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Abstract. In this article, we establish Lyapunov-type inequalities for
two-point Riemann-Liouville type fractional boundary value problems.
To illustrate the applicability of established results, we estimate lower
bounds for eigenvalues of the corresponding eigenvalue problems and de-
duce criteria for the nonexistence of real zeros of certain Mittag-Leffler
functions.
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1. Introduction

In 1907, Lyapunov [10] proved a necessary condition for the existence of a
nontrivial solution of Hill’s equation associated with Dirichlet boundary con-
ditions.

Theorem 1.1. [10] If the boundary value problem

(1.1)

{
y′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where q : [a, b]→ R is a continuous function, then

(1.2)

∫ b

a

∣∣q(s)∣∣ds > 4

(b− a)
.

The Lyapunov inequality (1.2) has several applications in various problems
related to differential equations. Due to its importance, the Lyapunov inequal-
ity has been generalized in many forms. For more details on Lyapunov-type
inequalities and their applications, we refer [2, 12, 13, 15, 17, 18, 19] and the
references therein.
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On the other hand, many researchers have derived Lyapunov-type inequal-
ities for various classes of fractional boundary value problems in the recent
years. For the first time, in 2013, Ferreira [4] generalized Theorem 1.1 to the
case where the classical second-order derivative in (1.1) is replaced by an αth-
order (1 < α ≤ 2) Riemann-Liouville type derivative.

Theorem 1.2. [4] If the fractional boundary value problem{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where q : [a, b]→ R is a continuous function, then∫ b

a

∣∣q(s)∣∣ds > Γ(α)
( 4

b− a

)α−1

.

Here Dα
a denotes the Riemann-Liouville type αth-order differential operator.

In 2014, Ferreira [5] replaced the Riemann-Liouville type derivative in Theorem
1.2 with the Caputo type derivative CDα

a and obtained the following Lyapunov-
type inequality for the resulting problem:

Theorem 1.3. [5] If the fractional boundary value problem{
CDα

a y(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where q : [a, b]→ R is a continuous function, then∫ b

a

∣∣q(s)∣∣ds > Γ(α)αα

[(α− 1)(b− a)]α−1
.

Jleli et al. [6, 7, 8] and Wang et al. [16] obtained Lyapunov-type in-
equalities for two-point Caputo type fractional boundary value problems asso-
ciated with Robin, mixed, Sturm-Liouville and general boundary conditions,
respectively. Recently, Ntouyas et al. [11] presented a survey of results on
Lyapunov-type inequalities for fractional differential equations associated with
a variety of boundary conditions. This article shows a gap in the literature
on Lyapunov-type inequalities for two-point Riemann-Liouville type fractional
boundary value problems associated with mixed, Sturm-Liouville and Robin
boundary conditions.

In 2016, Dhar et al. [3] derived Lyapunov-type inequalities for two-point
Riemann-Liouville type fractional boundary value problems associated with
fractional integral boundary conditions. This article stresses the importance of
choosing well-posed boundary conditions for Riemann-Liouville type fractional
boundary value problems.

Motivated by these developments, in this article, we establish Lyapunov-
type inequalities for two-point Riemann-Liouville type fractional boundary
value problems associated with well-posed mixed, Sturm-Liouville, Robin and
general boundary conditions.
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2. Preliminaries

Throughout, we shall use the following notations, definitions and known
results of fractional calculus [9, 14]. Denote the set of all real numbers and
complex numbers by R and C, respectively.

Definition 2.1. [9] Let α > 0 and a ∈ R. The αth-order Riemann-Liouville
type fractional integral of a function y : [a, b]→ R is defined by

(2.1) Iαa y(t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds, a ≤ t ≤ b,

provided the right-hand side exists. For α = 0, define Iαa to be the identity
map. Moreover, let n denote a positive integer and assume n−1 < α ≤ n. The
αth-order Riemann-Liouville type fractional derivative is defined as

(2.2) Dα
a y(t) = DnIn−αa y(t), a ≤ t ≤ b,

whereDn denotes the classical nth-order derivative, if the right-hand side exists.

