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Abstract

The purpose of this paper is to introduce a proximal iterative algo-
rithm for the approximation of a common solution of finite families of
split minimization problem and a fixed point problem in the framework
of Hilbert space. Using our iterative algorithm, we prove a strong con-
vergence theorem for approximating a common solution of finite families
of split minimization problem and a fixed point problem of nonexpansive
mapping. Moreover, our result complements and extends some related
results in literature.
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1 Introduction

Let H be a real Hilbert space with inner product and norm as 〈., .〉 and ||.||
respectively. Let C be a nonempty, closed and convex subset of H. A mapping
T : C → C is said to be
(i) a contraction, if there exists a constant k ∈ (0, 1) such that

||Tx− Ty|| ≤ k||x− y||, ∀ x, y ∈ C;

(ii) nonexpansive, if

||Tx− Ty|| ≤ ||x− y||, ∀ x, y ∈ C.

A point p ∈ C is called a fixed point of T if Tp = p. We denote by F (T ) the
set of all fixed points of T .

1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Durban, South Africa. e-mail: 216075727@stu.ukzn.ac.za, hammedabass548@gmail.com

2School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Durban, South Africa. e-mail: izuchukwu c@yahoo.com, izuchukwuc@ukzn.ac.za

3School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Durban, South Africa. e-mail: mewomoo@ukzn.ac.za.

4Corresponding author
5School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,

Durban, South Africa . e-mail: 215082189@stu.ukzn.ac.za, fudochukwu@yahoo.com
6Department of Mathematics, University of Nigeria, Nsukka, Nigeria

https://doi.org/10.30755/NSJOM.07925
mailto:216075727@stu.ukzn.ac.za
mailto:hammedabass548@gmail.com
mailto:izuchukwu_c@stu.ukzn.ac.za
mailto:izuchukwuc@yahoo.com
mailto:mewomoo@ukzn.ac.za
mailto:215082189@stu.ukzn.ac.za
mailto:fudochukwu@yahoo.com


118 H. A. Abass, C. Izuchukwu, O. T. Mewomo and F. U. Ogbuisi

The iterative approximation of fixed points for nonexpansive mapping have
been studied extensively by many authors (see, for example, [5, 8, 9, 12] and
the references therein).
For any point u ∈ H, there exists a unique point PCu ∈ C such that

||u− PCu|| ≤ ||u− y||, ∀ y ∈ C.

PC is called the metric projection of H onto C. It is also well known that PC
satisfies

〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2.

Definition 1.1. A mapping T : H → H is said to be firmly nonexpansive
if and only if 2T − I is nonexpansive, where I is the identity mapping, or
equivalently

〈x− y, Tx− Ty〉 ≥ ||Tx− Ty||2, ∀ x, y ∈ H.

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S),

where S : H → H is nonexpansive. The metric projection is an example of a
firmly nonexpansive mapping.

Definition 1.2. A mapping T : H → H is said to be an averaged mapping if
and only if it can be written as the average of the identity mapping I and a
nonexpansive mapping, that is,

T = (1− α)I + αS,(1.1)

where α ∈ (0, 1) and S : H → H is nonexpansive. When (1.1) holds, we say
that T is α- averaged.

Definition 1.3. A mapping T : C → C is said to be
(i) monotone, if

〈Tx− Ty, x− y〉 ≥ 0,∀ x, y ∈ C,

(ii) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α||Tx− Ty||2,∀ x, y ∈ C.

Definition 1.4. Let Q be a convex subset of a vector space X and f : Q →
R ∪ {+∞} be a map. Then,
(i) f is convex if for each λ ∈ [0, 1] and x, y ∈ Q, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

(ii) f is called proper if there exists at least one x ∈ Q such that

f(x) 6= +∞;

(iii) f is lower semi-continuous at x0 ∈ Q if

f(x0) ≤ lim inf
x→x0

f(x).
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The Split Feasibility Problem (SFP) was first introduced in [3] by Censor and
Elfving. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. The
SFP is defined as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q.(1.2)

The SFP arises in many fields in the real world, such as signal processing, image
reconstruction and intesity-modulated radiation therapy problems. Since its
origin, several iterative algorithms have been proposed and analysed to solve
it (see [7, 13, 15, 16, 18, 20] and the references therein).

One of the most important problems in optimization theory and non-linear
analysis is the problem of approximating solution of Minimization Problem
(MP) which is to find x ∈ H such that

f(x) = min
y∈H

f(y),(1.3)

where f : H → (−∞,∞] is a proper and convex function. We denote by
argminy∈Hf(y) the set of all minimizers of f on H.
Recently, Moudafi and Thakur [13] considered the following MP,

min{g(x) + fλ(Ax) : x ∈ H1};(1.4)

where g : H1 → R ∪ {+∞} is a proper, convex and lower semi-continuous
function, and fλ(y) := minu∈H2

{f(u) + 1
2λ ||u − y||2} is the Moreau-Yosida

approximate of the function f of parameter λ also called the proximal operator
of f of order λ and A : H1 → H2 is a bounded linear operator. For λ > 0, the
Moreau-Yosida resolvent of f in Hilbert space is defined as follows:

