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NEW FORMS OF STRONG WEAKLY µ-COMPACT IN
TERMS OF HEREDITARY CLASSES
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Abstract. The aim of this paper is to introduce and study new types
of strong weakly µ-compact spaces in generalized topological spaces with
a hereditary class, called weakly SµH-compact and weakly S − SµH-
compact spaces. Some fundamental properties of these spaces are given.
Also, we investigate the invariants of weakly SµH-compact and weakly
S− SµH-compact spaces under functions.
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1. Introduction and Preliminaries

In 2007, Á. Császár [4] defined a class of subsets of a nonempty set called
a hereditary class and studied a modification of the generalized topology with
hereditary classes. In this paper, we introduce and study strong forms of weakly
µ-compact spaces with respect to a hereditary class which was introduced by
Qahis et al. in [8].

Let X be a nonempty set and p(X) the power set of X. A subfamily µ
of p(X) is called a generalized topology [2] if ϕ ∈ µ and the arbitrary union
of members of µ is again in µ. The pair (X,µ) is called a generalized topo-
logical space (briefly GTS). The elements of µ are called µ-open sets and the
complements of µ-open sets are called µ-closed sets. For A ⊆ X, we denote
by cµ(A) the intersection of all µ-closed sets containing A, i.e., the smallest
µ-closed set containing A and by iµ(A) the union of all µ-open sets contained
in A, i.e., the largest µ-open set contained in A (see [2, 3]). A nonempty sub-
collection H of p(X) is called a hereditary class (briefly HC) (see [4, 10, 5, 14])
if A ⊂ B, B ∈ H implies A ∈ H. An HC H is called an ideal if H sat-
isfies the additional condition: A,B ∈ H implies A ∪ B ∈ H [6]. Some
useful hereditary classes in X are: p(A), where A ⊆ X, Hf , the HC of all
finite subsets of X, and Hc, the HC of all countable subsets of X. We in-
troduced the notion of weakly µH-compact spaces as follows: A subset A of
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X is said to be weakly µH-compact [8] (resp. µH-compact [1]) if for every
cover {Uα : α ∈ ∆} of A by µ-open sets, there exists a finite subset ∆0 of ∆
such that A \ ∪{cµ(Uα) : α ∈ ∆0} ∈ H (resp. A \ ∪{Uα : α ∈ ∆0} ∈ H). If
A = X, then (X,µ) is called a weakly µH-compact (resp. µH-compact) space.
A subset A of a GTS (X,µ) is said to be weakly µ-compact [13] if any cover
of A by µ-open sets of X has a finite subfamily, the union of the µ-closures of
whose members covers A. If A = X, then (X,µ) is called a weakly µ-compact
space. Given a generalized topological space (X,µ) with an HC H, for a subset
A of X, the generalized local function of A with respect to H and µ [4] is
defined as follows: A∗(H, µ) = {x ∈ X : U ∩ A /∈ H for all U ∈ µx}, where
µx = {U : x ∈ U and U ∈ µ}. Also, for a subset A of X, c∗µ(A) is defined
by c∗µ(A) = A ∪ A∗. The family µ∗ = {A ⊂ X : c∗µ(X \ A) = X \ A} is a GT
on X which is finer than µ [4]. The elements of µ∗ are called µ∗-open and the
complement of a µ∗-open set is called a µ∗-closed set. It is clear that a subset
A is µ∗-closed if and only if A∗ ⊂ A. We call (X,µ,H) a hereditary generalized
topological space and briefly we denote it by HGTS.

Theorem 1.1. [4] Let (X,µ) be a GTS, H a hereditary class on X and A a
subset of X. If A is µ∗-open, then for each x ∈ A there exist U ∈ µx and
H ∈ H such that x ∈ U \H ⊂ A.

Definition 1.2. [13] A GTS (X,µ) is said to be µ-regular if for each µ-open
subset U of X and each x ∈ U , there exist a µ-open subset V of X and a
µ-closed subset F of X such that x ∈ V ⊂ F ⊂ U .