Definition 2.2. [9] We denote by L(a, b) the space of Lebesgue measurable
functions y : [a, b]→ R for which

‖y‖L =

∫ b

a

|y(t)|dt <∞.

Definition 2.3. [9] We denote by C[a, b] the space of continuous functions
y : [a, b]→ R with the norm

‖y‖C = max
t∈[a,b]

|y(t)|.

Definition 2.4. [9] Let 0 ≤ γ < 1, y : (a, b] → R and define yγ(t) = tγy(t),
t ∈ [a, b]. We denote by Cγ [a, b] the weighted space of functions y such that
yγ ∈ C[a, b], and

‖y‖Cγ
= max
t∈[a,b]

|(t− a)γy(t)|.

Lemma 2.1. [9] If α ≥ 0 and β > 0, then

Iαa (t− a)β−1 =
Γ(β)

Γ(β + α)
(t− a)β+α−1,

Dα
a (t− a)β−1 =

Γ(β)

Γ(β − α)
(t− a)β−α−1.

Lemma 2.2. [9] Let α > β > 0 and y ∈ C[a, b]. Then,

Dβ
a I

α
a y(t) = Iα−βa y(t), t ∈ [a, b].
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Lemma 2.3. [1] Let α > 0 and n be a positive integer such that n−1 < α ≤ n.
Then, the fractional differential equation

Dα
a y(t) = 0, a < t < b,

has a unique solution y ∈ C(a, b) ∩ L(a, b), and is given by

y(t) = C1(t− a)α−1 + C2(t− a)α−2 + · · ·+ Cn(t− a)α−n,

where Ci ∈ R, i = 1, 2, · · · , n.

Lemma 2.4. [1] Let α > 0 and n be a positive integer such that n−1 < α ≤ n.
If y ∈ C(a, b) ∩ L(a, b), then

IαaD
α
a y(t) = y(t) + C1(t− a)α−1 + C2(t− a)α−2 + · · ·+ Cn(t− a)α−n,

for some Ci ∈ R, i = 1, 2, · · · , n.

3. Main Results

In this section, we obtain Lyapunov-type inequalities for two-point Riemann-
Liouville type fractional boundary value problems associated with well-posed
mixed, Sturm-Liouville, Robin and general boundary conditions, using the
properties of the corresponding Green’s functions.

Theorem 3.1. Let 1 < α ≤ 2 and h : [a, b] → R. The fractional boundary
value problem

(3.1)

{
Dα
a y(t) + h(t) = 0, a < t < b,

lI2−α
a y(a)−mDα−1

a y(a) = 0, ny(b) + pDα−1
a y(b) = 0,

has the unique solution

(3.2) y(t) =

∫ b

a

G(t, s)h(s)ds,

where G(t, s) is given by

(3.3) G(t, s) =

{
G1(t, s), a < s ≤ t ≤ b,
G2(t, s), a < t ≤ s ≤ b,

(3.4) G1(t, s) = G2(t, s)− (t− s)α−1

Γ(α)
,

and

(3.5) G2(t, s) =
[ l(t− a)α−1 +m(α− 1)(t− a)α−2

A

][n(b− s)α−1

Γ(α)
+ p
]
.

Here l, p ≥ 0; m, n > 0 and A = ln(b−a)α−1 +mn(α− 1)(b−a)α−2 + lpΓ(α).
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Proof. Applying Iαa on both sides of (3.1) and using Lemma 2.4, we have

(3.6) y(t) = −Iαa h(t) + C1(t− a)α−1 + C2(t− a)α−2,

for some C1, C2 ∈ R. Applying I2−α
a on both sides of (3.6) and using Lemmas

2.1 - 2.2, we get

(3.7) I2−α
a y(t) = −I2

ah(t) + C1Γ(α)(t− a) + C2Γ(α− 1).

