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LYAPUNOV-TYPE INEQUALITY FOR NONLINEAR
SYSTEMS WITH RIEMANN-LIOUVILLE

FRACTIONAL DERIVATIVES

Alireza Ansari12, Shiva Eshaghi3 and Reza Khoshsiar Ghaziani4

Abstract. In this paper, we introduce a fractional nonlinear system
of differential equations including the Riemann-Liouville derivatives. We
present some new Lyapunov-type inequalities for this fractional nonlin-
ear system and its special cases. A study of the boundedness and the
behavior of oscillatory solutions is also given.
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1. Introduction

The well-known Lyapunov inequality

(1.1)

∫ b

a

|q(u)|du > 4

b− a
,

was introduced by Aleksandr Mikhailovich Lyapunov [26] in 1893 for the fol-
lowing boundary value problem

(1.2) y′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,

where q(t) is a real and continuous function. In recent years, with developments
in the theory of fractional calculus (see for example [7, 8, 12, 16, 13, 14, 15]),
many authors have studied the associated inequalities of the fractional differ-
ential equations, for example see [2, 1, 19, 21, 27, 36, 37]. In this sense, for the
differential equation (1.2), some authors generalized it as the fractional bound-
ary value problems and obtained the associated Lyapunov inequalities with the
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fractional Riemann-Liouville, Caputo and Prabhakar derivatives [13, 17, 18],
[23, 24].
In view of the nonlinear differential equations, several authors generalized also
the classical Lyapunov inequality (1.1) for the half-linear and nonlinear differ-
ential equation [5, 6, 11, 20, 22, 29, 30, 32, 33, 34, 35]. For example, Lyapunov-
type inequalities can be found in [28] for the Emden-Fowler type equations and
were obtained for the first time by Elbert [10] for the half-linear equation. Also,
the proof of its extension can be found in the book of Došlý and Řehák [9]. In
[32], the authors obtained the Lyapunov inequality for the nonlinear system (a
generalization of the Emden-Fowler-type and half-linear equations)

(1.3)

{
x′(t) = α1(t)x(t) + β1(t)|u(t)|γ−2u(t), γ > 1,

u′(t) = −β2(t)|x(t)|β−2x(t)− α1(t)u(t), β > 1,

with initial conditions

x(a) = x(b) = 0, a, b ∈ R, a < b.

Furthermore, in [15] authors study the nonlinear system (1.3) including the
Prabhakar fractional derivative and present some new Lyapunov-type inequal-
ities for this system and consider some special cases of the system.
In this work, as fractionalization of the nonlinear system (1.3), we study the
following fractional nonlinear system with the Riemann-Liouville derivative of
order µ (0 < µ < 1)

(1.4)

{
Dµx(t) = α1(t)x(t) + β1(t)|u(t)|γ−2u(t), γ > 1,

Dµu(t) = −β2(t)|x(t)|β−2x(t)− α1(t)u(t), β > 1,

where the functions α1, β1 and β2 are continuous functions such that β1(t) > 0
for t ∈ [t0,∞) and initial conditions are

x(a) = x(b) = 0, (I1−µa+ u)(b) = (I1−µb− u)(a) = 0, a, b ∈ R (a < b).

We intend to obtain some new Lyapunov-type inequalities for the fractional
nonlinear system (1.4) and some special cases. For this purpose, we suppose
that the nontrivial solution (x(t), u(t)) of the fractional nonlinear system (1.4)
exists.
The plan of the paper is the following. In the next section, we recall some def-
initions and properties of the fractional calculus. In Section 3, we state funda-
mental theorems about the Lyapunov-type inequalities for fractional nonlinear
system (1.4) and in some special cases we reduce the obtained inequalities. In
Section 4, we discuss the boundedness of solution (x(t), u(t)) and behavior of
zeros.

2. Definitions

Definition 2.1. For m − 1 < µ < m, m ∈ N and f ∈ L1(a, b), the left-sided
and right-sided Riemann-Liouville fractional integral and derivative are defined
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as follows [31]
(2.1)

(Iµa+f)(t) =
1

Γ(µ)

∫ t

a

(t−ξ)µ−1f(ξ)dξ, (Iµb−f)(t) =
1

Γ(µ)

∫ b

t

(ξ−t)µ−1f(ξ)dξ,

(2.2)

(Dµ
a+f)(t) =

dm

dtm
(Im−µa+ f)(t), t > a, (Dµ

b−f)(t) = − dm

dtm
(Im−µb− f)(t), t < b.