Definition 1.3. [13] Let A be a subset of a GTS (X,µ). A point x ∈ X is
called a θµ-accumulation point of A if cµ(V )∩A ̸= ∅ for every µ-open subset V
ofX that contains x. The set of all θµ-accumulation points of A is called the θµ-
closure of A and is denoted by (cµ)θ(A). A is called µθ-closed if (cµ)θ(A) = A.
The complement of a µθ-closed set is said to be µθ-open.

It is clear that A is µθ-open if and only if for each x ∈ A, there exists a
µ-open set V such that x ∈ V ⊂ cµ(V ) ⊂ A.

Definition 1.4. [13] Let A be a subset of a space (X,µ). Then A is said to
be:

1. µ-regular closed if A = cµ(iµ(A)),

2. µ-regular open if X \A is µ-regular closed.

Definition 1.5. Let (X,µ) and (Y, ν) be two GTSs, then a function f :
(X,µ) → (Y, ν) is said to be.
(1) (µ, ν)-continuous [2] if U ∈ ν implies f−1(U) ∈ µ.
(2) almost (µ, ν)-continuous [7] if for each x ∈ X and each ν-open set V contain-
ing f(x), there exists a µ-open set U containing x such that f(U) ⊆ iν(cν(V )).
(3) θ(µ, ν)-continuous [2] if for every x ∈ X and every ν-open subset V of Y
containing f(x), there exists a µ-open subset U in X containing x such that
f(cµ(U)) ⊆ cν(V ).
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(4) (µ, ν)-open (or µ-open) [12] if U ∈ µ implies f(U) ∈ ν.
(5) (µ, ν)-closed (or µ-closed) [11] if f(F ) is ν-closed in Y for each µ-closed set
F of X.

Lemma 1.6. [13] Let f : (X,µ) → (Y, ν) be a function. Then the following
are equivalent:

1. f is (µ, ν)-continuous;

2. for every x ∈ X and every ν-open set V containing f(x), there exists a
µ-open set U containing x such that f(U) ⊂ V ;

3. f(cµ(A)) ⊂ cν(f(A)) for every subset A of X;

4. cµ(f
−1(B)) ⊂ f−1(cν(B)) for every subset B of Y .

Definition 1.7. A subset A of X is said to be µH-compact [1] if for every cover
{Uα : α ∈ ∆} of A by µ-open sets, there exists a finite subset ∆0 of ∆ such
that A \ ∪{Uα : α ∈ ∆0} ∈ H. If A = X, then (X,µ) is called a µH-compact
space.

2. Weakly SµH-Compact and Weakly S − SµH-Compact
Spaces

In this section we define strong forms of weakly µH-compact spaces, called
weakly SµH-compact and weakly S− SµH-compact spaces as follows:

Definition 2.1. Let (X,µ) be a GTS with HC. A subset A of an HGTS
(X,µ,H) is said to be:

1. weakly SµH-compact if for every family {Vα : α ∈ ∆} of µ-open sets
with A \ ∪α∈∆Vα ∈ H, there exists a finite subset ∆0 of ∆ such that
A \ ∪α∈∆0cµ(Vα) ∈ H. If A = X, then (X,µ) is called a weakly SµH-
compact space;

2. weakly S−SµH-compact if for every family {Vα : α ∈ ∆} of µ-open sets
with A \ ∪α∈∆Vα ∈ H, there exists a finite subset ∆0 of ∆ such that
A ⊆ ∪α∈∆0cµ(Vα). If A = X, then (X,µ) is called a weakly S − SµH-
compact space.

Remark 2.2. (1) The following properties are equivalent by Definition 2.1:
(i) (X,µ) is weakly µ-compact;
(ii) (X,µ, {∅}) is weakly Sµ{∅}-compact;
(iii) (X,µ, {∅}) is weakly S− Sµ{∅}-compact;
(iv) (X,µ) is weakly µ{∅}-compact.
(2) The following diagram holds:

weakly S− SµH− compact ⇒ weakly SµH− compact
⇓ ⇓

weakly µ− compact ⇒ weakly µH− compact
.
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Example 2.3. Let µ be the Khalimsky topology, i.e., the topology on the set
of integers Z generated by the set of all triplets of the form {{2n−1, 2n, 2n+1} :
n ∈ Z} as subbase and the hereditary class H = {A : A ⊆ Z}. Now it is clear
that (Z, µ) is not weakly µ-compact but it is evidently weakly SµH-compact.