Applying Dα−1
a on both sides of (3.6) and using Lemmas 2.1 - 2.2, we get

(3.8) Dα−1
a y(t) = −I1

ah(t) + C1Γ(α).

Using lI2−α
a y(a)−mDα−1

a y(a) = 0 in (3.7) and (3.8), we get

(3.9) −mC1(α− 1) + lC2 = 0.

Using ny(b) + pDα−1
a y(b) = 0 in (3.6) and (3.8), we get

(3.10) C1

[
n(b− a)α−1 + pΓ(α)

]
+ nC2(b− a)α−2 = nIαa h(b) + pI1

ah(b).

Solving (3.9) and (3.10) for C1 and C2, we have

C1 =
l

A

∫ b

a

[n(b− s)α−1

Γ(α)
+ p
]
h(s)ds,

and

C2 =
m(α− 1)

A

∫ b

a

[n(b− s)α−1

Γ(α)
+ p
]
h(s)ds.

Substituting C1 and C2 in (3.6), it follows that

y(t) = − 1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds

+
l(t− a)α−1

A

∫ b

a

[n(b− s)α−1

Γ(α)
+ p
]
h(s)ds

+
m(α− 1)(t− a)α−2

A

∫ b

a

[n(b− s)α−1

Γ(α)
+ p
]
h(s)ds

=

∫ b

a

G(t, s)h(s)ds.

The proof is complete.

Corollary 1. Let 1 < α ≤ 2 and h : [a, b]→ R. The fractional boundary value
problem

(3.11)

{
Dα
a y(t) + h(t) = 0, a < t < b,

y(a) = 0, ny(b) + pDα−1
a y(b) = 0,
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has the unique solution

(3.12) y(t) =

∫ b

a

Ḡ(t, s)h(s)ds,

where Ḡ(t, s) is given by

(3.13) Ḡ(t, s) =

{
Ḡ1(t, s), a ≤ s ≤ t ≤ b,
Ḡ2(t, s), a ≤ t ≤ s ≤ b,

(3.14) Ḡ1(t, s) = Ḡ2(t, s)− (t− s)α−1

Γ(α)
,

and

(3.15) Ḡ2(t, s) =
(t− a)α−1

Ā

[n(b− s)α−1

Γ(α)
+ p
]
.

Here n ≥ 0, p > 0 and Ā = n(b− a)α−1 + pΓ(α).

Proof. The proof is similar to the proof of Theorem 3.1.

Now, we prove that these Green’s functions are positive and obtain upper
bounds for both the Green’s functions and their integrals.

Theorem 3.2. The Green’s function G(t, s) for (3.1) satisfies G(t, s) > 0 for
(t, s) ∈ (a, b]× (a, b].

Proof. Clearly, for a < t ≤ s ≤ b,

G(t, s) =
[ l(t− a)α−1 +m(α− 1)(t− a)α−2

A

][n(b− s)α−1

Γ(α)
+ p
]
> 0.

Now, suppose a < s ≤ t ≤ b. Consider

G(t, s) =
[ l(t− a)α−1 +m(α− 1)(t− a)α−2

A

][n(b− s)α−1

Γ(α)
+ p
]

− (t− s)α−1

Γ(α)

=
1

AΓ(α)

[
ln
[
(t− a)α−1(b− s)α−1 − (b− a)α−1(t− s)α−1

]
+mn(α− 1)

[
(t− a)α−2(b− s)α−1 − (b− a)α−2(t− s)α−1

]
+ lpΓ(α)

[
(t− a)α−1 − (t− s)α−1

]
+mp(α− 1)Γ(α)(t− a)α−2

]
=

1

AΓ(α)

[
S1 + S2 + S3 + S4

]
.(3.16)
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Clearly, AΓ(α) > 0. Consider

(t− a)(b− s)− (b− a)(t− s) = (s− a)(b− t) ≥ 0,

implies

(3.17) S1 = ln
[
(t− a)α−1(b− s)α−1 − (b− a)α−1(t− s)α−1

]
≥ 0.