Jfλ (x) = Proxλf(x) = argminy∈H{f(y) +
1

2λ
||y − x||2}, ∀ x ∈ H,(1.5)

where argmin f := {x ∈ H : f(x) ≤ f(x) for all x ∈ H} .
Let C and Q be nonempty closed and convex subsets of real Hilbert spaces H1

and H2 g : H1 → R ∪ {+∞} and f : H2 → R ∪ {+∞} be two proper and
lower semi-continuous convex functions. Let A : H1 → H2 be a bounded linear
operator, then the Split Minimization Problem (SMP) is to find

x∗ ∈ C such that x∗ = argminx∈Cg(x),(1.6)

and such that

the point y∗ = Ax∗ ∈ Q solves y∗ = argminy∈Qf(y).(1.7)

In this paper, we consider the finite families of SMP, which is to find

x∗ ∈ C such that x∗ = ∩Ni=1argminx∈Cgi(x),(1.8)

and such that

the point y∗ = Ax∗ ∈ Q solves y∗ = ∩mj=1argminy∈Qfj(y).(1.9)
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We denote the solution set of problem (1.8)-(1.9) by Θ.
For λ > 0, x ∈ H1, we define

h(x) :=
1

2
||(I − Proxλf )Ax||2;(1.10)

l(x) :=
1

2
||(I − Proxλg)x||2;(1.11)

θ(x) :=
√
||∇h(x)||2 + ||∇l(x)||2;(1.12)

and

γn := ρn
h(xn) + l(xn)

θ2(xn)
, n ≥ 1,(1.13)

where 0 < ρn < 4. Then the gradients ∇h and ∇l of h and l, respectively, are

∇h(x) := A∗(I − Proxλf )Ax;(1.14)

and

∇l(x) := (I − Proxλg)x.(1.15)

Using (1.10)-(1.13), Moudafi and Thakur [13] studied the following proximal
point algorithm and proved a weak convergence theorem for the sequence gen-
erated by their algorithm to a solution of SMP (1.6)-(1.7):
Given an initial point x1 ∈ H1, assume that xn has been constructed and
θ(xn) 6= 0, then compute xn+1 as follows:

xn+1 = Proxλg(xn − µnA∗(I − Proxλf )Axn), ∀ n ≥ 1.(1.16)

If θ(xn) = 0, then xn+1 = xn is a solution of MP (1.4) and the iterative process
stops, otherwise, we set n:= n+1 and go to (1.16).

Very Recently, Abbas et. al. [1] proposed two iterative algorithms which
generate sequences that converge strongly to a solution of SMP (1.6)-(1.7).
Using (1.10)-(1.13), they proposed the following modified split proximal point
algorithm and proved that the sequence generated by their iterative scheme
converges strongly to a solution of SMP (1.6)-(1.7):
Given an initial point x1 ∈ H1, assume that xn has been constructed and
θ(xn) 6= 0, then compute xn+1 by the following iterative scheme;

xn+1 = Proxλg((1− εn)xn − γnA∗(I − Proxλf )Axn); for n ≥ 1;(1.17)

where stepsize γn := ρn
h(xn)+l(xn)
θ2(xn) with 0 < ρn < 4. If θ(xn) = 0, then

xn+1 = xn is a solution of SMP (1.6)-(1.7) and the iterative process stops,
otherwise, we set n := n+ 1 and go to (1.17).
They proved the following theorem.
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Theorem 1.5. [1] Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a
bounded linear operator with its adjoint operator A∗ : H2 → H1. Assume that
g : H1 → R ∪ {+∞} and f : H2 → R ∪ {+∞} are proper, convex and lower
semi-continuous functions, and that SMP (1.6)-(1.7) is consistent. Let {εn} be
a sequence in (0, 1) such that the following conditions hold:
(a) limn→∞ εn = 0;
(b)

∑∞
n=1 εn =∞;

(c) a ≤ ρn ≤ 4(1−εn)h(xn)
h(xn)+l(xn) − a for some a > 0.

Then the sequence {xn} generated by (1.17) converges strongly to a solution x∗

of SMP (1.6)-(1.7).

The proximal point algorithm have been used extensively by many authors
to solve the SFP and MP (see [13, 15] and the references therein).

In 2017, Shehu and Iyiola [15] proposed the following modified proximal
point split feasibility iterative scheme:
Algorithm (1.1)
(1) Given the initial points x1, u ∈ H1;
(2) Set n := 1 and compute;
(3) yn = αnu+ (1− αn)xn;
(4) θ(yn) = ||A∗(I − proxλf )Ayn + (I − proxλg)yn||;
(5) zn = yn − ρn h(yn)+l(yn)

θ2(yn) ;

(6) xn+1 = (1− βn)yn + βnzn;
(7) If A∗(I − proxλf )Ayn = 0 = (I − proxλg)yn and xn+1 = xn, then stop,
otherwise;
(8) Set n := n+ 1 and repeat step(3)-(6).
They proved that Algorithm (1.1) converges strongly to a solution of (1.4).