A hereditary class H is said to be µ-condense [4] if µ ∩H = ∅.

Theorem 2.4. Let (X,µ,H) be an HGTS. Then the following properties hold.

1. If (X,µ,H) is weakly µH-compact and H is µ-codense, then (X,µ) is
weakly µ-compact.

2. If (X,µ,H) is weakly SµH-compact and H is µ-codense, then (X,µ,H)
is weakly S− SµH-compact.

Proof. (1) Let {Vα : α ∈ ∆} be a cover of µ-open subsets of X. Then there
exists a finite subset ∆0 of ∆ such that X \ ∪α∈∆0cµ(Vα) ∈ H. Since H is
µ-codense, then iµ(X \ ∪α∈∆0

cµ(Vα)) = X \ ∪α∈∆0
cµ(Vα) = ∅ which implies

X ⊆ ∪α∈∆0
cµ(Vα). Hence (X,µ) is weakly µ-compact.

(2) Let {Vα : α ∈ ∆} be a family of µ-open subsets ofX such thatX\∪α∈∆Vα ∈
H. There exists a finite subset ∆0 of ∆ such that X \∪α∈∆0

cα(Vα) ∈ H. Since,
H is µ-codense, then iµ(X \ ∪α∈∆0cα(Vα)) = X \ ∪α∈∆0cα(Vα) = ∅. It follows
that X ⊆ ∪α∈∆0cα(Vα) and hence (X,µ,H) is weakly S− SµH-compact.

Proposition 2.5. For an HGTS (X,µ,H), the following properties hold.

1. (X,µ,H) is weakly SµH-compact if and only if for any family {Vα : α ∈
∆} of µ-regular open subsets of X such that X \∪α∈∆Vα ∈ H, there exists
a finite subset ∆0 of ∆ such that X \ ∪α∈∆0cµ(Vα) ∈ H.

2. (X,µ,H) is weakly S − SµH-compact if and only if for any family of
{Vα : α ∈ ∆} of µ-regular open subsets of X such that X \ ∪α∈∆Vα ∈ H,
there exists a finite subset ∆0 of ∆ such that X ⊆ ∪α∈∆0

cµ(Vα).

Proof. (1) Necessity is obvious from the definition. To show sufficiency, assume
{Vα : α ∈ ∆} is a family of µ-open subsets of X such that X \ ∪α∈∆Vα ∈ H.
Then {iµ (cµ(Vα)) : α ∈ ∆ } is a family of µ-regular open sets. Since Vα ⊆
iµ (cµ (Vα)), then X \ ∪α∈∆iµ (cµ (Vα)) ∈ H. Thus there exists a finite subset
∆0 of ∆ such that X \ ∪α∈∆0

cµ (iµ (cµ (Vα))) ∈ H. Since X \ ∪α∈∆0
cµ(Vα) ⊆

X \ ∪α∈∆0cµ (iµ (cµ(Vα))), then X \ ∪α∈∆0cµ(Vα) ∈ H. This implies that
(X,µ,H) is weakly SµH-compact.
(2) The proof is similar to (1)

Proposition 2.6. For an HGTS (X,µ,H), the following properties are equiv-
alent:

1. (X,µ,H) is weakly SµH-compact;

2. For any family {Fα : α ∈ ∆} of µ-closed subsets of X such that ∩α∈∆Fα ∈
H, there exists a finite subset ∆0 of ∆ such that ∩α∈∆0iµ (Fα) ∈ H;
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3. For any family {Fα : α ∈ ∆} of µ-regular closed subsets of X such that
∩α∈∆Fα ∈ H, there exists a finite subset ∆0 of ∆ such that ∩α∈∆0iµ (Fα) ∈
H.

Proof. (1) ⇒ (2): Let {Fα : α ∈ ∆} be a family of µ-closed subsets of X such
that ∩α∈∆Fα ∈ H. Then {X \ Fα : α ∈ ∆} is a family of µ-open subsets of X.
Since

∩α∈∆Fα = X \ ∪α∈∆(X \ Fα) ∈ H,

there exists a finite subset ∆0 of ∆ such that X \∪α∈∆0cµ (X \ Fα) ∈ H. Now
we have

X \ ∪α∈∆0
cµ (X \ Fα) = ∩α∈∆0

(X\ cµ (X \ Fα))

= ∩α∈∆0
iµ (X \ (X \ Fα)) = ∩α∈∆0

iµ (Fα) ∈ H.