Since
a < s ≤ t ≤ b,

we have

(t− a)α−2 ≥ (b− a)α−2, (b− s)α−1 ≥ (t− s)α−1 and (t− a)α−1 > (t− s)α−1,

implying that

S2 = mn(α− 1)
[
(t− a)α−2(b− s)α−1 − (b− a)α−2(t− s)α−1

]
≥ mn(α− 1)(b− a)α−2

[
(b− s)α−1 − (t− s)α−1

]
≥ 0,(3.18)

and

(3.19) S3 = lpΓ(α)
[
(t− a)α−1 − (t− s)α−1

]
> 0.

Clearly,

(3.20) S4 = mp(α− 1)Γ(α)(t− a)α−2 > 0.

Using (3.17) - (3.20) in (3.16), we have G(t, s) > 0. The proof is complete.

Corollary 2. The Green’s function Ḡ(t, s) for (3.11) satisfies G(t, s) ≥ 0 for
(t, s) ∈ [a, b]× [a, b].

Proof. The proof is similar to the proof of Theorem 3.2.

Theorem 3.3. For the Green’s function G(t, s) defined in (3.3),

max
s∈(a,b]

G(t, s) = G(t, t), t ∈ (a, b],

and

(t− a)2−αG(t, t) <
[ l(b− a) +m(α− 1)

A

][n(b− a)α−1

Γ(α)
+ p
]
, t ∈ [a, b].

Proof. For the first part, we show that for any fixed t ∈ (a, b], G(t, s) increases
in s for s from a to t, and then decreases in s for s from t to b. Let a < t < s < b.
Consider

∂

∂s
G(t, s) = −n(α− 1)(b− s)α−2

Γ(α)

[ l(t− a)α−1 +m(α− 1)(t− a)α−2

A

]
< 0,
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implying that G(t, s) is a decreasing function of s. Now, suppose a < s < t ≤ b.
Consider

∂

∂s
G(t, s) = −n(α− 1)(b− s)α−2

Γ(α)

[ l(t− a)α−1 +m(α− 1)(t− a)α−2

A

]
+

(α− 1)(t− s)α−2

Γ(α)

=
(α− 1)

AΓ(α)

[
ln
[
− (t− a)α−1(b− s)α−2 + (b− a)α−1(t− s)α−2

]
+mn(α− 1)

[
− (t− a)α−2(b− s)α−2 + (b− a)α−2(t− s)α−2

]
+ lpΓ(α)(t− s)α−2

]
=

(α− 1)

AΓ(α)

[
S5 + S6 + S7

]
.(3.21)

Clearly, (α−1)
AΓ(α) > 0. Since

(t− a)(b− s)− (b− a)(t− s) = (s− a)(b− t) ≥ 0,

we have that

(3.22) S6 = mn(α− 1)
[
− (t− a)α−2(b− s)α−2 + (b− a)α−2(t− s)α−2

]
≥ 0.

Since a < s < t ≤ b, we have

(t− s)α−2 ≥ (b− s)α−2 and (b− a)α−1 ≥ (t− a)α−1,

implying that

S5 = ln
[
−(t− a)α−1(b− s)α−2 + (b− a)α−1(t− s)α−2

]
≥ ln(b− s)α−2

[
− (t− a)α−1 + (b− a)α−1

]
≥ 0.(3.23)

Clearly,

(3.24) S7 = lpΓ(α)(t− s)α−2 > 0.

Using (3.22) - (3.24) in (3.21), we have G(t, s) > 0, implying that G(t, s) is an
increasing function of s. Then, it follows that

max
s∈(a,b]

G(t, s) = G(t, t), t ∈ (a, b].

To prove the second part, for t ∈ [a, b], consider

(t− a)2−αG(t, t) =
[ l(t− a) +m(α− 1)

A

][n(b− t)α−1

Γ(α)
+ p
]

<
[ l(b− a) +m(α− 1)

A

][n(b− a)α−1

Γ(α)
+ p
]
.

