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LYAPUNOV-TYPE INEQUALITIES FOR
RIEMANN-LIOUVILLE TYPE FRACTIONAL
BOUNDARY VALUE PROBLEMS

Debananda Basuzﬂ and Jagan Mohan J onnalagaddﬁ

Abstract. In this article, we establish Lyapunov-type inequalities for
two-point Riemann-Liouville type fractional boundary value problems.
To illustrate the applicability of established results, we estimate lower
bounds for eigenvalues of the corresponding eigenvalue problems and de-
duce criteria for the nonexistence of real zeros of certain Mittag-Leffler
functions.

AMS Mathematics Subject Classification (2010): 34A08; 34A40; 26D10;
34C10; 33E12

Key words and phrases: Riemann-Liouville type fractional derivative;
boundary value problem; Green’s function; Lyapunov-type inequality;
eigenvalue; Mittag-Leffler function

1. Introduction

In 1907, Lyapunov [10] proved a necessary condition for the existence of a
nontrivial solution of Hill’'s equation associated with Dirichlet boundary con-
ditions.

Theorem 1.1. [10] If the boundary value problem

(1.1) {y”(t) +q(t)y(t) =0, a<t<b,

yla) =0, y(b) =0,

has a nontrivial solution, where q : [a,b] = R is a continuous function, then

b
(1.2) / |q(s)‘ds > ﬁ.

The Lyapunov inequality has several applications in various problems
related to differential equations. Due to its importance, the Lyapunov inequal-
ity has been generalized in many forms. For more details on Lyapunov-type
inequalities and their applications, we refer [2] [12] 13| 5] 17, 18, 19] and the
references therein.
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On the other hand, many researchers have derived Lyapunov-type inequal-
ities for various classes of fractional boundary value problems in the recent
years. For the first time, in 2013, Ferreira [4] generalized Theorem to the
case where the classical second-order derivative in is replaced by an a'h-
order (1 < a < 2) Riemann-Liouville type derivative.

Theorem 1.2. [J|] If the fractional boundary value problem
Dgy(t) +q)y(t) =0, a<t<b
y(a) =0, y(b) =0,

has a nontrivial solution, where q : [a,b] — R is a continuous function, then

/ab |q(s)’d8 > P(a)(b f a)a_l.

Here D¢ denotes the Riemann-Liouville type at"-order differential operator.
In 2014, Ferreira [5] replaced the Riemann-Liouville type derivative in Theorem
With the Caputo type derivative ©“ D¢ and obtained the following Lyapunov-
type inequality for the resulting problem:

Theorem 1.3. [J] If the fractional boundary value problem

“Dy(t) +q(t)y(t) =0, a<t<b,
y(a) =0, y(b) =0,

has a nontrivial solution, where q : [a,b] = R is a continuous function, then

b Ia)a®
/a l)ds > e —a T

Jleli et al. [0 [7, 8] and Wang et al. [16] obtained Lyapunov-type in-
equalities for two-point Caputo type fractional boundary value problems asso-
ciated with Robin, mixed, Sturm-Liouville and general boundary conditions,
respectively. Recently, Ntouyas et al. [II] presented a survey of results on
Lyapunov-type inequalities for fractional differential equations associated with
a variety of boundary conditions. This article shows a gap in the literature
on Lyapunov-type inequalities for two-point Riemann-Liouville type fractional
boundary value problems associated with mixed, Sturm-Liouville and Robin
boundary conditions.

In 2016, Dhar et al. [3] derived Lyapunov-type inequalities for two-point
Riemann-Liouville type fractional boundary value problems associated with
fractional integral boundary conditions. This article stresses the importance of
choosing well-posed boundary conditions for Riemann-Liouville type fractional
boundary value problems.

Motivated by these developments, in this article, we establish Lyapunov-
type inequalities for two-point Riemann-Liouville type fractional boundary
value problems associated with well-posed mixed, Sturm-Liouville, Robin and
general boundary conditions.
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2. Preliminaries

Throughout, we shall use the following notations, definitions and known
results of fractional calculus [9] [14]. Denote the set of all real numbers and
complex numbers by R and C, respectively.