Also, the left-sided and right-sided Caputo fractional derivative are defined as
[31]
(2.3)

(CDµ
a+f)(t) = (Im−µa+

dm

dtm
f)(t) =

1

Γ(m− µ)

∫ t

a

(t−ξ)m−1−µ d
m

dtm
f(ξ)dξ, t > a,

(2.4)

(CDµ
b−f)(t) = −(Im−µb−

dm

dtm
f)(t) =

1

Γ(m− µ)

∫ b

t

(ξ−t)m−1−µ d
m

dtm
f(ξ)dξ, t < b.

Proposition 2.2. The Riemann-Liouville fractional derivative of a constant
is not equal to zero for 0 < µ < 1, [25]

(2.5) (Dµ
a+1)(t) =

(t− a)−µ

Γ(1− µ)
, (Dµ

b−1)(t) =
(b− t)−µ

Γ(1− µ)
.

Proposition 2.3. Let m − 1 < µ < m, m ∈ N, p ≥ 1, q ≥ 1 and 1
p + 1

q ≤
µ + 1 (p 6= 1, q 6= 1 in the case 1

p + 1
q = µ + 1). If f(t) ∈ Iµb−(Lp(a, b)) and

g(t) ∈ Iµa+(Lq(a, b)), then [3, 4]∫ b

a

f(t)Dµ
a+g(t)dt =

∫ b

a

g(t)CDµ
b−f(t)dt

+

m−1∑
k=0

(−1)kf (k)(x)Dm−k−1Im−µa+ g(x)|ba,(2.6)

∫ b

a

f(t)Dµ
b−g(t)dt =

∫ b

a

g(t)CDµ
a+f(t)dt

+

m−1∑
k=0

(−1)m−kf (k)(x)Dm−k−1Im−µb− g(x)|ba,(2.7)

∫ b

a

f(t)Dµ
a+g(t)dt =

∫ b

a

g(t)Dµ
b−f(t)dt.(2.8)

Lemma 2.4. If f(t) ∈ C(a, b) ∩ L(a, b), we have [25]

(Dµ
a+I

µ
a+f)(t) = f(t), (Dµ

b−I
µ
b−f)(t) = f(t),

(CDµ
a+I

µ
a+f)(t) = f(t), (CDµ

b−I
µ
b−f)(t) = f(t),
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and if f(t) and its fractional derivative of order µ belongs to C(a, b) ∩ L(a, b),
then for cj ∈ R and m− 1 < µ ≤ m, we have

(2.9) (Iµa+D
µ
a+f)(t) = f(t)−

m∑
j=1

cj(t− a)µ−j ,

(2.10) (Iµb−D
µ
b−f)(t) = f(t)−

m∑
j=1

(−1)m−jcj(b− t)µ−j ,

(2.11) (Iµa+
CDµ

a+f)(t) = f(t)−
m−1∑
j=0

cj(t− a)j ,

(2.12) (Iµb−
CDµ

b−f)(t) = f(t)−
m−1∑
j=0

(−1)jcj(b− t)j .

3. Main results

In this section, we consider a fractional nonlinear system including the
Riemann-Liouville derivative of order µ and present some new Lyapunov-type
inequalities for it. In the case µ = 1, we reduce the Lyapunov-type inequality of
a fractional nonlinear system to the Lyapunov-type inequalities of a nonlinear
system of integer order.

Definition 3.1. We consider the following fractional Emden-Fowler-type equa-
tions in the sense of Riemann-Liouville fractional derivative of order µ

(3.1)

{
Dµx(t) = α1(t)x(t) + β1(t)|u(t)|γ−2u(t), γ > 1,

Dµu(t) = −β2(t)|x(t)|β−2x(t)− α1(t)u(t), β > 1,

with initial conditions

x(a) = x(b) = 0, (I1−µa+ u)(b) = (I1−µb− u)(a) = 0, a, b ∈ R (a < b),

and assume that the following hypotheses hold:

i) β1, β2 : [t0,∞) ⊂ R → R are continuous functions such that β1(t) > 0 for
t ∈ [t0,∞).

ii) α1 : [t0,∞)→ R is a continuous function.

iii) There exists a real solution (x(t);u(t)) of the fractional nonlinear system
(3.1) such that x(a) = x(b) = 0 (a < b) and x(t) 6= 0 for t ∈ (a, b).
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We define a nontrivial solution (x(t), u(t)) of the system (3.1) on some infinite
interval [t0,∞) as a proper solution if

sup{|x(s)|+ |u(s)| : t ≤ s <∞} > 0, t ≥ t0.