The proof is complete.
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Corollary 3. For the Green’s function Ḡ(t, s) defined in (3.13),

max
s∈[a,b]

Ḡ(t, s) = Ḡ(t, t), t ∈ [a, b],

and

Ḡ(t, t) ≤
[ (b− a)α−1

Ā

][n(b− a)α−1

Γ(α)
+ p
]
, t ∈ [a, b].

Proof. The first part of the proof is similar to the proof of Theorem 3.3. To
prove the second part, for t ∈ [a, b], consider

Ḡ(t, t) =
[ (t− a)α−1

Ā

][n(b− t)α−1

Γ(α)
+ p
]

≤
[ (b− a)α−1

Ā

][n(b− a)α−1

Γ(α)
+ p
]
.

The proof is complete.

Theorem 3.4. For the Green’s function G(t, s) defined in (3.3),∫ b

a

(t−a)2−αG(t, s)ds ≤
[ l(b− a) +m(α− 1)

A

][n(b− a)α

Γ(α+ 1)
+p(b−a)

]
, t ∈ [a, b].

Proof. Consider∫ b

a

(t− a)2−αG(t, s)ds

=

∫ t

a

(t− a)2−αG1(t, s)ds+

∫ b

t

(t− a)2−αG2(t, s)ds

=
[ l(t− a) +m(α− 1)

A

][n(b− a)α

Γ(α+ 1)
+ p(b− a)

]
− (t− a)2

Γ(α+ 1)

≤
[ l(b− a) +m(α− 1)

A

][n(b− a)α

Γ(α+ 1)
+ p(b− a)

]
.

The proof is complete.

Corollary 4. For the Green’s function Ḡ(t, s) defined in (3.13),∫ b

a

Ḡ(t, s)ds ≤
(b− a)α

[
n(b− a)α−1 + pΓ(α+ 1)

]
ĀΓ(α+ 1)

, t ∈ [a, b].

Proof. Consider∫ b

a

Ḡ(t, s)ds =

∫ t

a

Ḡ1(t, s)ds+

∫ b

t

Ḡ2(t, s)ds

=
(t− a)α−1

Ā

[n(b− a)α

Γ(α+ 1)
+ p(b− a)

]
− (t− a)α

Γ(α+ 1)

≤
(b− a)α

[
n(b− a)α−1 + pΓ(α+ 1)

]
ĀΓ(α+ 1)

.

The proof is complete.
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We are now able to formulate Lyapunov-type inequalities for the fractional
boundary value problems (3.1) and (3.11).

Theorem 3.5. If the following fractional boundary value problem

(3.25)

{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

lI2−α
a y(a)−mDα−1

a y(a) = 0, ny(b) + pDα−1
a y(b) = 0,

has a nontrivial solution, then

(3.26)

∫ b

a

(s− a)α−2
∣∣q(s)∣∣ds > AΓ(α)[

n(b− a)α−1 + pΓ(α)
][
l(b− a) +m(α− 1)

] .
Proof. Let B = C2−α[a, b] be the Banach space of functions y endowed with
norm

‖y‖C2−α = max
t∈[a,b]

∣∣(t− a)2−αy(t)
∣∣.

It follows from Theorem 3.1 that a solution to (3.25) satisfies the equation

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds.

Hence,

‖y‖C2−α
= max
t∈[a,b]

∣∣∣(t− a)2−α
∫ b

a

G(t, s)q(s)y(s)ds
∣∣∣

≤ max
t∈[a,b]

[ ∫ b

a

(t− a)2−αG(t, s)
∣∣q(s)∣∣∣∣y(s)

∣∣ds]
≤ ‖y‖C2−α

[
max
t∈[a,b]

∫ b

a

(t− a)2−αG(t, s)(s− a)α−2
∣∣q(s)∣∣ds]

≤ ‖y‖C2−α

[
max
t∈[a,b]

(t− a)2−αG(t, t)
] ∫ b

a

(s− a)α−2
∣∣q(s)∣∣ds,

or, equivalently,

1 <
[

max
t∈[a,b]

(t− a)2−αG(t, t)
] ∫ b

a

(s− a)α−2
∣∣q(s)∣∣ds.

