu(V_\alpha) \in \mathcal{H}$ and $A_2 \setminus \bigcup_{\alpha \in \Delta_1} c_\mu(V_\alpha) \in \mathcal{H}$. This implies that $A_1 \setminus \bigcup_{\alpha \in \Delta_0 \cup \Delta_1} c_\mu(V_\alpha) \in \mathcal{H}$ and $A_2 \setminus \bigcup_{\alpha \in \Delta_0 \cup \Delta_1} c_\mu(V_\alpha) \in \mathcal{H}$ and since \mathcal{H} is an ideal we have that $(A_1 \cup A_2) \setminus \bigcup_{\alpha \in \Delta_0 \cup \Delta_1} c_\mu(V_\alpha) \in \mathcal{H}$. Hence $A_1 \cup A_2$ is weakly $\mathcal{S}\mu\mathcal{H}$ -compact.

(2) Since A_1 and A_2 are weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact, there exist finite subsets Δ_0 and Δ_1 of Δ such that $A_1 \subseteq \bigcup_{\alpha \in \Delta_0} c_\mu(V_\alpha)$ and $A_2 \subseteq \bigcup_{\alpha \in \Delta_1} c_\mu(V_\alpha)$. This implies that $A_1 \subseteq \bigcup_{\alpha \in \Delta_0 \cup \Delta_1} c_\mu(V_\alpha)$ and $A_2 \subseteq \bigcup_{\alpha \in \Delta_0 \cup \Delta_1} c_\mu(V_\alpha)$ and hence $A_1 \cup A_2 \subseteq \bigcup_{\alpha \in \Delta_0 \cup \Delta_1} c_\mu(V_\alpha)$. Thus $A_1 \cup A_2$ is weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact. \Box

The following example shows that the first part of the previous theorem does not hold when \mathcal{H} is just a hereditary class, not an ideal.

Example 2.12. Let \mathbb{R} be the set of real numbers, μ the standard topology and the hereditary class $\mathcal{H} = \{H \subset \mathbb{R} : H \subset (0,1) \text{ or } H \subset (1,2)\}$. Observe that $H_1 = (0,1)$ and $H_2 = (1,2)$ are weakly $\mathcal{S}\mu\mathcal{H}$ -compact sets. But $H_1 \cup H_2$ is not weakly $\mathcal{S}\mu\mathcal{H}$ -compact. Note that $\{(\frac{1}{n}, 2 - \frac{1}{n}) : n \in \mathbb{Z}^+\}$ is a family of μ -open subsets of X and $(H_1 \cup H_2) \setminus \bigcup_{n>1} (\frac{1}{n}, 2 - \frac{1}{n}) = \emptyset \in \mathcal{H}$. Let $\{n_1, n_2, ..., n_k\}$ be any finite subset of the positive integer \mathbb{Z}^+ and let $N = max\{n_1, n_2, ..., n_k\}$. Then $(H_1 \cup H_2) \setminus \bigcup_{i=1}^k c_\mu(\frac{1}{n_i}, 2 - \frac{1}{n_i}) = (H_1 \cup H_2) \setminus \bigcup_{i=1}^k [\frac{1}{n_i}, 2 - \frac{1}{n_i}] = (H_1 \cup H_2) \setminus [\frac{1}{N}, 2 - \frac{1}{N}] = (0, \frac{1}{N}) \cup (2 - \frac{1}{N}, 2) \notin \mathcal{H}.$

3. Invariants Under Functions

In this section we investigate the invariants of weakly $\mu \mathcal{H}$ -compact (resp. weakly $\mathbf{S} - S\mu \mathcal{H}$ -compact) spaces by functions. Note that if \mathcal{H} is a hereditary class on a set X and $f: X \to Y$ is a function, then $f(\mathcal{H}) = \{f(H) : H \in \mathcal{H}\}$ is a hereditary class on Y [1].

Theorem 3.1. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu)$ be a (μ, ν) -continuous surjection. Then the following properties hold.

- 1. If (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $S\nu f(\mathcal{H})$ -compact.
- 2. If (X, μ, \mathcal{H}) is weakly $\mathbf{S} \mathcal{S}\mu\mathcal{H}$ -compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathbf{S} \mathcal{S}\nu f(\mathcal{H})$ -compact.

Proof. (1) Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of ν -open subsets of Y such that $Y \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in f(\mathcal{H})$. Since f is (μ, ν) -continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ is a family of μ -open subsets of X and (X, μ, \mathcal{H}) is weakly $\mathcal{S}\mu\mathcal{H}$ -compact. Then there exists a finite subset Δ_0 of Λ such that $X \setminus \bigcup_{\alpha \in \Delta_0} c_\mu \left(f^{-1}(V_{\alpha})\right) \in \mathcal{H}$. Since f is (μ, ν) -continuous, $c_\mu(f^{-1}(V_{\alpha})) \subset f^{-1}(c_\nu(V_{\alpha}))$. This implies,

$$X \setminus \bigcup_{\alpha \in \Delta_0} f^{-1}(c_{\nu}(V_{\alpha})) \subset X \setminus \bigcup_{\alpha \in \Delta_0} c_{\mu}(f^{-1}(V_{\alpha})) \in \mathcal{H}.$$