A proper solution (x(t), u(t)) of the system (3.1) is called weakly oscillatory if at
least one component has a sequence of zeros tending to infinity. This solution
is said to be oscillatory if both components have sequences of zeros tending
to infinity. If both components (at least one component) are different from
zero for large t, then the solution (x(t), u(t)) is called nonoscillatory (weakly
nonoscillatory). The system (3.1) is said to be oscillatory if all of its solutions
are oscillatory.

Theorem 3.2. The following inequality holds for the fractional nonlinear sys-
tem (3.1)

2 ≤ 1

Γ(µ)

∫ b

a

|t− τ |µ−1|α1(t)|dt

+
M

β
α−1

Γ(µ)

(∫ b

a

|t− τ |γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
α

,

where 1
γ + 1

α = 1, M = max |x(t)|a<t<b and β+
2 (t) = max{β2(t), 0}.

Proof. Since x(a) = x(b) = 0 and x(t) 6= 0 for t ∈ (a, b), there exists τ ∈ (a, b)
such that M = |x(τ)| = max |x(t)|a<t<b > 0. Separating the interval [a, b]
into two subintervals [a, τ ] and [τ, b] and applying the left-sided and right-sided
Riemann-Liouville fractional integral operator Iµa+ and Iµb− on both sides of the
first equation of the system (3.1) in the subintervals [a, τ ] and [τ, b], respectively,
we have (

Iµa+D
µ
a+x(t)

)
(τ) =

(
Iµa+
[
α1(t)x(t) + β1(t)|u(t)|γ−2u(t)

])
(τ),

(
Iµb−D

µ
b−x(t)

)
(τ) =

(
Iµb−
[
α1(t)x(t) + β1(t)|u(t)|γ−2u(t)

])
(τ).

By employing the relations (2.9) and (2.10) for some real constants c1 and d1,
we obtain

x(τ)− c1(τ − a)µ−1 =
1

Γ(µ)

∫ τ

a

(τ − t)µ−1
[
α1(t)x(t) + β1(t)|u(t)|γ−2u(t)

]
dt,

x(τ)− d1(b− τ)µ−1 =
1

Γ(µ)

∫ b

τ

(t− τ)µ−1
[
α1(t)x(t) + β1(t)|u(t)|γ−2u(t)

]
dt.

Because of x(a) = x(b) = 0 and 0 < µ < 1, the coefficients c1 and d1 have to
be zero. At this point, by using the triangle inequality we get

|x(τ)| ≤ 1

Γ(µ)

∫ τ

a

|τ − t|µ−1|α1(t)||x(t)|dt+ 1

Γ(µ)

∫ τ

a

|τ − t|µ−1β1(t)|u(t)|γ−1dt,
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|x(τ)| ≤ 1

Γ(µ)

∫ b

τ

|t− τ |µ−1|α1(t)||x(t)|dt+
1

Γ(µ)

∫ b

τ

|t− τ |µ−1β1(t)|u(t)|γ−1dt,

and then, by summing up two above inequalities, we have
(3.2)

2|x(τ)| ≤ 1

Γ(µ)

∫ b

a

|τ−t|µ−1|α1(t)||x(t)|dt+ 1

Γ(µ)

∫ b

a

|τ−t|µ−1β1(t)|u(t)|γ−1dt.

Now, by using Hölder inequality for the second integral (3.2), we obtain

∫ b

a

|τ − t|µ−1β1(t)|u(t)|γ−1dt

=

∫ b

a

|τ − t|µ−1β
1
γ

1 (t)β
1
α
1 (t)|u(t)|γ−1dt

≤
(∫ b

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β1(t)|u(t)|α(γ−1)dt
) 1
α

=
(∫ b

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β1(t)|u(t)|γdt
) 1
α

,(3.3)

where 1
α + 1

γ = 1. Substituting the relation (3.3) into (3.2), we get

2|x(τ)| ≤ 1

Γ(µ)

∫ b

a

|τ − t|µ−1|α1(t)||x(t)|dt

+
1

Γ(µ)

(∫ b

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β1(t)|u(t)|γdt
) 1
α

.(3.4)

Without loss of generality, if in the interval [a, t], we multiply the first equation
of the system (3.1) by u(t) and the second one by x(t), respectively, and then
add the results, we find that

u(t)Dµ
a+x(t) + x(t)Dµ

a+u(t) = β1(t)|u(t)|γ − β2(t)|x(t)|β .