An application of Theorem 3.3 yields the result.

Corollary 5. If the following fractional boundary value problem

(3.27)

{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, ny(b) + pDα−1
a y(b) = 0,

has a nontrivial solution, then

(3.28)

∫ b

a

∣∣q(s)∣∣ds > ĀΓ(α)[
n(b− a)2α−2 + p(b− a)α−1Γ(α)

] .
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Proof. Let B = C[a, b] be the Banach space of functions y endowed with norm

‖y‖ = max
t∈[a,b]

|y(t)|.

It follows from Corollary 1 that a solution to (3.27) satisfies the equation

y(t) =

∫ b

a

Ḡ(t, s)q(s)y(s)ds.

Hence,

‖y‖ = max
t∈[a,b]

∣∣∣ ∫ b

a

Ḡ(t, s)q(s)y(s)ds
∣∣∣ ≤ max

t∈[a,b]

[ ∫ b

a

Ḡ(t, s)
∣∣q(s)∣∣∣∣y(s)

∣∣ds]
≤ ‖y‖

[
max
t∈[a,b]

∫ b

a

Ḡ(t, s)
∣∣q(s)∣∣ds]

≤ ‖y‖
[

max
t∈[a,b]

Ḡ(t, t)
] ∫ b

a

∣∣q(s)∣∣ds,
or, equivalently,

1 <
[

max
t∈[a,b]

Ḡ(t, t)
] ∫ b

a

∣∣q(s)∣∣ds.
An application of Corollary 3 yields the result.

Take l = p = 0 in Theorem 3.5. Then, we obtain the following Lyapunov-
type inequality for the left-focal fractional boundary value problem.

Corollary 6. If the following fractional boundary value problem

(3.29)

{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

Dα−1
a y(a) = 0, y(b) = 0,

has a nontrivial solution, then

(3.30)

∫ b

a

(s− a)α−2
∣∣q(s)∣∣ds > Γ(α)

(b− a)
.

Take n = 0 in Corollary 5. Then, we obtain the following Lyapunov-type
inequality for the right-focal fractional boundary value problem.

Corollary 7. If the following fractional boundary value problem

(3.31)

{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, Dα−1
a y(b) = 0,

has a nontrivial solution, then

(3.32)

∫ b

a

∣∣q(s)∣∣ds > Γ(α)

(b− a)α−1
.
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Take l = m = n = p = 1 in Theorem 3.5. Then, we obtain the following
Lyapunov-type inequality for the fractional boundary value problem with Robin
boundary conditions.

Corollary 8. If the following fractional boundary value problem

(3.33)

{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

I2−α
a y(a)−Dα−1

a y(a) = 0, y(b) +Dα−1
a y(b) = 0,

has a nontrivial solution, then

(3.34)

∫ b

a

(s−a)α−2
∣∣q(s)∣∣ds > [

(b− a)α−1 + (α− 1)(b− a)α−2 + Γ(α)
]
Γ(α)[

(b− a)α−1 + Γ(α)
]
(b− a+ α− 1)

.

Take l > 0 and p = 0 in Theorem 3.5. Then, we obtain the follow-
ing Lyapunov-type inequality for the fractional boundary value problem with
Sturm-Liouville boundary conditions.

Corollary 9. If the following fractional boundary value problem

(3.35)

{
Dα
a y(t) + q(t)y(t) = 0, a < t < b,

lI2−α
a y(a)−mDα−1

a y(a) = 0, y(b) = 0,

has a nontrivial solution, then

(3.36)

∫ b

a

(s− a)α−2
∣∣q(s)∣∣ds > Γ(α)

(b− a)
.