Definition 2.1. [9] Let a > 0 and @ € R. The a''-order Riemann-Liouville
type fractional integral of a function y : [a,b] — R is defined by

(2.1) I%y(t) = ﬁ/ (t—s)* ty(s)ds, a<t<b,

provided the right-hand side exists. For o = 0, define I to be the identity
map. Moreover, let n denote a positive integer and assume n—1 < a < n. The
th_order Riemann-Liouville type fractional derivative is defined as

(2.2) Dgy(t) = DI~ %y(t), a<t<b,
where D™ denotes the classical n'P-order derivative, if the right-hand side exists.

Definition 2.2. [9] We denote by L(a,b) the space of Lebesgue measurable
functions y : [a,b] — R for which

b
lyllz = / ly(t)]dt < oo.

Definition 2.3. [9) We denote by C[a,b] the space of continuous functions
y : [a,b] — R with the norm

= max t)|.
Iyl = mas y(0)

Definition 2.4. [9] Let 0 < v < 1, y : (a,b] — R and define y,(t) = t"y(t),
€ [a,b]. We denote by C [ b] the weighted space of functions y such that
Yy € C’ [a,b], and

lylle, = max |(t = a)7y(1)]
Lemma 2.1. [9] If « >0 and 8 > 0, then

o= DO e
Ia(tia)ﬁ 1*1-\(54_0()(75 )B+ 17

Qg B—1 — F(ﬁ) —a B—a—1
Da (t ) F(ﬁ—a) (t ) .

Lemma 2.2. [9] Let « > >0 and y € C[a,b]. Then,

DEISy(t) = I3 Py(t), t€[a,b].
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Lemma 2.3. [ Let a > 0 and n be a positive integer such thatn—1 < o < n.
Then, the fractional differential equation

Dy(t) =0, a<t<b,
has a unique solution y € C(a,b) N L(a,b), and is given by
y(t) = Cit —a)* 1+ Co(t —a)® 2 4 - + Cp(t — )",
where C; e R, i=1,2,--- ,n.

Lemma 2.4. [1] Let « > 0 and n be a positive integer such thatn—1 < o < n.
Ify € C(a,b) N L(a,b), then

IZDgy(t) = y(t) + CL(t —a)* '+ Colt =) + -+ Ot — a)* ",

for some C; € R, i =1,2,--- ,n.

3. Main Results

In this section, we obtain Lyapunov-type inequalities for two-point Riemann-
Liouville type fractional boundary value problems associated with well-posed
mixed, Sturm-Liouville, Robin and general boundary conditions, using the
properties of the corresponding Green’s functions.

Theorem 3.1. Let 1 < a < 2 and h : [a,b] — R. The fractional boundary
value problem

B o
1Z=*y(a) —mDg~ y(a) = 0, ny(b) + pDg~y(b) =0,

has the unique solution
b
(3.2) y(t) = / G(t, 5)h(s)ds,

where G(t, s) is given by

Gq(t <t<b
(3.3) Gt,s) = | Crlhs), a<sst<h
Ga(t,s), a<t<s<b,

(t—s)t

(3.4) G1(t,s) = Ga(t,s) — o)

(3.5)  Gal(t,s) =

I(t—a)*t +mla—1)(t— a)afZ] [n(b —s)et

A T(a) +).

Herel,p>0;m,n >0 and A=In(b—a)* ' +mn(a—1)(b—a)* 2 +Ipl'(a).
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Proof. Applying I on both sides of (3.1) and using Lemma we have
(3.6) y(t) = —ISh(t) + C1(t —a)* ! + Co(t — a)* 2,

for some Cy, Cy € R. Applying I2~ on both sides of (3.6 and using Lemmas

21]- 22 we get

(3.7) 27y (t) = —I*h(t) + C1T'(a)(t — a) + CoT' (o — 1).
Applying D¢~ on both sides of and using Lemmas - we get
(3.8) D ty(t) = —Ih(t) + C1T ().

Using 1127 %y(a) — mD% 1y(a) = 0 in and (3.8), we get

(3.9) —mCy(a—1)4+1Cy = 0.