From the above equation, we integrate on the interval [a, b] and use the relations
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(2.8) and (2.2) for 0 < µ < 1 and τ, s ∈ (a, b) to obtain∫ b

a

β1(t)|u(t)|γdt−
∫ b

a

β2(t)|x(t)|βdt =

∫ b

a

u(t)Dµ
a+x(t)dt+

∫ b

a

x(t)Dµ
a+u(t)dt

=

∫ b

a

u(t)Dµ
a+x(t)dt+

∫ b

a

u(t)Dµ
b−x(t)dt

=

∫ b

a

u(t)
[
Dµ
a+x(t) +Dµ

b−x(t)
]
dt

≤
∫ b

a

u(t)
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− s|−µ|x(s)|ds

+
1

Γ(1− µ)

d

dt

∫ b

t

|s− t|−µ|x(s)|ds
]
dt

≤
∫ b

a

u(t)
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− s|−µ max |x(s)|ds

+
1

Γ(1− µ)

d

dt

∫ b

t

|s− t|−µ max |x(s)|ds
]
dt

=

∫ b

a

u(t)|x(τ)|
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− s|−µds+
1

Γ(1− µ)

d

dt

∫ b

t

|s− t|−µds
]
dt

= (±1)−µM

∫ b

a

u(t)
[
(Dµ

a+1)(t) + (Dµ
b−1)(t)

]
dt,

where M = |x(τ)| = max |x(s)|a<s<b. Using the relations (2.5) and (2.1) and

taking into account (I1−µa+ u)(b) = (I1−µb− u)(a) = 0, gives

(±1)−µM

∫ b

a

u(t)
[
(Dµ

a+1)(t) + (Dµ
b−1)(t)

]
dt

= (±1)−µM
[ 1

Γ(1− µ)

∫ b

a

(t− a)−µu(t)dt+
1

Γ(1− µ)

∫ b

a

(b− t)−µu(t)dt
]

= (±1)−µM
[
(I1−µb− u)(a) + (I1−µa+ u)(b)

]
= 0,

so ∫ b

a

β1(t)|u(t)|γdt ≤
∫ b

a

β2(t)|x(t)|βdt.

Therefore, from (3.4) we get

2|x(τ)| ≤ 1

Γ(µ)

∫ b

a

|τ − t|µ−1|α1(t)||x(t)|dt

+
1

Γ(µ)

(∫ b

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β2(t)|x(t)|βdt
) 1
α

.(3.5)

Since M = |x(τ)| = max |x(t)|a<t<b and β+
2 (t) = max{β2(t), 0}, thus (3.5)
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yields

2|x(τ)| ≤ |x(τ)|
Γ(µ)

∫ b

a

|τ − t|µ−1|α1(t)|dt

+
|x(τ)|

β
α

Γ(µ)

(∫ b

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
α

,

and finally

2 ≤ 1

Γ(µ)

∫ b

a

|τ − t|µ−1|α1(t)|dt

+
M

β
α−1

Γ(µ)

(∫ b

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
α

.

Next, we state some illustrative consequences of Theorem 3.2.

Corollary 3.3. Let the hypotheses of Definition 3.1 hold and α, γ and β+
2 (t)

are defined as before. In particular case β = α, for the fractional nonlinear
system (3.1) the following inequality holds

2 ≤ 1

Γ(µ)

∫ b

a

|t−τ |µ−1|α1(t)|dt+ 1

Γ(µ)

(∫ b

a

|t−τ |γ(µ−1)β1(t)dt
) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
α

.

Corollary 3.4. In the special cases β = α = 2 and γ = 2, for the following
fractional linear system{

Dµx(t) = α1(t)x(t) + β1(t)u(t),

Dµu(t) = −β2(t)x(t)− α1(t)u(t),

with initial conditions

x(a) = x(b) = 0, (I1−µa+ u)(b) = (I1−µb− u)(a) = 0, a, b ∈ R (a < b),

the following inequality holds

2 ≤ 1

Γ(µ)

∫ b

a

|t−τ |µ−1|α1(t)|dt+ 1

Γ(µ)

(∫ b

a

|t−τ |2(µ−1)β1(t)dt
) 1

2
(∫ b

a

β+
2 (t)dt

) 1
2

.