4. Applications

In this section, we discuss two applications of Theorem 3.5 and Corollary 5.
First, we estimate lower bounds for the eigenvalues of the Riemann-Liouville
type fractional eigenvalue problems corresponding to (3.25) and (3.27).

Theorem 4.1. Assume that y is a nontrivial solution of the Riemann-Liouville
type fractional eigenvalue problem{

Dα
a y(t) + p(t)y(t) = 0, a < t < b,

lI2−α
a y(a)−mDα−1

a y(a) = 0, ny(b) + pDα−1
a y(b) = 0,

where y(t) 6= 0 for each t ∈ (a, b). Then,

(4.1) |λ| > (α− 1)AΓ(α)

(b− a)α−1
[
n(b− a)α−1 + pΓ(α)

][
l(b− a) +m(α− 1)

] .
Corollary 10. Assume that y is a nontrivial solution of the Riemann-Liouville
type fractional eigenvalue problem{

Dα
a y(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, ny(b) + pDα−1
a y(b) = 0,
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where y(t) 6= 0 for each t ∈ (a, b). Then,

(4.2) |λ| > ĀΓ(α)

(b− a)α
[
n(b− a)α−1 + pΓ(α)

] .
Consider the one and two-parameter Mittag-Leffler functions [9]

(4.3) Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
,

and

(4.4) Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
,

where z, β ∈ C and <(α) > 0.
As the second application, we use Theorem 3.5 and Corollary 5 to obtain

an interval in which some functions of Mittag-Leffler functions (4.3) and (4.4)
have no real zeros.

Theorem 4.2. Let 1 < α ≤ 2. Then, the function

lpEα(x) + (ln−mpx)Eα,α(x) +mnEα,α−1(x)

has no real zeros for

|x| ≤
(α− 1)

[
ln+mn(α− 1) + lpΓ(α)

]
Γ(α)

(l +m(α− 1))(n+ pΓ(α))
.

Proof. Let a = 0, b = 1 and consider the fractional boundary value problem

(4.5)

{
Dα

0 y(t) + λy(t) = 0, 0 < t < 1,

lI2−α
0 y(0)−mDα−1

0 y(0) = 0, ny(1) + pDα−1
0 y(1) = 0.

By Corollary 5.1 of [9], the general solution of the fractional differential equation

Dα
0 y(t) + λy(t) = 0

is given by

(4.6) y(t) = c1t
α−1Eα,α(−λtα) + c2t

α−2Eα,α−1(−λtα), t ∈ (0, 1].

Denote by

g(t) = tα−1Eα,α(−λtα) = tα−1
∞∑
n=0

(−λ)ntαn

Γ(αn+ α)
.

Then

g′(t) = tα−2
∞∑
n=0

(−λ)ntαn

Γ(αn+ α− 1)
= tα−2Eα,α−1(−λtα).
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Note that

I2−α
0 g(t) =

∞∑
n=0

(−λ)n

Γ(αn+ α)
I2−α
0 tαn+α−1(4.7)

=

∞∑
n=0

(−λ)n

Γ(αn+ α)

Γ(αn+ α)

Γ(αn+ 2)
tαn+1

= t
∞∑
n=0

(−λ)n

Γ(αn+ 2)
tαn = tEα,2(−λtα),

Dα−1
0 g(t) =

∞∑
n=0

(−λ)n

Γ(αn+ α)
Dα−1

0 tαn+α−1(4.8)

=

∞∑
n=0

(−λ)n

Γ(αn+ α)

Γ(αn+ α)

Γ(αn+ 1)
tαn

=

∞∑
n=0

(−λ)n

Γ(αn+ 1)
tαn = Eα(−λtα),

I2−α
0 g′(t) =

∞∑
n=0

(−λ)n

Γ(αn+ α− 1)
I2−α
0 tαn+α−2(4.9)

=

∞∑
n=0

(−λ)n

Γ(αn+ α− 1)

Γ(αn+ α− 1)