(2) ⇒ (3): It is obvious
(3) ⇒ (1): Let {Vα : α ∈ ∆} be any family of µ-open subsets of X such that
X \ ∪α∈∆Vα ∈ H. Now {X \ iµ (cµ(Vα)) : α ∈ ∆ } is a family of µ-regular
closed sets and

∩α∈∆(X \ iµ (cµ (Vα))) = ∩α∈∆cµ (iµ (X \ Vα)) ∈ H.

By assumption there exists a finite subset ∆0 of ∆ such that

∩α∈∆0
iµ(cµ(iµ(X \ Vα))) ∈ H.

Now

∩α∈∆0
iµ(cµ(iµ(X \ Vα))) ⊃ ∩α∈∆0

iµ(X \ Vα)
= ∩α∈∆0

(X \ cµ(Vα)) = X \ ∪α∈∆0
cµ(Vα).

Therefore, X \ ∪α∈∆0cµ(Vα) ∈ H. Hence, (X,µ,H) is weakly SµH-compact.

Proposition 2.7. For an HGTS (X,µ,H), the following properties are equiv-
alent:

1. (X,µ,H) is weakly S− SµH-compact;

2. For any family {Fα : α ∈ ∆} of µ-closed subsets of X such that ∩α∈∆Fα ∈
H, there exists a finite subset ∆0 of ∆ such that ∩α∈∆0

iµ (Fα) = ∅;

3. For any family {Fα : α ∈ ∆} of µ-regular closed subsets of X such that
∩α∈∆Fα ∈ H, there exists a finite subset ∆0 of ∆ such that ∩α∈∆0

iµ (Fα) =
∅.

Proof. The proof is similar to Proposition 2.6.

Theorem 2.8. Let (X,µ) be a µ-regular GTS. If (X,µ,H) is weakly SµH-
compact (resp. weakly S− SµH-compact), then (X,µ,H) is µH-compact.
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Proof. We prove for weakly SµH-compact only and the proof for the other one
is similar. Suppose X is µ-regular, weakly SµH-compact and {Vα : α ∈ ∆} is
a cover of µ-open subsets of X. Then for each x ∈ X, there exists αx ∈ ∆ such
that x ∈ Vαx

. Since X is µ-regular, there exists a µ-open set Ux containing x
such that Ux ⊂ cµ(Ux) ⊂ Vαx

. Then {Ux : x ∈ X} is a cover of µ-open subsets
of X and X \ ∪x∈XUx = ∅ ∈ H. By hypothesis, there exists a finite subset X0

of X such that X \∪x∈X0cµ (Ux) ∈ H. Since X \∪x∈X0Vαx ⊂ X \∪x∈X0cµ (Ux),
then X \ ∪x∈X0Vαx ∈ H. Hence, (X,µ,H) is µH-compact.

Theorem 2.9. If a HGTS (X,µ,H) is weakly SµH-compact (resp. weakly
S − SµH-compact), then for every cover {Vα : α ∈ ∆} of X by µθ-open sets,
there exists a finite subset ∆0 of ∆ such that X \ ∪α∈∆0

Vα ∈ H (resp. X ⊆
∪α∈∆0

Vα).

Proof. We prove for weakly SµH-compact only and the proof for the other one
is similar. Let {Vα : α ∈ ∆} be a cover of X by µθ-open sets. For each x ∈ X,
there exists αx ∈ ∆ such that x ∈ Vαx

. Since Vαx
is µθ-open, there exists a

µ-open set Uαx
such that x ∈ Uαx

⊂ cµ(Uαx
) ⊂ Vαx

. Then {Uαx
: αx ∈ ∆} is a

cover of X by µ-open subsets and so X \ ∪αx∈∆Uαx
= ∅ ∈ H. By hypothesis,

there exists a finite subset ∆0 of ∆ such that X \ ∪αx∈∆0cµ(Uαx) ∈ H. Since
X \ ∪αx∈∆0Vαx ⊂ X \ ∪αx∈∆0cµ(Uαx), then X \ ∪αx∈∆0Vαx ∈ H.