Remark 1.6. We observe that the method of proof used in [1] is divided into
two cases, but we were able to prove our strong convergence theorem without
dividing our method of proof into two cases. The method of proof in this paper
looks shorter and easier to read.
In Theorem 1.5, they imposed a ≤ ρn ≤ 4(1−εn)h(xn)

h(xn)+l(xn) − a for some a > 0 on

their iterative scheme to prove a strong convergence theorem. We were able to
prove a strong convergence result without imposing this condition.
Most authors working in this direction have considered either the SMP or MP
(see [1, 2, 10] and the references therein), but in this paper, we considered the
finite families of SMP.

Motivated by the works of Shehu and Iyiola [14, 15], Yao et. al. [20] and other
researchers working in this direction, we introduce a proximal point iterative
algorithm for approximating the common solution of finite family of SMP and
fixed point problem in the framework of Hilbert space. Using our iterative algo-
rithm, we prove a strong convergence theorem for approximating the common
solution of split minimization problem and fixed point problem of nonexpansive
mapping. Our method of proof is quite different from others working in this
direction, see( [13, 20] and others therein).
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2 Preliminaries

In this section, we state some well known results which will be used in the
sequel. Throughout this paper, we denote the weak and strong convergence of
a sequence {xn} to a point x ∈ H by xn ⇀ x and xn → x, respectively. We
also denote by

∏n
j=1J

j
µx = J1

µ ◦ J2
µ ◦ · · · Jnµ the composition of our resolvents.

Lemma 2.1. [4] Let H be a real Hilbert space. Then the following identities
hold:
(I) 2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2,∀ x, y ∈ H.
(II) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2.

Lemma 2.2. [19] Let H be a real Hilbert space and T : H → H be a nonlinear
mapping, then the following hold:
(i) f is nonexpansive if and only if the complement I − f is 1

2 -ism.
(ii) If f is ν-ism and γ > 0, then γf is ν

γ -ism.

(iii) f is averaged if and only if the complement I−f is ν-ism for some ν > 1
2 .

Indeed, for β ∈ (0, 1), f is β-averaged if and only if I − f is 1
2β -ism.

(iv) If f1 is β1-averaged and f2 is β2-averaged, where β1, β2 ∈ (0, 1), then the
composite f1f2 is β-averaged, where β = β1 + β2 − β1β2.

Lemma 2.3. [16] Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be
a bounded linear operator with A 6= 0, and S : H2 → H2 be a nonexpansive
mapping. Then A∗(I − S)A is 1

2||A||2 -ism.

Lemma 2.4. [17] Let H1 and H2 be real Hilbert spaces. Let C be a nonempty,
closed and convex subset of H1. Let S : H2 → H2 be a nonexpansive mapping
and let A : H1 → H2 be a bounded linear operator. Suppose that C∩A−1F (S) 6=
∅. Let γ > 0 and x∗ ∈ H1. Then the following are equivalent.

(i) x∗ = PC(I − γA∗(I − S)A)x∗;

(ii) 0 ∈ A∗(I − S)Ax∗ +NCx
∗;

(iii) x∗ ∈ C ∩A−1F (S).

Lemma 2.5. [21] Let C be a nonempty, closed and convex subset of a real
Hilbert space H and S : C → C be a nonexpansive mapping. Then I − T
is demiclosed at 0 (i.e., if {xn} converges weakly to x ∈ C and {xn − Txn}
converges strongly to 0, then x = Tx).

Lemma 2.6. [6]. Let H be a real Hilbert space and f : H → (−∞,∞] be a
proper convex and lower semi-continuous function. Then, for all x, y ∈ H and
λ > 0, we have

1

2λ
||Jλx− y||2 −

1

2λ
||x− y||2 +

1

2λ
||x− Jλx||2 + f(Jλx) ≤ f(y).
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Lemma 2.7. [11] Let {an} be a sequence of non-negative real numbers such
that

an+1 ≤ (1− αn)an + αnrn,

where {rn} is a sequence of real numbers bounded from above and {αn} ⊂ [0, 1]
satisfies

∑
αn =∞. Then

lim sup
n→∞

an ≤ lim sup
n→∞

rn.

3 Main Result

Throughout this paper, we shall denote by Jfλ , λ > 0, the resolvent of a proper
convex and lower semi-continuous function f .

Lemma 3.1. Let H be a real Hilbert space and f : H → (−∞,∞] be a proper
convex and lower semi-continuous function. Then, for 0 < λ ≤ µ and x ∈ H,
we have ||Jλx− x|| ≤ ||Jµx− x||.

Proof. For x, y ∈ H, we obtain from the definition of the resolvent of f that

f(Jµx) +
1

2µ
||Jµx− x||2 ≤ f(y) +

1

2µ
||y − x||2.

In particular, we have that

f(Jµx) +
1

2µ
||Jµx− x||2 ≤ f(Jλx) +

1

2µ
||Jλx− x||2.(3.1)

Similarly, we obtain

f(Jλx) +
1

2λ
||Jλx− x||2 ≤ f(Jµx) +

1

2λ
||Jµx− x||2.(3.2)

Adding (3.1) and (3.2), we obtain that

||Jλx− x||2 −
λ

µ
||Jλx− x||2 ≤ ||Jµx− x||2 −

λ

µ
||Jµx− x||2.