Hence

$$X \setminus \bigcup_{\alpha \in \Delta_0} f^{-1}(c_{\nu}(V_{\alpha})) = X \setminus f^{-1}(\bigcup_{\alpha \in \Delta_0} c_{\nu}(V_{\alpha}))$$

= $f^{-1}(Y \setminus \bigcup_{\alpha \in \Delta_0} c_{\nu}(V_{\alpha})) \in \mathcal{H},$

and hence

$$f(f^{-1}(Y \setminus \bigcup_{\alpha \in \Delta_0} c_{\nu}(V_{\alpha}))) = Y \setminus \bigcup_{\alpha \in \Delta_0} c_{\nu}(V_{\alpha}) \in f(\mathcal{H}).$$

Hence $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathcal{S}\nu f(\mathcal{H})$ -compact.

(2) Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of ν -open subsets of Y such that $Y \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in f(\mathcal{H})$. Since f is (μ, ν) -continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ is a family of μ -open subsets of X and (X, μ, \mathcal{H}) is weakly $\mathbf{S} - S\mu\mathcal{H}$ -compact. Then there exists a finite subset Δ_0 of Δ such that $X = \bigcup_{\alpha \in \Delta_0} c_{\mu} (f^{-1}(V_{\alpha}))$. Since f is (μ, ν) -continuous, it follows from Lemma 1.7 (4) that $c_{\mu}(f^{-1}(V_{\alpha})) \subset f^{-1}(c_{\nu}(V_{\alpha}))$. Therefore,

$$Y = f(X) = f(\bigcup_{\alpha \in \Delta_0} c_{\mu} \left(f^{-1}(V_{\alpha}) \right)) \subseteq f(\bigcup_{\alpha \in \Delta_0} f^{-1} \left(c_{\nu} \left(V_{\alpha} \right) \right))$$
$$= \bigcup_{\alpha \in \Delta_0} f(f^{-1} \left(c_{\nu} \left(V_{\alpha} \right) \right)) \subseteq \bigcup_{\alpha \in \Delta_0} c_{\nu} \left(V_{\alpha} \right).$$

This implies that $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathbf{S} - \mathcal{S}\nu f(\mathcal{H})$ -compact.

Corollary 3.2. The following properties hold.

- The (μ,ν)-continuous image of a weakly SµH-compact space is weakly Sνf(H)-compact.
- 2. The (μ, ν) -continuous image of a weakly $\mathbf{S} S\mu \mathcal{H}$ -compact space is weakly $\mathbf{S} S\nu f(\mathcal{H})$ -compact.

Corollary 3.3. Let $f : (X, \mu) \to (Y, \nu, \mathcal{G})$ be a (μ, ν) -open bijective function. Then

- If (Y, ν, G) is weakly SνG-compact, then (X, μ) is weakly Sμf⁻¹(G)-compact.
- 2. If (Y, ν, \mathcal{G}) is weakly $\mathbf{S} \mathcal{S}\nu\mathcal{G}$ -compact, then (X, μ) is weakly $\mathbf{S} \mathcal{S}\mu f^{-1}(\mathcal{G})$ compact.

Proof. The proof is clear from Theorem 3.1.

Theorem 3.4. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu)$ be a $\theta(\mu, \nu)$ -continuous surjection. Then, following properties hold.

- 1. If (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $S\nu f(\mathcal{H})$ -compact.
- 2. If (X, μ, \mathcal{H}) is weakly $\mathbf{S} S\mu \mathcal{H}$ -compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathbf{S} S\nu f(\mathcal{H})$ -compact.

Proof. Let $\mathcal{V} = \{V_{\alpha} : \alpha \in \Delta\}$ be a family of ν -open subsets of Y such that $Y \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in f(\mathcal{H})$. Let $x \in X$ and V_{α_x} be a ν -open set in Y such that $f(x) \in V_{\alpha_x}$. Since f is $\theta(\mu, \nu)$ -continuous, there exists a μ -open set U_{α_x} of X containing x such that $f(c_{\mu}(U_{\alpha_x})) \subseteq c_{\nu}(V_{\alpha_x})$. Now $\{U_{\alpha_x} : x \in X\}$ is a cover of μ -open subsets of X.

(1) By hypothesis, there exists a finite subset X_0 of X such that $X \setminus \bigcup_{x \in X_0} c_\mu(U_{\alpha_x}) \in \mathcal{H}$. Now $f(X \setminus \bigcup_{x \in X_0} c_\mu(U_{\alpha_x})) \in f(\mathcal{H})$. We know $f(X) \setminus f(\bigcup_{x \in X_0} c_\mu(U_{\alpha_x})) \subseteq f(X \setminus \bigcup_{x \in X_0} c_\mu(U_{\alpha_x}))$. This implies $Y \setminus \bigcup_{x \in X_0} f(c_\mu(U_{\alpha_x})) \in f(\mathcal{H})$. Since $f(c_\mu(U_{\alpha_x})) \subseteq c_\mu(V_{\alpha_x})$ for each α_x , $Y \setminus \bigcup_{x \in X_0} c_\nu(V_{\alpha_x}) \subseteq Y \setminus \bigcup_{x \in X_0} f(c_\mu(U_{\alpha_x}))$. Thus $Y \setminus \bigcup_{x \in X_0} c_\nu(V_{\alpha_x}) \in f(\mathcal{H})$. This implies that $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathcal{S}\nu f(\mathcal{H})$ -compact.