Theorem 2.10. Every µθ-closed subset of a weakly SµH-compact (resp. weakly
S − SµH-compact) space (X,µ,H) is weakly SµH-compact (resp. weakly S −
SµH-compact).

Proof. We prove for weakly SµH-compact only and the proof for the other one
is similar. Let F be a µθ-closed subset of X, {Vα : α ∈ ∆} be a family of µ-
open subsets of X such that F \∪α∈∆Vα ∈ H. Since X \F is µθ-open, for each
x ∈ X \ F , there exists a µ-open set Ux such that x ∈ Ux ⊂ cµ(Ux) ⊂ X \ F .
Then {Vα : α ∈ ∆} ∪ {Ux : x ∈ X \ F} is a collection of µ-open subsets of X
and

X\[(∪α∈∆Vα) ∪ (∪x∈X\FUx)] = X \ [(∪α∈∆Vα) ∪ (X \ F )]
= (X \ (∪α∈∆Vα)) ∩ F = F \ ∪α∈∆Vα ∈ H.

By hypothesis, there exists a finite subset ∆0 of ∆ and finite points, say
x1, x2, ..., xn ∈ X \ F , such that X \ [(∪α∈∆0

cµ (Vα)) ∪ (∪n
i=1cµ (Uxi

))] ∈ H.
Then

X \ [(∪α∈∆0
cµ (Vα)) ∪ (∪n

i=1cµ (Uxi
))]

= (X \ ∪α∈∆0
cµ (Vα)) ∩ (X \ ∪n

i=1cµ (Uxi
))

⊃ (X \ ∪α∈∆0
cµ (Vα)) ∩X \ (X \ F )

= (X \ ∪α∈∆0
cµ (Vα)) ∩ F

= F \ ∪α∈∆0
cµ (Vα),

which implies F \∪α∈∆0cµ (Vα) ∈ H. Therefore, F is weakly SµH-compact.
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Theorem 2.11. For an HGTS (X,µ,H), the following properties hold.

1. If A1 and A2 are weakly SµH-compact subsets of (X,µ,H) and H is an
ideal, then A1 ∪A2 is weakly SµH-compact.

2. If A1 and A2 are weakly S − SµH-compact subsets of (X,µ,H), then
A1 ∪A2 is weakly S− SµH-compact.

Proof. Let {Vα : α ∈ ∆} be a family of µ-open subsets of X such that (A1 ∪
A2)\∪α∈∆Vα ∈ H. Since A1\∪α∈∆Vα ⊆ (A1∪A2)\∪α∈∆Vα and A2\∪α∈∆Vα ⊆
(A1 ∪A2) \ ∪α∈∆Vα, then A1 \ ∪α∈∆Vα ∈ H and A2 \ ∪α∈∆Vα ∈ H.
(1) Since A1 and A2 are weakly SµH-compact, then there exist finite subsets
∆0 and ∆1 of ∆ with A1 \ ∪α∈∆0cµ(Vα) ∈ H and A2 \ ∪α∈∆1cµ(Vα) ∈ H.
This implies that A1 \ ∪α∈∆0∪∆1

cµ(Vα) ∈ H and A2 \ ∪α∈∆0∪∆1
cµ(Vα) ∈ H

and since H is an ideal we have that (A1 ∪A2) \ ∪α∈∆0∪∆1
cµ(Vα) ∈ H. Hence

A1 ∪A2 is weakly SµH-compact.
(2) Since A1 and A2 are weakly S − SµH-compact, there exist finite subsets
∆0 and ∆1 of ∆ such that A1 ⊆ ∪α∈∆0cµ(Vα) and A2 ⊆ ∪α∈∆1cµ(Vα). This
implies that A1 ⊆ ∪α∈∆0∪∆1cµ(Vα) and A2 ⊆ ∪α∈∆0∪∆1cµ(Vα) and hence
A1 ∪A2 ⊆ ∪α∈∆0∪∆1

cµ(Vα). Thus A1 ∪A2 is weakly S− SµH-compact.