Theorem 3.5. In the special case of the system (3.1), for the following frac-
tional nonlinear system

(3.6)

{
Dµx(t) = β1(t)|u(t)|γ−2u(t),

Dµu(t) = −β2(t)|x(t)|β−2x(t),

with initial conditions

x(a) = x(b) = 0, (I1−µa+ u)(b) = (I1−µb− u)(a) = 0, a, b ∈ R (a < b),
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the following inequalities hold for 0 < µ < 1 and τ ∈ (a, b)

(3.7) 1 ≤ Mβ−α

(Γ(µ))α

(∫ τ

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ τ

a

β+
2 (t)dt

)
,

(3.8) 1 ≤ Mβ−α

(Γ(µ))α

(∫ b

τ

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ b

τ

β+
2 (t)dt

)
,

(3.9) 2α ≤ Mβ−α

(Γ(µ))α

(∫ b

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ b

a

β+
2 (t)dt

)
,

where 1
γ + 1

α = 1, M = max |x(t)|a<t<b and β+
2 (t) = max{β2(t), 0}.

Proof. Since x(a) = x(b) = 0 and x is not identically zero on [a, b], there exists
τ ∈ (a, b) such that M = |x(τ)| = max |x(t)|a<t<b > 0. Using the relation (2.9)
and applying the left-sided Riemann-Liouville fractional integral operator Iµa+
on both sides of the first equation of the system (3.6) in the interval [a, τ ] and
taking into account x(a) = 0, we get

x(τ) =
1

Γ(µ)

∫ τ

a

(τ − t)µ−1β1(t)|u(t)|γ−2u(t)dt,

and so

(3.10) |x(τ)| ≤ 1

Γ(µ)

∫ τ

a

|τ − t|µ−1β1(t)|u(t)|γ−1dt.

Now, by using Hölder inequality on the right hand side of (3.10), we obtain∫ τ

a

|τ − t|µ−1β1(t)|u(t)|γ−1dt

=

∫ τ

a

|τ − t|µ−1β
1
γ

1 (t)β
1
α
1 (t)|u(t)|γ−1dt

≤
(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ τ

a

β1(t)|u(t)|α(γ−1)dt
) 1
α

=
(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ τ

a

β1(t)|u(t)|γdt
) 1
α

,

where 1
α + 1

γ = 1. Therefore, the relation (3.10) implies that

(3.11) |x(τ)| ≤ 1

Γ(µ)

(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ τ

a

β1(t)|u(t)|γdt
) 1
α

.

Without loss of generality, if in the interval [a, t], we multiply the first equation
of the system (3.6) by u(t) and the second one by x(t), respectively, and then
add the results, we get

u(t)Dµ
a+x(t) + x(t)Dµ

a+u(t) = β1(t)|u(t)|γ − β2(t)|x(t)|β .
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From the above equation, we integrate on the interval [a, τ ] and use the relations
(2.8) and (2.2) for y ∈ (a, τ) to obtain∫ τ

a

β1(t)|u(t)|γdt−
∫ τ

a

β2(t)|x(t)|βdt =

∫ τ

a

u(t)Dµ
a+x(t)dt+

∫ τ

a

x(t)Dµ
a+u(t)dt

=

∫ τ

a

u(t)Dµ
a+x(t)dt+

∫ τ

a

u(t)Dµ
τ−x(t)dt

=

∫ τ

a

u(t)
[
Dµ
a+x(t) +Dµ

τ−x(t)
]
dt

≤
∫ τ

a

|u(t)|
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− y|−µ|x(y)|dy

+
1

Γ(1− µ)

d

dt

∫ τ

t

|y − t|−µ|x(y)|dy
]
dt

≤
∫ τ

a

|u(t)|
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− y|−µ max |x(y)|dy

+
1

Γ(1− µ)

d

dt

∫ τ

t

|y − t|−µ max |x(y)|dy
]
dt

=

∫ τ

a

|u(t)||x(τ)|
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− y|−µdy +
1

Γ(1− µ)

d

dt

∫ τ

t

|y − t|−µdy
]
dt

≤
∫ b

a

|u(t)||x(τ)|
[ 1

Γ(1− µ)

d

dt

∫ t

a

|t− y|−µdy +
1

Γ(1− µ)

d

dt

∫ b

t

|y − t|−µdy
]
dt

= (±1)1−µM

∫ b

a

u(t)
[
(Dµ

a+1)(t) + (Dµ
b−1)(t)

]
dt,

where M = |x(τ)| = max |x(y)|a<y<τ<b. Using the relations (2.5) and (2.1),

and taking into account (I1−µa+ u)(b) = (I1−µb− u)(a) = 0, we get

(±1)1−µM

∫ b

a

u(t)
[
(Dµ

a+1)(t) + (Dµ
b−1)(t)

]
dt

= (±1)1−µM
[ 1

Γ(1− µ)

∫ b

a

(t− a)−µu(t)dt+
1

Γ(1− µ)

∫ b

a

(b− t)−µu(t)dt

= (±1)1−µM
[
(I1−µb− u)(a) + (I1−µa+ u)(b)

]
= 0,

so ∫ τ

a

β1(t)|u(t)|γdt ≤
∫ τ

a

β2(t)|x(t)|βdt.