That is, (
1− λ

µ

)
||Jλx− x||2 ≤

(
1− λ

µ

)
||Jµx− x||2.

Since 0 < λ ≤ µ, we obtain that

||Jλx− x|| ≤ ||Jµx− x||.
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Lemma 3.2. Let H be a real Hilbert space and fj : H → (−∞,∞], j =
1, 2, . . . ,m be proper convex and lower semi-continuous functions. Let T : H →
H be a nonexpansive mapping, then for 0 < λ ≤ µ, we have that

F

T m∏
j=1

J (j)
µ

 ⊆ (F (T ) ∩
(
∩mj=1F

(
J

(j)
λ

)))
.

Proof. For x ∈ F
(
T
∏m
j=1J

(j)
µ

)
and y ∈

(
F (T ) ∩

(
∩mj=1F

(
J

(j)
µ

)))
, we have

that

||x− y||2 = ||T
m∏
j=1

J (j)
µ x− T

m∏
j=1

J (j)
µ y||2

≤ ||
m∏
j=1

J (j)
µ x−

m∏
j=1

J (j)
µ y||2

= ||
m∏
j=1

J (j)
µ x− y||2.(3.3)

Furthermore, we obtain from Lemma 2.6 that

1

2µ
||
m∏
j=1

J (j)
µ x− y||2 − 1

2µ
||
m∏
j=2

J (j)
µ x− y||2 +

1

2µ
||
m∏
j=2

J (j)
µ x−

m∏
j=1

J (j)
µ x||2

+ f(

m∏
j=1

J (j)
µ x) ≤ f(y).

Since f(y) ≤ f(
∏m
j=1J

(j)
µ x), we obtain from (3.3) that

||
m∏
j=2

J (j)
µ x−

m∏
j=1

J (j)
µ x||2 ≤ ||

m∏
j=2

J (j)
µ x− y||2 − ||

m∏
j=1

J (j)
µ x− y||2

...

≤ ||x− y||2 − ||
m∏
j=1

J (j)
µ x− y||2

≤ ||
m∏
j=1

J (j)
µ x− y||2 − ||

m∏
j=1

J (j)
µ x− y||2,

which implies

m∏
j=1

J (j)
µ x =

m∏
j=2

J (j)
µ x.(3.4)
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Similarly, we obtain from Lemma 2.6 and (3.3) that

||
m∏
j=3

J (j)
µ x−

m∏
j=2

J (j)
µ x||2 ≤ ||

m∏
j=3

J (j)
µ x− y||2 − ||

m∏
j=2

J (j)
µ x− y||2

...

≤ ||x− y||2 − ||
m∏
j=2

J (j)
µ x− y||2

≤ ||
m∏
j=1

J (j)
µ x− y||2 − ||

m∏
j=1

J (j)
µ x− y||2,

which implies

m∏
j=2

J (j)
µ x =

m∏
j=3

J (j)
µ x.(3.5)

Continuing in this manner, we obtain that

m∏
j=3

J (j)
µ x =

m∏
j=4

J (j)
µ x = · · · =

m∏
j=m−1

J (j)
µ x = J (m)

µ x = x.(3.6)

From (3.6), we have

x = J (m)
µ x.(3.7)

From (3.6) and (3.7), we obtain

x =

m∏
j=m−1

J (j)
µ x = J (m−1)

µ J (m)
µ x = J (m−1)

µ x.(3.8)

Continuing in this manner, we obtain from (3.4)-(3.8) that

x = J (m−2)
µ x = · · · = J (2)

µ x = J (1)
µ x.(3.9)

That is,

J (1)
µ x = J (2)

µ x = · · · = J (m−1)
µ x = J (m)

µ x = x.(3.10)

Furthermore, we get from (3.4)-(3.6) that

x = T

m∏
j=1

J (j)
µ = Tx.(3.11)

Now, since 0 < λ ≤ µ, we obtain from Lemma 3.1 and (3.10) that

||x− J (j)
λ x|| ≤ ||x− J (j)

µ x|| = 0, j = 1, 2, . . . ,m,
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which implies that x ∈ F (J
(j)
λ ), j = 1, 2, . . . ,m. This together with (3.11)

implies that x ∈
(
F (T ) ∩

(
∩mj=1F

(
J

(j)
λ

)))
. Therefore, we conclude that

F

T m∏
j=1

J (j)
µ

 ⊆ (F (T ) ∩
(
∩mj=1F

(
J

(j)
λ

)))
.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces and C be a nonempty
closed and convex subset of H1. Let A : H1 → H2 be a bounded linear operator
such that A 6= 0 and θ a contraction mapping with coefficient τ ∈ (0, 1). Let
T : H1 → H1 and S : H2 → H2 be two nonexpansive mappings. For i = 1, 2, ...n
and j = 1, 2, ...m, let gi : H1 → (−∞,+∞] and fj : H2 → (−∞,+∞] be two
families of proper, convex and lower semi continuous functions. Assume that
Γ := {z ∈ F (T ) : z ∈ ∩Ni=1argminy∈Hgi(y) and Az ∈ F (S) such that Az ∈
∩mj=1argminy∈Hfj(y)} 6= ∅ and the sequence {xn} is generated for arbitrary
x1, u ∈ H1 by

xn+1 = (1− βn)yn + βnzn;

zn = (1− tn)yn + tnT
∏n
i=1J

(i)
λn

(yn);

yn = PC

(
un − γnA∗

(
I − S

∏m
j=1J

(j)
λn

)
Aun

)
;

un = (1− αn)xn + αnθ(xn), n ≥ 1;