Γ(αn+ 1)
tαn

=

∞∑
n=0

(−λ)n

Γ(αn+ 1)
tαn = Eα(−λtα),

and

Dα−1
0 g′(t) =

∞∑
n=0

(−λ)n

Γ(αn+ α− 1)
Dα−1

0 tαn+α−2(4.10)

=

∞∑
n=1

(−λ)n

Γ(αn+ α− 1)

Γ(αn+ α− 1)

Γ(αn)
tαn−1

= −λ
∞∑
n=0

(−λ)n

Γ(αn+ α)
tαn+α−1 = −λg(t).

Also, note that

(4.11) I2−α
0 g(0) = Dα−1

0 g′(0) = 0, Dα−1
0 g(0) = I2−α

0 g′(0) = 1.

Using lI2−α
0 y(0)−mDα−1

0 y(0) = 0, we get

mc1 = lc2.
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Using ny(1) + pDα−1
0 y(1) = 0, we get that the eigenvalues λ ∈ R of (4.5) are

the solutions of

(4.12) lpEα(−λ) + (ln−mpλ)Eα,α(−λ) +mnEα,α−1(−λ) = 0,

and the corresponding eigenfunctions are given by

(4.13) y(t) = tα−1Eα,α(−λtα) +
m

l
tα−2Eα,α−1(−λtα), t ∈ (0, 1].

By Theorem 3.5, if a real eigenvalue λ of (4.5) exists, i.e. λ is a zero of (4.12),
then

|λ| >
(α− 1)

[
ln+mn(α− 1) + lpΓ(α)

]
Γ(α)

(l +m(α− 1))(n+ pΓ(α))
.

The proof is complete.

Corollary 11. Let 1 < α ≤ 2. Then, the function pEα(x) + nEα,α(x) has no
real zeros for

|x| ≤ Γ(α).
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Sci. Toulouse Sci. Math. Sci. Phys. (2) 9 (1907), 203–474.



152 Debananda Basua, Jagan Mohan Jonnalagadda

[11] Ntouyas, S., Ahmad, B., and Horikis, T. Recent developments of Lyapunov-
type inequalities for fractional differential equations. arXiv:1804.10760v1 .

[12] Pachpatte, B. G. On Lyapunov-type inequalities for certain higher order dif-
ferential equations. J. Math. Anal. Appl. 195, 2 (1995), 527–536.

[13] Pinasco, J. P. Lyapunov-type inequalities. SpringerBriefs in Mathematics.
Springer, New York, 2013. With applications to eigenvalue problems.

[14] Podlubny, I. Fractional differential equations, vol. 198 of Mathematics in Sci-
ence and Engineering. Academic Press, Inc., San Diego, CA, 1999. An intro-
duction to fractional derivatives, fractional differential equations, to methods of
their solution and some of their applications.

[15] Tiryaki, A. n. Recent developments of Lyapunov-type inequalities. Adv. Dyn.
Syst. Appl. 5, 2 (2010), 231–248.

[16] Wang, Y., Liang, S., and Xia, C. A Lyapunov-type inequality for a fractional
differential equation under Sturm-Liouville boundary conditions. Math. Inequal.
Appl. 20, 1 (2017), 139–148.

[17] Yang, X., Kim, Y.-I., and Lo, K. Lyapunov-type inequalities for a class of
higher-order linear differential equations. Appl. Math. Lett. 34 (2014), 86–89.

[18] Yang, X., Kim, Y.-I., and Lo, K. Lyapunov-type inequality for a class of
even-order linear differential equations. Appl. Math. Comput. 245 (2014), 145–
151.

[19] Yang, X., and Lo, K. Lyapunov-type inequalities for a class of higher-order
linear differential equations with anti-periodic boundary conditions. Appl. Math.
Lett. 34 (2014), 33–36.

Received by the editors July 27, 2018
First published online September 30, 2018


	Introduction
	Preliminaries
	Main Results
	Applications