(2) By hypothesis, there exists a finite subset X_0 of X such that $X = \bigcup_{x \in X_0} c_{\mu}(U_{\alpha_x})$. Therefore,

$$Y = f(X) = f(\bigcup_{x \in X_0} c_\mu(U_{\alpha_x})) = \bigcup_{x \in X_0} f(c_\mu(U_{\alpha_x})) \subseteq \bigcup_{x \in X_0} c_\nu(V_{\alpha_x}).$$

This implies that $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathbf{S} - \mathcal{S}\nu f(\mathcal{H})$ -compact.

Corollary 3.5. The following properties hold.

- 1. The $\theta(\mu, \nu)$ -continuous image of a weakly $S\mu H$ -compact space is weakly $S\nu f(H)$ -compact.
- 2. The $\theta(\mu, \nu)$ -continuous image of a weakly $\mathbf{S} S\mu \mathcal{H}$ -compact space is weakly $\mathbf{S} S\nu f(\mathcal{H})$ -compact.

The following lemma is used in the proofs of corollaries stated below.

Lemma 3.6. [9] If $f : (X, \mu) \to (Y, \nu)$ is almost (μ, ν) -continuous, then f is $\theta(\mu, \nu)$ -continuous.

Corollary 3.7. Let $f : (X, \mu) \to (X, \nu)$ be an almost (μ, ν) -continuous surjection. Then, the following properties hold.

- 1. If (X, μ, \mathcal{H}) is weakly $S\mu\mathcal{H}$ -compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $S\nu f(\mathcal{H})$ -compact.
- 2. If (X, μ, \mathcal{H}) is weakly $\mathbf{S} S\mu \mathcal{H}$ -compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $\mathbf{S} S\nu f(\mathcal{H})$ -compact.

Proof. The proof follows immediately from Lemma 3.6 and Corollary 3.5. \Box

Since every (μ, ν) -continuous function is almost (μ, ν) -continuous, we conclude the following corollary.

Corollary 3.8. The following properties hold.

- 1. weakly $S\mu H$ -compact property is a GT property.
- 2. weakly $\mathbf{S} \mathcal{S}\nu f(\mathcal{H})$ -compact property is a GT property.

Acknowledgement

The authors wish to thank the referee for useful comments and suggestions.

References

- CARPINTERO, C., ROSAS, E., SALAS-BROWN, M., AND SANABRIA, J. μcompactness with respect to a hereditary class. Bol. Soc. Paran Mat. 34, (2) (2016), 231–236.
- [2] CsÁszáR, A. Generalized topology, generalized continuity. Acta Math. Hungar. 96 (2002), 351–357.
- [3] CSÁSZÁR, A. Generalized open sets in generalized topologies. Acta Math. Hungar. 106 (2005), 53–66.
- [4] CSÁSZÁR, A. Modification of generalized topologies via hereditary classes. Acta Math. Hungar. 115, (1-2) (2007), 29–36.
- [5] KIM, Y. K., AND MIN, W. K. On operations induced by hereditary classes on generalized topological spaces. Acta Math. Hungar. 137, (1-2) (2012), 130–138.
- [6] KURATOWSKI, K. Topologies I. Warszawa, (1933).
- [7] MIN, W. K. Almost continuity on generalized topological spaces. Acta Math. Hungar 125, 1 (2009), 121–125.
- [8] QAHIS, A., ALJARRAH, H. H., AND NOIRI., T. Weakly μ-compct via a herediatary class. Bol. Soc. Paran Mat. (in press).
- [9] QAHIS, A., AND NOIRI, T. Functions and weakly μH-compact spaces. Eur. J. Pure Appl. Math 10, 3 (2017), 410–418.
- [10] RAJAMANI, M., INTHUMATHI, V., AND RAMESH, V. Some new generalized topologies via hereditary classes. Bol. Soc. Paran. Mat 30, 2 (2012), 71–77.
- [11] ROY, B. On a type of generalized open sets. Appl. Gen. Topology 12 (2011), 163–173.
- [12] SARAIVA, L. E. D. Generalized quotient topologies. Acta Math. Hungar 132, (1-2) (2012), 168–173.
- [13] SARSAK., M. S. Weakly μ-compact spaces. Demonstratio Math 45, 2 (2012), 929–938.
- [14] ZAHRAM, A. M., EL-SAADY, K., AND GHAREEB, A. Modification of weak structures via hereditary classes. *Appl. Math. Letters* 25 (2012), 869–872.

Received by the editors March 8, 2018 First published online September 30, 2018