(3.12)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ ≤ λn and {αn}, {βn}, {tn}

are sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 =∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.
Then, the sequence {xn} converges strongly to z ∈ Γ, where z = PΓθ(z).

Proof. Let z = PΓθ(z), then z = T
∏N
i=1 J

(i)
λn

(z) and Az = S
∏m
j=1 J

(j)
λn

(Az).

Also, we know that the composition S
∏m
j=1 J

(j)
λn

is nonexpansive. Thus, it
follows from Lemma 2.2 (ii), (iii), (iv) and Lemma 2.3 that

PC

I − γnA∗
I − S m∏

j=1

J
(j)
λn

A


is 1+γn||A||2

2 -averaged. Hence yn can be written as

yn = (1− µn)un + µnTnun,(3.13)

where Tn is nonexpansive and µn = 1+γn||A||2
2 . Thus, from (3.13) and Lemma
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2.1 (II), we obtain that

||yn − z||2 = ||(1− µn)un + µnTnun − z||2

= (1− µn)||un − z||2 + µn||Tnun − z||2

− µn(1− µn)||un − Tnun||2

= ||un − z||2 − µn(1− µn)||un − Tnun||2.(3.14)

From (3.12) and Lemma 2.1 (II), we obtain that

||xn+1 − z||2 = ||(1− βn)yn + βnzn − z||2

= (1− βn)||yn − z||2 + βn||zn − z||2

− βn(1− βn)||yn − zn||2.(3.15)

Also, we obtain from (3.12) that

||zn − z||2 =||(1− tn)yn + tnTΠN
i=1J

(i)
λn

(yn)− z||2

=(1− tn)||yn − z||2 + tn||TΠN
i=1J

(i)
λn

(yn)− z||2

− tn(1− tn)||yn − TΠN
i=1J

(i)
λn

(yn)||2

≤(1− tn)||yn − z||2

+ tn||yn − z||2 − tn(1− tn)||yn − TΠN
i=1J

(i)
λn

(yn)||2

≤||yn − z||2.(3.16)

Again from (3.12), we have that

zn − yn =
1

βn
(xn+1 − yn).(3.17)

Similarly, we have from (3.13) that

Tnun − un =
1

µn
(yn − un).(3.18)

Now, from (3.14), (3.4), (3.17) and (3.18), we have that

||xn+1 − z||2 ≤ (1− βn)||yn − z||2 + βn||yn − z||2

− βn(1− βn)||yn − zn||2

= ||yn − z||2 −
1

βn
(1− βn)||xn+1 − yn||2

≤ ||un − z||2 −
1

µn
(1− µn)||yn − un||2

− 1

βn
(1− βn)||xn+1 − yn||2,(3.19)
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which implies that

||xn+1 − z|| ≤ ||un − z||
= ||(1− αn)xn + αnθ(xn)− z||
≤ αn||θ(xn)− z||+ (1− αn)||xn − z||
≤ αnτ ||xn − z||+ αn||θ(z)− z||+ (1− αn)||xn − z||
= (1− αn(1− τ))||xn − z||+ αn||θ(z)− z||

≤ max
{
||xn − z||,

||θ(z)− z||
1− τ

}
...

≤ max
{
||x1 − z||,

||θ(z)− z||
1− τ

}
.

Therefore, {xn} is bounded and consequently, {un}, {yn} and {zn} are also
bounded.
From (3.17), we have that

||zn − yn||2 = || 1

βn
(xn+1 − yn)||2

=
1

β2
n

||xn+1 − yn||2

=
αn
βn

(
||xn+1 − yn||2

αnβn

)
.(3.20)

Also, from (3.18), we obtain

||un − Tnun||2 =
αn
µn

(
||yn − un||2

αnµn

)
.(3.21)

From Lemma 2.1 (I) and (3.12), we have

||un − z||2 = ||αn(θ(xn)− z) + (1− αn)(xn − z)||2

= α2
n||θ(xn)− z||2 + 2αn(1− αn)〈θ(xn)− z, xn − z〉

+ (1− αn)2||xn − z||2

≤ α2
n||θ(xn)− z||2 − 2αn(1− αn)〈θ(xn)− z, z − xn〉

+ (1− αn)||xn − z||2.(3.22)
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Substituting (3.22) into (3.19), we obtain

||xn+1 − z||2 ≤ α2
n||θ(xn)− z||2 − 2αn(1− αn)〈θ(xn)− z, z − xn〉

+ (1− αn)||xn − z||2 −
1

βn
(1− βn)||xn+1 − yn||2

− 1

µn
(1− µn)||yn − un||2

= (1− αn)||xn − z||2 − αn
(
− αn||θ(xn)− z||2

+ 2(1− αn)〈θ(xn)− z, z − xn〉

+
1

αnβn
(1− βn)||xn+1 − yn||2

+
1

αnµn
(1− µn)||yn − un||2

)
.(3.23)