The following example shows that the first part of the previous theorem
does not hold when H is just a hereditary class, not an ideal.

Example 2.12. Let R be the set of real numbers, µ the standard topology and
the hereditary class H = {H ⊂ R : H ⊂ (0, 1) or H ⊂ (1, 2)}. Observe that
H1 = (0, 1) and H2 = (1, 2) are weakly SµH-compact sets. But H1 ∪H2 is not
weakly SµH-compact. Note that {( 1n , 2 −

1
n ) : n ∈ Z+} is a family of µ-open

subsets of X and (H1 ∪H2) \ ∪n>1(
1
n , 2−

1
n ) = ∅ ∈ H. Let {n1, n2, ..., nk} be

any finite subset of the positive integer Z+ and let N = max{n1, n2, ..., nk}.
Then (H1 ∪H2) \ ∪k

i=1cµ(
1
ni
, 2− 1

ni
) = (H1 ∪H2) \ ∪k

i=1[
1
ni
, 2− 1

ni
] = (H1 ∪

H2) \
[
1
N , 2− 1

N

]
=

(
0, 1

N

)
∪
(
2− 1

N , 2
)
/∈ H.

3. Invariants Under Functions

In this section we investigate the invariants of weakly µH-compact (resp.
weakly S− SµH-compact) spaces by functions. Note that if H is a hereditary
class on a set X and f : X → Y is a function, then f(H) = {f(H) : H ∈ H} is
a hereditary class on Y [1].

Theorem 3.1. Let f : (X,µ,H) → (Y, ν) be a (µ, ν)-continuous surjection.
Then the following properties hold.

1. If (X,µ,H) is weakly SµH-compact, then (Y, ν, f(H)) is weakly Sνf(H)-
compact.

2. If (X,µ,H) is weakly S− SµH-compact, then (Y, ν, f(H)) is weakly S−
Sνf(H)-compact.



98 Fahad Alsharari, Takashi Noiri and Abdo Qahis

Proof. (1) Let {Vα : α ∈ ∆} be a family of ν-open subsets of Y such that
Y \ ∪α∈∆Vα ∈ f(H). Since f is (µ, ν)-continuous, {f−1(Vα) : α ∈ ∆} is a
family of µ-open subsets of X and (X,µ,H) is weakly SµH-compact. Then
there exists a finite subset ∆0 of Λ such that X \ ∪α∈∆0

cµ
(
f−1(Vα)

)
∈ H.

Since f is (µ, ν)-continuous, cµ(f
−1(Vα)) ⊂ f−1(cν(Vα)). This implies,

X \ ∪α∈∆0f
−1(cν(Vα)) ⊂ X \ ∪α∈∆0cµ(f

−1(Vα)) ∈ H.

Hence

X \ ∪α∈∆0
f−1(cν(Vα)) = X \ f−1(∪α∈∆0

cν(Vα))
= f−1(Y \ ∪α∈∆0

cν(Vα)) ∈ H,

and hence

f(f−1(Y \ ∪α∈∆0
cν(Vα))) = Y \ ∪α∈∆0

cν(Vα) ∈ f(H).

Hence (Y, ν, f(H)) is weakly Sνf(H)-compact.
(2) Let {Vα : α ∈ ∆} be a family of ν-open subsets of Y such that Y \∪α∈∆Vα ∈
f(H). Since f is (µ, ν)-continuous, {f−1(Vα) : α ∈ ∆} is a family of µ-open
subsets of X and (X,µ,H) is weakly S − SµH-compact. Then there exists
a finite subset ∆0 of ∆ such that X = ∪α∈∆0

cµ
(
f−1(Vα)

)
. Since f is (µ, ν)-

continuous, it follows from Lemma 1.7 (4) that cµ(f
−1(Vα)) ⊂ f−1(cν(Vα)).

Therefore,

Y = f(X) = f(∪α∈∆0
cµ

(
f−1(Vα)

)
) ⊆ f(∪α∈∆0

f−1 (cν (Vα)))
= ∪α∈∆0

f(f−1 (cν (Vα))) ⊆ ∪α∈∆0
cν (Vα).

This implies that (Y, ν, f(H)) is weakly S− Sνf(H)-compact.