Therefore, from the relation (3.11) we get

(3.12) |x(τ)| ≤ 1

Γ(µ)

(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ τ

a

β2(t)|x(t)|βdt
) 1
α

.

Since M = |x(τ)| = max |x(t)|a<t<b and β+
2 (t) = max{β2(t), 0}, thus the
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relation (3.12) yields

|x(τ)| ≤ |x(τ)|
β
α

Γ(µ)

(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ τ

a

β+
2 (t)dt

) 1
α

,

and we have

(3.13) 1 ≤ M
β
α−1

Γ(µ)

(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
) 1
γ
(∫ τ

a

β+
2 (t)dt

) 1
α

.

Taking the α-th power of both sides of the inequality (3.13), we get

1 ≤ Mβ−α

(Γ(µ))α

(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
)α−1(∫ τ

a

β+
2 (t)dt

)
.

At this point, using the relation (2.10) and applying the right-sided Riemann-
Liouville fractional integral operator Iµb− on both sides of the first equation of
the system (3.6) in the interval [τ, b] and taking into account x(b) = 0, we have

|x(τ)| ≤ 1

Γ(µ)

∫ b

τ

|t− τ |µ−1β1(t)|u(t)|γ−1dt,

from which in a similar procedure to the previous process, we conclude (3.8).
Since for t > 0, the function J(t) = t1−α is convex, so according to the Jensen
inequality

J(
y + z

2
) ≤ J(y) + J(z)

2
,

with y =
∫ τ
a
|τ − t|γ(µ−1)β1(t)dt and z =

∫ b
τ
|t− τ |γ(µ−1)β1(t)dt, we obtain∫ b

a

β+
2 (t)dt

=

∫ τ

a

β+
2 (t)dt+

∫ b

τ

β+
2 (t)dt

≥ (Γ(µ))α

Mβ−α

[(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt
)1−α

+
(∫ b

τ

|t− τ |γ(µ−1)β1(t)dt
)1−α]

≥ (Γ(µ))α

Mβ−α 2

[
1

2

(∫ τ

a

|τ − t|γ(µ−1)β1(t)dt+

∫ b

τ

|t− τ |γ(µ−1)β1(t)dt
)]1−α

=
(2Γ(µ))α

Mβ−α

(∫ b

a

|t− τ |γ(µ−1)β1(t)dt
)1−α

,

and accordingly

2α ≤ Mβ−α

(Γ(µ))α

(∫ b

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ b

a

β+
2 (t)dt

)
.

Thus, we easily arrive at the following consequence of Theorem 3.5.



28 Shiva Eshaghi, Alireza Ansari, Reza Khoshsiar Ghaziani

Corollary 3.6. In the particular case β = α, the following inequalities hold

1 ≤ 1

(Γ(µ))α

(∫ τ

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ τ

a

β+
2 (t)dt

)
,

1 ≤ 1

(Γ(µ))α

(∫ b

τ

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ b

τ

β+
2 (t)dt

)
,

2α ≤ 1

(Γ(µ))α

(∫ b

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ b

a

β+
2 (t)dt

)
.

Corollary 3.7. In the special case β = α = 2 and γ = 2, we get the following
inequalities

1 ≤ 1

(Γ(µ))2

(∫ τ

a

|t− τ |2(µ−1)β1(t)dt
)(∫ τ

a

β+
2 (t)dt

)
,

1 ≤ 1

(Γ(µ))2

(∫ b

τ

|t− τ |2(µ−1)β1(t)dt
)(∫ b

τ

β+
2 (t)dt

)
,

4 ≤ 1

(Γ(µ))2

(∫ b

a

|t− τ |2(µ−1)β1(t)dt
)(∫ b

a

β+
2 (t)dt

)
.

Corollary 3.8. In the special case µ = 1, we can immediately deduce that the
fractional nonlinear system with the Riemann-Liouville derivative (3.1) has the
Lyapunov inequality

2 ≤
∫ b

a

|α1(t)|dt+M
β
α−1

(∫ b

a

β1(t)dt
) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
α

.