Let

Υn : = −αn||θ(xn)− z||2 + 2(1− αn)〈θ(xn)− z, z − xn〉

+
1

αnβn
(1− βn)||xn+1 − yn||2 +

1

αnµn
(1− µn)||yn − un||2.(3.24)

Thus, (3.23) becomes

||xn+1 − z||2 ≤ (1− αn)||xn − z||2 − αnΥn.

Since {xn} is bounded, it is bounded below. Hence, {Υn} is bounded below.
Furthermore, using Lemma 2.7 and condition (i) in (3.12), we obtain

lim sup
n→∞

||xn − z||2 ≤ lim sup
n→

(−Υn)

= − lim inf
n→

Υn.(3.25)

Therefore, lim infn→∞Υn is finite. We have from (3.24) that

lim inf
n→∞

Υn = lim inf
n→∞

(
2〈θ(xn)− z, z − xn〉

+
1

αnβn
(1− βn)||xn+1 − yn||2

+
1

αnµn
(1− µn)||yn − un||2

)
.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ q ∈ H and

lim inf
n→∞

Υn = lim inf
k→∞

(
2〈θ(xnk

)− z, z − xnk
〉

+
1

αnk
βnk

(1− βnk
)||xnk+1 − ynk

||2

+
1

αnk
µnk

(1− µnk
)||ynk

− unk
||2
)
.(3.26)
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Since {xn} is bounded and lim infn→∞Υn is finite, we have that 1
αnk

βnk
(1 −

βnk
)||xnk+1 − ynk

||2 and
1

αnk
µnk

(1− µnk
)||ynk

− unk
||2 are bounded. Also, by assumption (ii), we have

that there exists b ∈ (0, 1) such that βn ≤ b < 1 and this implies that 1
αnk

βnk
(1−

βnk
) ≥ 1

αnk
βnk

(1−b) > 0 and we have that { 1
αnk

βnk
||xnk+1−ynk

||2} is bounded.

Now, observe from assumptions (i) and (ii) that there exists a ∈ (0, 1) such that

0 <
αnk

βnk

≤ αnk

a
→ 0, k →∞.

Following the same argument as in above, and using assumption (i) and the
definition of γn, we obtain that

0 <
αnk

µnk

≤ αnk

a
→ 0, k →∞.

Therefore, we obtain from (3.20) that

lim
k→∞

||znk
− ynk

|| = 0.(3.27)

Similarly, we obtain that

lim
k→∞

||Tnk
− unk

|| = 0.(3.28)

From (3.17) and (3.27), we obtain that

||xn+1 − ynk
|| = βnk

||znk
− ynk

|| → 0, k →∞.(3.29)

Also, from (3.18) and (3.28), we obtain

||ynk
− unk

|| = µnk
||Tnk

unk
− unk

|| → 0, k →∞.(3.30)

Furthermore, from (3.12) and condition (i), we obtain that

||unk
− xnk

|| = αnk
||θ(xnk

)− xnk
|| → 0, k →∞.(3.31)

Hence,

||ynk
− xnk

|| ≤ ||ynk
− unk

||+ ||unk
− xnk

|| → 0, k →∞.(3.32)

Now, set v
(i)
n = J

(i)
λn
v

(i+1)
n , i = 1, 2, ....N , where v

(N+1)
n = yn,∀n ≥ 1. Then,

v
(N)
n = J

(N)
λn

(yn), v
(N−1)
n = J

(N−1)
λn

J
(N)
λn

(yn), . . . , v
(2)
n =

∏N
i=2 J

(i)
λn

(yn), v
(1)
n =∏N

i=1 J
(i)
λn

(yn). Thus, from (3.16) and (3.27), we obtain that

tnk
(1− tnk

)||ynk
− T

N∏
i=1

J
(i)
λnk

(ynk
)||2 ≤ ||ynk

− z||2 − ||znk
− z||2

≤ ||ynk
− znk

||2

+2||ynk
− znk

||||znk
− z||.
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Thus, by condition (iii), we obtain that

lim
k→∞

||ynk
− Tv(1)

nk
|| = 0.(3.33)

Now, using Lemma 2.6, we obtain for i = 1 that

1

2λnk

||z − v(1)
nk
||2 − 1

2λnk

||z − v(2)
nk
||2

+
1

2λnk

||v(2)
nk
− v(1)

nk
||2 + f(v(1)

nk
) ≤ f(z).