Corollary 3.2. The following properties hold.

1. The (µ, ν)-continuous image of a weakly SµH-compact space is weakly
Sνf(H)-compact.

2. The (µ, ν)-continuous image of a weakly S−SµH-compact space is weakly
S− Sνf(H)-compact.

Corollary 3.3. Let f : (X,µ) → (Y, ν,G) be a (µ, ν)-open bijective function.
Then

1. If (Y, ν,G) is weakly SνG-compact, then (X,µ) is weakly Sµf−1(G)-com-
pact.

2. If (Y, ν,G) is weakly S−SνG-compact, then (X,µ) is weakly S−Sµf−1(G)-
compact.

Proof. The proof is clear from Theorem 3.1.

Theorem 3.4. Let f : (X,µ,H) → (Y, ν) be a θ(µ, ν)-continuous surjection.
Then, following properties hold.
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1. If (X,µ,H) is weakly SµH-compact, then (Y, ν, f(H)) is weakly Sνf(H)-
compact.

2. If (X,µ,H) is weakly S− SµH-compact, then (Y, ν, f(H)) is weakly S−
Sνf(H)-compact.

Proof. Let V = {Vα : α ∈ ∆} be a family of ν-open subsets of Y such that
Y \ ∪α∈∆Vα ∈ f(H). Let x ∈ X and Vαx

be a ν-open set in Y such that
f(x) ∈ Vαx . Since f is θ(µ, ν)-continuous, there exists a µ-open set Uαx of X
containing x such that f(cµ(Uαx)) ⊆ cν(Vαx). Now {Uαx : x ∈ X} is a cover of
µ-open subsets of X.
(1) By hypothesis, there exists a finite subset X0 of X such that
X \ ∪x∈X0

cµ(Uαx
) ∈ H. Now f(X \ ∪x∈X0

cµ(Uαx
)) ∈ f(H). We know f(X) \

f(∪x∈X0
cµ(Uαx

)) ⊆ f(X\∪x∈X0
cµ(Uαx

)). This implies Y \∪x∈X0
f(cµ(Uαx

)) ∈
f(H). Since f(cµ(Uαx

)) ⊆ cµ(Vαx
) for each αx, Y \ ∪x∈X0

cν(Vαx
) ⊆ Y \

∪x∈X0f(cµ(Uαx)). Thus Y \ ∪x∈X0cν(Vαx) ∈ f(H). This implies that
(Y, ν, f(H)) is weakly Sνf(H)-compact.
(2) By hypothesis, there exists a finite subset X0 of X such that
X = ∪x∈X0

cµ(Uαx
). Therefore,

Y = f(X) = f(∪x∈X0
cµ(Uαx

)) = ∪x∈X0
f(cµ(Uαx

)) ⊆ ∪x∈X0
cν(Vαx

).

This implies that (Y, ν, f(H)) is weakly S− Sνf(H)-compact.

Corollary 3.5. The following properties hold.

1. The θ(µ, ν)-continuous image of a weakly SµH-compact space is weakly
Sνf(H)-compact.

2. The θ(µ, ν)-continuous image of a weakly S − SµH-compact space is
weakly S− Sνf(H)-compact.

The following lemma is used in the proofs of corollaries stated below.

Lemma 3.6. [9] If f : (X,µ) → (Y, ν) is almost (µ, ν)-continuous, then f is
θ(µ, ν)-continuous.

Corollary 3.7. Let f : (X,µ) → (X, ν) be an almost (µ, ν)-continuous surjec-
tion. Then, the following properties hold.

1. If (X,µ,H) is weakly SµH-compact, then (Y, ν, f(H)) is weakly Sνf(H)-
compact.

2. If (X,µ,H) is weakly S− SµH-compact, then (Y, ν, f(H)) is weakly S−
Sνf(H)-compact.

Proof. The proof follows immediately from Lemma 3.6 and Corollary 3.5.

Since every (µ, ν)-continuous function is almost (µ, ν)-continuous, we con-
clude the following corollary.

Corollary 3.8. The following properties hold.

1. weakly SµH-compact property is a GT property.

2. weakly S− Sνf(H)-compact property is a GT property.
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