Remark 3.9. Let us consider the fractional nonlinear system (3.1) with the
fractional Caputo derivative CDµ, 0 < µ < 1, (defined in (2.3) and (2.4)) and
boundary conditions

x(a) = x(b) = 0, u(a) = u(b) = 0, (I1−µa+ u)(b) = (I1−µb− u)(a) = 0,

where a, b ∈ R (a < b). Then, by using the relations (2.11), (2.12), (2.6)
and (2.7) and repeating the previous procedures for each mentioned theorems
and corollaries, we obtain exactly similar Lyapunov-type inequalities to the
fractional nonlinear system with the Caputo derivative.

4. Boundedness of Solutions

Theorem 4.1. For |β2(t)| ∈ Lp[t0,∞) and 1 ≤ p <∞, if∫ ∞
β1(t)dt <∞,

∫ ∞
|β2(t)|dt <∞,

then every weakly oscillatory proper solution of (3.6) is bounded on I = [t0,∞).
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Proof. Let (x(t), u(t)) be any nontrivial weakly oscillatory proper solution of
the fractional nonlinear system (3.6) on I such that x(t) has a sequence of
zeros tending to infinity. If we assume that the conclusion is wrong and
lim sup |x(t)| =∞, then

∀ M1 > 0, ∃ 0 < T = T (M1) : ∀ t > T, |x(t)| > M1.

Since x is an oscillatory solution, there exists an interval (t1, t2) with t1 > T
such that x(t1) = x(t2) = 0 and |x(t)| > 0 on (t1, t2). Therefore

∃ τ ∈ (t1, t2) : M1 < max |x(t)|t1<t<t2 = |x(τ)| = M.

According to the inequalities in Theorem 3.5 for every t1 ≥ T , we let∫ ∞
t1

|β2(t)|dt < 1,(4.1) ∫ ∞
t1

βν1 (t)dt <
(
Mα−β(Γ(µ))αδ

1−α
ρ

) ν
α−1

,(4.2)

where δ = |b−τ |ργ(µ−1)+1+|τ−a|ργ(µ−1)+1

ργ(µ−1)+1 . By employing the Hölder inequality on

the right hand side of (3.9) with indices ρ and ν, we get

2α ≤ Mβ−α

(Γ(µ))α

(∫ b

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ b

a

β+
2 (t)dt

)
≤ Mβ−α

(Γ(µ))α

(∫ b

a

|t− τ |ργ(µ−1)dt
)α−1

ρ
(∫ b

a

βν1 (t)dt
)α−1

ν
(∫ b

a

β+
2 (t)dt

)
=

Mβ−α

(Γ(µ))α

( |b− τ |ργ(µ−1)+1 + |τ − a|ργ(µ−1)+1

ργ(µ− 1) + 1

)α−1
ρ

×
(∫ b

a

βν1 (t)dt
)α−1

ν
(∫ b

a

β+
2 (t)dt

)
.(4.3)

Substituting (4.1) and (4.2) into the inequality (4.3), we obtain

2α ≤ Mβ−α

(Γ(µ))α

( |b− τ |ργ(µ−1)+1 + |τ − a|ργ(µ−1)+1

ργ(µ− 1) + 1

)α−1
ρ

×
(∫ t2

t1

βν1 (t)dt
)α−1

ν
(∫ t2

t1

β+
2 (t)dt

)
≤ Mβ−α

(Γ(µ))α

( |b− τ |ργ(µ−1)+1 + |τ − a|ργ(µ−1)+1

ργ(µ− 1) + 1

)α−1
ρ

×
(∫ ∞

t1

βν1 (t)dt
)α−1

ν
(∫ ∞

t1

|β2(t)|dt
)
≤ 1,

so |x(t)| is bounded on I. Thus

∀ t ∈ I, ∃ K > 0 : |x(t)| ≤ K.



30 Shiva Eshaghi, Alireza Ansari, Reza Khoshsiar Ghaziani

Now, we show that |u(t)| is bounded. For this purpose, we apply the left-sided
Riemann-Liouville fractional integral operator Iµτ+ on both sides of the second
equation of the system (3.6) in the interval [τ, t] (τ ≤ t ≤ t2),

u(t)− c1(t− τ)µ−1 = − 1

Γ(µ)

∫ t

τ

(t− s)µ−1β2(s)|x(s)|β−2x(s)ds.