Since f(z) ≤ f(v
(1)
nk ), we obtain from (3.33) that

||v(1)
nk
− v(2)

nk
||2 ≤ ||z − v(2)

nk
||2 − ||z − v(1)

nk
||2

≤ ||z − ynk
||2 − ||z − v(1)

nk
||2

≤ ||z − ynk
||2 − ||z − Tv(1)

nk
||2

≤ ||ynk
− Tv(1)

nk
||2 + 2||z − Tv(1)

nk
||||ynk

− Tv(1)
nk
|| → 0,(3.34)

as k →∞.
Following similar argument as above, we obtain that

||v(2)
nk
− v(3)

nk
||2 ≤ ||z − v(3)

nk
||2 − ||z − v(2)

nk
||2

≤ ||z − ynk
||2 − ||z − v(1)

nk
||2

≤ ||z − ynk
||2 − ||z − Tv(1)

nk
||2 → 0, k →∞.(3.35)

Continuing in the same manner, we can show that

lim
k→∞

||v(3)
nk
− v(4)

nk
|| = · · · = limk→∞ ||v(N−1)

nk − v(N)
nk || =

limk→∞ ||v(N)
nk − v

(N+1)
nk || = 0.(3.36)

From (3.33)-(3.36), we obtain that

||v(1)
nk
− ynk

|| ≤ ||v(1)
nk
− v(2)

nk
||+ ||v(2)

nk
− v(3)

nk
||+ · · ·+ ||v(N)

nk
− yn||

= ||v(1)
nk
− v(2)

nk
||+ ||v(2)

nk
− v(3)

nk
||+ · · ·+ ||v(N)

nk
− v(N+1)

nk
|| → 0,(3.37)

as k →∞.
Also, using Lemma 2.6, we obtain for each i = 1, 2, ...N that

1

2λnk

||z − v(i)
nk
||2 − 1

2λnk

||z − v(i+1)
nk

||2 +
1

2λnk

||v(i+1)
nk

− v(i)
nk
||2 + f(v(i)

nk
) ≤ f(z).

Since f(z) ≤ f(v
(i)
nk ), we obtain that

||v(i)
nk
− v(i+1)

nk
||2 ≤ ||z − v(i+1)

nk
||2 − ||z − v(i)

nk
||2.
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Taking sum in the above inequality from i = 1 to i = N , we obtain from (3.37)
that

N∑
i=1

||v(i)
nk
− v(i+1)

nk
||2 ≤ ||z − v(N+1)

nk
||2 − ||z − v(1)

nk
||2

= ||z − ynk
||2 − ||z − v(1)

nk
||2 → 0 as n→∞.

This implies that

lim
k→∞

||v(i)
nk
− v(i+1)

nk
|| = 0, i = 1, 2, . . . , N.(3.38)

From (3.38), and applying triangle inequality, we obtain for each i = 1, 2, ..., N
that

lim
k→∞

||v(i)
nk
− ynk

|| = lim
k→∞

||v(i)
nk
− v(N+1)

nk
|| = 0.(3.39)

Also from (3.38) and (3.39), we obtain

||J (i)
λ ynk

− J (i)
λ v(i+1)

nk
|| ≤ ||ynk

− v(i+1)
nk

||
≤ ||ynk

− v(i)
nk
||+ ||v(i)

nk
− v(i+1)

nk
|| → 0, k →∞.(3.40)

Furthermore, since λn ≥ λ > 0 for all n ≥ 1, we obtain from Lemma 3.1 and
(3.38) that

||v(i+1)
nk

− J (i)
λ v(i+1)

nk
|| ≤ ||v(i+1)

nk
− J (i)

λnk
v(i+1)
nk

|| → 0, k →∞, i = 1, 2, . . . , N.

(3.41)

From (3.38), (3.39), (3.40) and (3.41), we obtain

||J (i)
λ ynk

− ynk
|| ≤ ||J (i)

λ ynk
− J (i)

λ v(i+1)
nk

||+ ||J (i)
λ v(i+1)

nk
− v(i+1)

nk
||

+ ||v(i+1)
nk

− v(i)
nk
||+ ||v(i)

nk
− ynk

|| → 0, n→∞, i = 1, 2, . . . , N.(3.42)

Again, we obtain from (3.33) and (3.37) that

||ynk
− Tynk

|| ≤ ||ynk
− Tv(1)

nk
||+ ||Tv(1)

nk
− Tynk

||
≤ ||ynk

− Tv(1)
nk
||+ ||v(1)

nk
− ynk

|| → 0, k →∞.(3.43)

Moreover, since {xnk
} converges weakly to q ∈ H1, it follows from (3.32) that

the subsequence {ynk
} of {yn} converges weakly to q ∈ H1. Hence, by Lemma

2.5 and (3.42), we obtain that q ∈ F (J
(i)
λ ynk

) for each i = 1, 2, . . . , N . Similarly,

we obtain from (3.43) that q ∈ F (T ). Thus, q ∈
(
F (T ) ∩

(
∩Ni=1F

(
J

(i)
λ

)))
.