Using ny(b) + pD2~1y(b) = 0 in and (3.8), we get

(3.10)  Ci[n(b—a)* '+ pr(a)} + nCy(b— a)*2 = nI%h(b) + pI}h(b).

Solving (3.9) and (3.10) for C; and Cs, we have

C = A/ b—s —l—p} h(s)ds,

and

= m(ozAf 1) /ab [n(br(z))al +p}h(s)d8.

Substituting C7 and Cs in (3.6)), it follows that

y(t) _F(la)/ (t — 5)°h(s)ds

Ll ) /b {n(b —5)*! +p]h(s)d8

A ()
m(a —1)(t —a)*=2 b n(b—s)*~!
+ A / [ T(a) +p|h(s)ds
b
= / G(t, s)h(s)ds
The proof is complete. O

Corollary 1. Let 1 < a <2 and h: [a,b] = R. The fractional boundary value
problem

(3.11) Dgy(t) +h(t) =0, a<t<b,
y(a) = 0, ny(b) +pD2~1y(b) =0,
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has the unique solution

b
(3.12) y(t) = / G(t, 5)h(s)ds,

where G(t,s) is given by

_ Gi(t <s<t<b
(3.13) Gt,s) = { Crls), asssish,
Gso(t,s), a<t<s<hb,
B B (t _ 5)0471
.14 = —_—
(3 ) Gl(tvs) GZ(ta S) F(a) )
and
(3.15) Goltys) = L= ["(b_ 7 ]
‘ S| T (a) Py
Heren >0,p>0and A=n(b—a)* ! +pl(a).
Proof. The proof is similar to the proof of Theorem 3.1 O

Now, we prove that these Green’s functions are positive and obtain upper
bounds for both the Green’s functions and their integrals.

Theorem 3.2. The Green’s function G(t,s) for (3.1) satisfies G(t,s) > 0 for
(t,s) € (a,b] x (a,b].

Proof. Clearly, for a <t < s <b,

I(t—a)* ' +m(a—1)(t— a)aﬂ} [n(b — g)al

Gltss) = | A (o)

+p} > 0.

Now, suppose a < s <t < b. Consider

Gt = [L Al N
g
[()
1

AT (@) [Zn[(t —a)* T b—9)* Tt = (b—a)* T (t = )]

+ mn(a —1) [(t —a)*2(b—5)*"t — (b—a)*2(t — s)o‘*l}
+pP(@)[(t = @) = (¢ = )" '] + mp(a — DI(a)(t - )72
1

(3.16) = AT(a) [51 + S+ S5+ 54].




Lyapunov-type inequalities for fractional boundary value problems 143

Clearly, AT'(a) > 0. Consider

(t—a)(b—s)— (b—a)(t—s) = (s —a)(b— ) >0,

implies
(3.17) Si=In[t—a)*'b-s)*"—(b—a)* '(t—s)*""] >0.
Since
a<s<t<hb,
we have

(t—a)*2>0b-—a)*2 b=—5)*t>@t—-5> and (t —a)* > (t —s)* 1,

implying that

(3.18) > mn(a—1)(b—a)*?[(b—s)*"" —(t—s)"'] 20,
and

(3.19) Sy =1pL'(a)[(t —a)* ' = (t—s)*"'] > 0.
Clearly,

(3.20) Sy = mp(a — DT (a)(t —a)* 2 > 0.

Using (3.17)) - (3.20]) in (3.16]), we have G(¢,s) > 0. The proof is complete. O

Corollary 2. The Green’s function G(t,s) for ([3.11) satisfies G(t,s) > 0 for
(t,s) € [a,b] x [a,D].

Proof. The proof is similar to the proof of Theorem [3.2) O

Theorem 3.3. For the Green’s function G(t,s) defined in (3.3),

max G(t,s) = G(t,t), té€ (a,b],
s€(a,b]

and

I(b—a)+m(a— 1)} [n(b — g)ol
A I'(a)

Proof. For the first part, we show that for any fixed ¢ € (a,b], G(¢, s) increases
in s for s from a to ¢, and then decreases in s for s from t to b. Let a <t < s < b.
Consider

9 Gt s) = M= 132(’;)— §)° 2 rl(t —a)* ' + mi;y 1)t — a)*

(t — ) Gt 1) < [ +p]7 t € la,b].