So

|u(t)| ≤ 1

Γ(µ)

∫ t

τ

|t− s|µ−1|β2(s)||x(s)|β−1ds+ |c1||t− τ |µ−1,

which by using the Hölder inequality, we get

|u(t)| ≤ 1

Γ(µ)

∫ t

τ

|t− s|µ−1|β2(s)||x(s)|β−1ds+ |c1||t− τ |µ−1

≤

( ∫ t
τ
|t− s|q(µ−1)ds

) 1
q

Γ(µ)

(∫ t

τ

|β2(s)|p|x(s)|p(β−1)ds
) 1
p

+ |c1||t− τ |µ−1

≤ 1

Γ(µ)

( |τ − s|q(µ−1)+1

q(µ− 1) + 1

) 1
q

Kβ−1
(∫ t

τ

|β2(s)|pds
) 1
p

+ |c1||t− τ |µ−1

≤ 1

Γ(µ)

( |τ − s|q(µ−1)+1

q(µ− 1) + 1

) 1
q

Kβ−1
(∫ ∞

t1

|β2(s)|pds
) 1
p

+ |c1||t− τ |µ−1.

Since |β2(t)| ∈ Lp[t0,∞), thus(∫ ∞
t1

|β2(t)|pdt
) 1
p ≤ ∞,

which implies that |u(t)| is bounded on I and

|u(t)| ≤ ∞.

Theorem 4.2. For β+
2 (t) ∈ Lp[t0,∞) and 1 ≤ p < ∞, if (x(t), u(t)) is any

weakly oscillatory proper solution of the fractional nonlinear system (3.6) with
β1(t) = 1, then the distance between consecutive zeros of the first component of
(x(t), u(t)) tends to infinity as t→ +∞.

Proof. We suppose that (x(t), u(t)) is a nontrivial weakly oscillatory proper
solution of the fractional nonlinear system (3.6) with β1(t) = 1 on I such that
x(t) has a sequence of zeros tending to +∞ and the conclusion is wrong. Then
the sequence {tn} of zeros of x(t) has a subsequence {tnm} such that

∃N > 0 ∀m |tnm+1
− tnm | ≤ N.

Let
∀ m ∃snm ∈ (tnm+1

, tnm) : max |x(t)| = |x(snm)| = M,
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then ∀ m |snm − tnm | < N. Suppose

(4.4)
(∫ ∞

tnm

(β+
2 (s))µds

) 1
µ ≤Mα−β(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

) 1−α
q

N
1−α
p −

1
q .

Applying the Hölder inequality for the right hand side of (3.7) with indices p
and q, we have

1 ≤ Mβ−α

(Γ(µ))α

(∫ τ

a

|t− τ |γ(µ−1)β1(t)dt
)α−1(∫ τ

a

β+
2 (t)dt

)
≤ Mβ−α

(Γ(µ))α

(∫ τ

a

|t− τ |qγ(µ−1)dt
)α−1

q
(∫ τ

a

βp1(t)dt
)α−1

p
(∫ τ

a

β+
2 (t)dt

)
≤ Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q
(∫ τ

a

βp1(t)dt
)α−1

p
(∫ τ

a

β+
2 (t)dt

)
,

from which by using the fact that β1(t) = 1, we get

(4.5) 1 ≤ Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q
(
snm − tnm

)α−1
p

∫ snm

tnm

β+
2 (t)dt.

Now, by employing the Hölder inequality for the right hand side of (4.5) with
indices p and q, we have

1 ≤ Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q
(
snm − tnm

)α−1
p

∫ snm

tnm

β+
2 (t)dt

≤ Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q

( ∫ snm
tnm

(β+
2 (t))pdt

) 1
p
( ∫ snm

tnm
dt
) 1
q

(
snm − tnm

) 1−α
p

=
Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q
(
snm − tnm

)α−1
p + 1

q
(∫ snm

tnm

(β+
2 (t))pdt

) 1
p

≤ Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q
(
snm − tnm

)α−1
p + 1

q
(∫ ∞

tnm

(β+
2 (t))pdt

) 1
p

.

(4.6)

Substituting the inequality (4.4) into (4.6), we get

1 ≤ Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q
(
snm − tnm

)α−1
p + 1

q
(∫ ∞

tnm

(β+
2 (t))pdt

) 1
p

<
Mβ−α

(Γ(µ))α

( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

)α−1
q

N
α−1
p + 1

qMα−β(Γ(µ))α

×
( |τ − a|qγ(µ−1)+1

qγ(µ− 1) + 1

) 1−α
q

N
1−α
p −

1
q = 1.

This contradiction completes the proof.
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