Furthermore, we may assume without loss of generality that the subsequence

{γnk
} of {γn} converges to a point γ̄ ∈

(
0, 1
‖A‖2

)
. By Lemma 2.3, A∗(I −
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S
∏m
j=1J

(j)
λnk

)A is inverse strongly monotone, thus
{
A∗(I − S

∏m
j=1J

(j)
λnk

)Aunk

}
is bounded. It then follows from the nonexpansivity of PC that

‖PC(I − γnk
A∗(I − S

m∏
j=1

J
(j)
λnk

)A)unk
− PC(I − γ̄A∗(I − S

m∏
j=1

J
(j)
λnk

)A)unk
‖

≤ |γnk
− γ̄|‖A∗(I − S

m∏
j=1

J
(j)
λnk

)Aunk
‖ → 0, as k →∞.

That is,

lim
k→∞

‖ynk
− PC(I − γ̄A∗(I − S

m∏
j=1

J
(j)
λnk

)A)unk
‖ = 0,

which implies from (3.30) that

lim
k→∞

||unk
− PC(I − γ̄A∗(I − S

m∏
j=1

J
(j)
λnk

)A)unk
|| = 0.(3.44)

It then follows from Lemma 2.5 that q ∈ F (PC(I−γ̄A∗(I−JM2

λnk
(I−λnk

f2))A)).

Thus, from Lemma 2.4, we obtain that q ∈ C ∩ A−1F
(
S
∏m
j=1J

(j)
λnk

)
. Hence,

from Lemma 3.2, we obtain that

Aq ∈ F

S m∏
j=1

J
(j)
λnk

 ⊆ (F (S) ∩
(
∩mj=1F

(
J

(j)
λ

)))
.

Therefore, we conclude that q ∈ Γ.

Finally, we show that {xn} converges strongly to z, where z = PΓu.
Now, from (3.26), (3.29), (3.30) and the characteristic property of the metric
projection, we obtain that

lim inf
n→∞

Υn = lim inf
k→∞

(
2〈u− z, z − xnk

〉+
1

αnk
βnk

(1− βnk
)||xnk+1 − ynk

||2

+
1

αnk
µnk

(1− µnk
)||ynk

− unk
||2
)

= 2〈u− z, z − q〉
≥ 0,(3.45)

which implies from (3.25) that lim sup
n→∞

||xn − z||2 ≤ 0. Hence, we conclude that

{xn} converges strongly to z.

Setting i, j = 1 in Theorem (3.3), we have the following result.
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Corollary 3.4. Let H1 and H2 be two real Hilbert spaces and C be a nonempty
closed and convex subset of H1. Let A : H1 → H2 be a bounded linear operator
such that A 6= 0 and θ be contraction mapping with coefficient τ ∈ (0, 1).
Let T : H1 → H1 and S : H2 → H2 be two nonexpansive mappings, and
g : H1 → (−∞,+∞], f : H2 → (−∞,+∞] be two proper, convex and lower
semi continuous functions. Assume that Γ := {z ∈ F (T ) : z ∈ argminy∈Hg(y)
and Az ∈ F (S) such that Az ∈ argminy∈Hf(y)} 6= ∅ and the sequence {xn} is
generated for arbitrary x1, u ∈ H1 by

xn+1 = (1− βn)yn + βnzn;

zn = (1− tn)yn + tnTJλn(yn);

yn = PC (un − γnA∗ (I − SJλn
)Aun) ;

un = (1− αn)xn + αnθ(xn), n ≥ 1;

(3.46)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ ≤ λn and {αn}, {βn}, {tn}

are sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 =∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.
Then, the sequence {xn} converges strongly to z ∈ Γ, where z = PΓθ(z).

Remark 3.5. The problem solved in Corollary 3.4 is problem (1.6)-(1.7), while
Theorem 3.3 solves problem (1.8)- (1.9).

4 Application to SFP

Let the solution set of problem (1.2) be denoted by Ω. If g ≡ δC(x) [defined
as δC(x) = 0 if x ∈ C and +∞ otherwise] and f ≡ δQ, the indicator functions
of nonempty, closed and convex subsets of H1 and H2 respectively. Then SMP
(1.6) reduces to (1.2). Thus, applying Corollary 3.4, we have the following
result.

Theorem 4.1. Let C and Q be nonempty, closed and convex subsets of real
Hilbert spaces H1 and H2 respectively. Let A : H1 → H2 be a bounded linear
operator such that A 6= 0 and θ be contraction mapping with coefficient τ ∈
(0, 1). Let T : H1 → H1 and S : H2 → H2 be two nonexpansive mappings,
assume that Γ := {F (T ) ∩ Ω} 6= ∅ and the sequence {xn} is generated for
arbitrary x1, u ∈ H1 by

xn+1 = (1− βn)yn + βnzn;

zn = (1− tn)yn + tnTPC(yn);

yn = PC(un − γnA∗(I − SPQ)Aun);

un = (1− αn)xn + αnθ(xn), n ≥ 1;

(4.1)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ ≤ λn and {αn}, {βn}, {tn}

are sequences in (0, 1) satisfying the following conditions:



Split minimization problem 135

(i) limn→∞ αn = 0,
∑∞
n=0 =∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1.
Then the sequence {xn} converges strongly to z ∈ Γ, where z = PΓθ(z).
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