<0,
Os
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implying that G(¢, s) is a decreasing function of s. Now, suppose a < s <t < b.
Consider

0 o nla=1)(b-5)"2 [t —a)* +mla—1)(t - )2
L e R « ]
(a—1)(t—s)*?
" I'(a)
- fr—(;; [ (=) b =) + (b= a)* Mt — )"
+mnfa = 1)[ = (t = a)* 20— )" 2+ (b— @) 2t - )]
+ IpI' () (t — S)H}
(a—1)
(3.21) = Aa) S5 + S6 + S+

Clearly, ,(401:(3 > 0. Since

(t—a)(b—s)—(b—a)(t—s)=(s—a)b—t) >0,
we have that
(3.22) Sg=mn(a—1)[—(t—a)* 2(b—35)*2+ (b —a)* (t—s5)* %] > 0.
Since a < s <t < b, we have
(t—=s)?>(0b—-5"?and (b—a)* ' > (t—a)*",
implying that
Ss=In[-(t—a)* ' (b—s) "2+ (b—a)* ' (t—s)*?]

(3.23) >inb—s)*?[-(t—a)* "+ (b—a)* '] >0.
Clearly,
(3.24) Sy = IpT'(a)(t — 5)* 2 > 0.

Using (3.22)) - (3.24) in (3.21), we have G(t, s) > 0, implying that G(t,s) is an
increasing function of s. Then, it follows that

max G(t,s) =G(t,t), te(a,b].
s€(a,b]

To prove the second part, for ¢ € [a, b], consider

(t — a)Q—QG(t7t) _ [l(t — Cl) -I-Am(a — 1)} [n(br_((?)a—l +p}
< [l(b —a) +Am(a — 1)} {n(b;(Z;a_l +p].

The proof is complete. O
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Corollary 3. For the Green’s function G(t,s) defined in (3.13)),

max G(t,s) = G(t,t), tE€la,b],
s€la,b]

and

R [ e

Proof. The first part of the proof is similar to the proof of Theorem [3:3] To
prove the second part, for ¢ € [a, b], consider

6 = [ O

A I'(a)
< [+
The proof is complete. O

Theorem 3.4. For the Green’s function G(t,s) defined in (3.3)),

I(b—a)+m(a— 1)] [n(b —a)®

b
/a (-0}~ (1, 5)ds < | ; =

Proof. Consider
b
/ (t—a)* " *G(t,s)ds

_ /t(t — a2 CG(t s)ds + /b(t Q)2 Galt, 5)ds

—i—p(b—a)}7 t € [a,b].

[ty )
< [l(b —9) *Amm - 1)] [?&‘fi; +p(b—a)].
The proof is complete. U

Corollary 4. For the Green’s function G(t,s) defined in (3.13)),
b b—a)*[n(b—a)®* 4+ pI 1
[ttt < CZ 00 oo+

AT(a+ 1) IRACLE
Proof. Consider
/Gtsds-/G1t8d8+/ G2ts
_(t—a) b —a) (t—a)”
R {F(oﬂrl) “’(b_“)} TTa+1)
< (b—a)*[n(b—a)*~! + pl'(a+1)]
- AT (a+1) '

The proof is complete. O
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We are now able to formulate Lyapunov-type inequalities for the fractional

boundary value problems (3.1]) and (3.11)).

Theorem 3.5. If the following fractional boundary value problem

3.25) Day(t) +ay(t) =0, a<t<b
' 12~ *y(a) —mDg 'y(a) = 0, ny(b) +pDg~'y(b) = 0,
has a nontrivial solution, then

AT (@)
n(b—a)*1 —|—pF(a)] [l(b —a)+m(a— 1)] ’

b
(3.26) / (s — a)“_Q‘q(s)’dS > [

Proof. Let B = Cs_,[a,b] be the Banach space of functions y endowed with
norm

= t—a) > y(t)].
lylles . tren[gflg]|( a)® y(t)|

It follows from Theorem that a solution to (3.25]) satisfies the equation

y(t) = / G(t, 5)a(s)y(s)ds.

Hence,

b
ol = max [t =@ [ Glt.mats)u(s)ds

t€la,b

< e [ [ 0= ar=oa. 9l o) las

t€la,b

A

2)5] /ab(t —a)*"*G(t,s)(s — a)a_zlq(sﬂds}

< e, . | oa

b
< Wllea. [ max (¢ - 2 ~6(00] [ (5= )" *Jato)]ds,
t€la,b] a

or, equivalently,

b

1< [ max (t — a)zf‘)‘G(t,t)] / (s — a)"‘*2|q(s)|d$.
t€la,b] a

An application of Theorem [3.3] yields the result. O

Corollary 5. If the following fractional boundary value problem

{Dgy(t) +qt)y(t) =0, a<t<b,

(3.27) y(a) = 0, ny(b) + pDa~'y(b) =0,

has a nontrivial solution, then

b AT ()
(328) /a |Q(S)|ds > [n(b _ a)2a72 —|—p(b — a)aflf‘(a)] '
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Proof. Let B = C|[a, b] be the Banach space of functions y endowed with norm

Iyl = nax, ly(t)].

It follows from Corollary [1| that a solution to (3.27) satisfies the equation

b
ym:/éwM@mw&

Hence,

b
llyll = max‘/ G(t,s)q(s)y(s)ds| < max /G |q Hy ’ds}

te[a,b] t€(a,b]

< |yl max/ G(t,s) ‘q |ds}

te[ b]
< 1 e G.0)] [ oo,

or, equivalently,

1< maXGtt /|q |ds
tE[ab

An application of Corollary [3] yields the result. O

Take | = p = 0 in Theorem Then, we obtain the following Lyapunov-
type inequality for the left-focal fractional boundary value problem.

Corollary 6. If the following fractional boundary value problem

Dgy(t) +q(t)y(t) =0, a<t<b,
(3.29) {Dsly(a) =0, y(b) =

has a nontrivial solution, then

b
(3.30) / (s — a)*2q(s)|ds > (br(o‘i).

Take n = 0 in Corollary [5| Then, we obtain the following Lyapunov-type
inequality for the right-focal fractional boundary value problem.

Corollary 7. If the following fractional boundary value problem

(331) {Ds<>+m>m>

=0, a<t<b,
yla) =0, Dg~ty(b) =

has a nontrivial solution, then

b
(3.32) / |q(s)|ds > (bf(;);ll.
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Take I = m = n = p = 1 in Theorem Then, we obtain the following
Lyapunov-type inequality for the fractional boundary value problem with Robin
boundary conditions.

Corollary 8. If the following fractional boundary value problem

(3.33) {Dm )+ a(t)y(t)

0, a<t<y,
)

I7y(a) — Dg~'y(a) = 0, y(b) + Dy~ y(b) =0,

has a nontrivial solution, then

[(b —a)* P+ (a—-1)(b—a)* 2+ F(a)]F(a)
[(b—a) 1 +T(a)](b—a+a—1) '
Take I > 0 and p = 0 in Theorem Then, we obtain the follow-

ing Lyapunov-type inequality for the fractional boundary value problem with
Sturm-Liouville boundary conditions.

b
(3.34) /(s—a)o‘*2|q(s)’ds>

Corollary 9. If the following fractional boundary value problem

(3.35) Dgy(t) +q(t)y(t) =0, a<t<b,
| U2*y(a) — mD2y(a) = 0, y(b) = 0.
has a nontrivial solution, then

I'a)
(b—a)

b
(3.36) / (s — a)o‘_2’q(s)|ds >

4. Applications

In this section, we discuss two applications of Theorem [3.5|and Corollary
First, we estimate lower bounds for the eigenvalues of the Riemann-Liouville
type fractional eigenvalue problems corresponding to and ( -

Theorem 4.1. Assume thaty is a nontrivial solution of the Riemann-Liouville
type fractional eigenvalue problem

Dgy(t) +p(t)y(t) =0, a<t<b,
1127 %y(a) — mDY 1y(a) = 0, ny(b) + pDI~Ly(b) = 0,
where y(t) # 0 for each t € (a,b). Then,

(a — 1)ATl'(«) .
(b—a)*=1[n(b—a)*=1 + pL ()] [L(b— a) + m(a — 1)]

(4.1) [A] >

Corollary 10. Assume thaty is a nontrivial solution of the Riemann-Liouville
type fractional eigenvalue problem

Dgy(t) +p(t)y(t) =0, a<t<b,
y(a) =0, ny(b) +pDg~'y(b) =0,
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where y(t) # 0 for each t € (a,b). Then,

AT ()
(b—a)*[n(b—a)>~" +pL(a)]

(4.2) [A] >

Consider the one and two-parameter Mittag-Leffler functions [9]

Mg

(4.3) Pt I( koz + 1
and

4.4 E I
(4.4) a,B(Z)—I;ma

where z, § € C and R(«) > 0

As the second application, we use Theorem [3.5] and Corollary l b| to obtain
an interval in which some functions of Mittag-Leffler functions ) and .
have no real zeros.

Theorem 4.2. Let 1 < a < 2. Then, the function
IpEy(z) + (In — mpx)Eq o(z) + mnEqy o-1(x)
has no real zeros for

(o= 1)[In 4+ mn(a — 1) + IpI'(@)|T(a)
I+ m(a—1))(n+pl'(a))

=] <

Proof. Let a =0, b =1 and consider the fractional boundary value problem

Dgy(t) + Ay(t) =0, 0<t<1,
(45) 2—« a—1 _ a—1 _
1y~ “y(0) —mDg™ y(0) = 0, ny(1) + pDg~ y(1) = 0.

By Corollary 5.1 of [9], the general solution of the fractional differential equation

Dgy(t) + Ay(t) =

is given by
(4.6) y(t) = c1t* By o (= MY) + cat® 2By 01 (=A%), t € (0,1].
Denote by
£) =t By o (X)) =2y
g(t) = (-x9) Z Tt
Then

ntan

) =72 =1""?Eg,a1(—Mt%).
Z oerozfl) a1 )
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Note that
4. .[2 O‘ n 2 apanta— 1
.7 0 nz:o T'(an + «)
_ i (=)™ T(an+ ) san+1
“T'(an+a) I'(an +2)
— (="
=1 O = 1By o (—AY),
nz:% I'(an +2) 1 )
o~ (A" .
4. Da—l t) = (7Da—1tom+o¢ 1
(48) 0 9(t) 7;%1"(om—|-oz) 0
i (an+a) .
N I'(an —I— a) T(an+1)
n=0
= = E,(=\t%),
Z om —|— 1 ( )
o
(4 9) szo‘g/(t) = i i]2*ato¢n+a—2
. 0 n:OF(oerozfl) 0
_ i (=A)" I'(an+a— l)tom
= Flan+a—-1) T(an+1)
— (="
= 77504” — E _/\ta
; I'(an+1) o ),
and
4.1 DO‘_1 ' = (—Da 1yanta—2
(4.10) 0 gfan—i—a—l) 0
i F(an+a— 1)t(xn—1
“— I'(an —|— a—1) I'(an)
t‘”“’o“1 = —\g(t).
Z (an + ) 9(t)
Also, note that
(411) Ig_ag(o) = Dgt_lg/(o) — 0, Dgt—lg(o) _ Ig—ag/(o) -1

Using 113~ *y(0) — mDyy(0) = 0, we get

mey; = les.
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Using ny(1) + pD§~y(1) = 0, we get that the eigenvalues A € R of (@5 are
the solutions of

(4.12) IDEo(=A) + (iIn = mpA)Eq o (—X) + mnEqy o—1(—=A) =0,

and the corresponding eigenfunctions are given by

(4.13) y(t) =t oo (—A%) + %tHEa,a,l(—At&), te(0,1].
By Theorem if a real eigenvalue A of (4.5)) exists, i.e. A is a zero of (4.12),
then
Al (= 1)[ln+ mn(a — 1) + pI'(a)|T(a)
(I+m(a—1))(n+pl(a))
The proof is complete. O

Corollary 11. Let 1 < o < 2. Then, the function pEy(x) + nEqy o(x) has no
real zeros for
|z] < T'(a).
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