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CHARACTERIZATION OF RωO(X) SETS BY USING
δω−CLUSTER POINTS
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Abstract. The class of Rω−open sets was defined by S. Murugesan.
He showed that the collection of all Rω−open sets forms a base of some
topology onX denoted by τδ−ω. The elements of τδ−ω are called δω−open
sets and the complement of a δω−open set is called a δω−closed set.
In this paper we will introduce a new characterization of δω−open and
δω−closed sets by using δω−cluster points. We show that all δω−open
sets form a topology denoted by τδω and equal to τδ−ω. We discuss
several properties of this topology and we give a characterization for
the open sets in τδ−ω. We investigate some of the relationship between
the separation axioms of (X, τδω ) and (X, τ). In the last section we
study some of connectedness properties of (X, τδω ) and some covering
properties.
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1. Introduction and Preliminaries

Throughout this work a space will always mean a topological space in which
no separation axioms are assumed unless explicitly stated. If A is a subset of the
space (X, τ) then the closure of A, the interior of A and the relative topology
on A in (X, τ) will be denoted by cl(A), Int(A) and τA, respectively.

Let A be a subset of the space (X, τ). A is called a regular open subset
of (X, τ) if A = Int(cl(A)). The family of all regular open subsets of (X, τ)
is denoted by RO(X, τ). The complement of a regular open set is called a
regular closed set, this is equivalent to say that A = cl(Int(A)). A is called
δ−open [10] if and only if for each x ∈ A there exists a regular open set G such
that x ∈ G ⊆ A. It is well-know that the collection of all δ−open sets in a
topological space (X, τ) forms a topology τδ weaker than τ such that the regular
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open sets of (X, τ) form a base for τδ [10]. The space (X, τδ) is also called the
semiregularization topology of (X, τ) [8]. The complement of a δ−open set is
called δ−closed [10]. A point x ∈ X is called a δ−cluster point of A if and
only if Int(cl(V )) ∩ A ̸= ∅, for each open set V containing x. The set of all
δ−cluster points of A is called the δ-closure of A [10], which is denoted by
clδ(A). A space (X, τ) is said to be semi-regular [8] if τδ = τ . Any regular
space is semi-regular, but the converse is false.

In [6], the concept of ω-closed subsets was explored where a subset A of
(X, τ) is ω−closed if it contains all its condensation points. The complement
of an ω−closed set is called ω−open or equivalently A is ω−open [2] if for each
x ∈ A, there exists an open set U containing x such that U − A is countable.
The family of all ω−open subsets of a space (X, τ), denoted by τω, forms a
topology on X finer that τ . A space (X, τ) is called anti-locally countable [2]
if each non-empty open subset of (X, τ) is uncountable.

A subset A of a space (X, τ) is called a Rω−open set [9] if A = Int(clω(A)).
The complement of a Rω−open set is called Rω−closed set. The collection of
all Rω−open sets is denoted by RωO(X) and it forms a base for some topology
on X denoted by τδ−ω [9]. Elements of τδ−ω are called δω−open sets and the
complement of a δω−open set is δω−closed. The closure of a subset A of X in
(X, τδ−ω) is denoted by clδω (A). Let A be a subset of a topological space (X, τ),
then Int(clω(A)) is Rω−open [9]. In this paper we will define the δω−cluster
point of a set A, a δω−closed set and a δω−open set. We show that the
set of all δω−open sets forms a topology denoted by τδω and equal to τδ−ω.
We discuss several properties of this topology and we give a characterization
of the open sets in τδω . We investigate some of the relationship between the
separation axioms of (X, τδω ) and (X, τ). In the last section we study some of
the connectedness properties of (X, τδω ).

In this paper R,Q and N denote, respectively, the set of real numbers, the
set of rational numbers and the set of natural numbers.

Definition 1.1. [2] Let A be a subset of the space (X, τ). Then the intersection
of all ω−closed subsets of X containing A is called the ω−closure of A in (X, τ)
and it is denoted by clω(A).

Note that clω(A) is the closure of A in the space (X, τω).

Lemma 1.2. Let (X, τ) be a topological space and A ⊆ X. Then the following
properties hold:
(i) clδ(A) = cl(A) for every open set A [10].
(ii) If (X, τ) is an anti-locally countable space, then for all A ∈ τω,
clω(A) = cl(A) [2].
(iii) (τω)ω = τω [2].
(iv) (τA)ω = (τω)A [2].

Lemma 1.3. [7] Let (Y, σ) be a regular space. If f : (X, τ) → (Y, σ) is contin-
uous, then f : (X, τδ) → (Y, σ) is continuous.
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2. δω−cluster points

Definition 2.1. Let (X, τ) be a topological space and let A ⊆ X. A point
x ∈ X is said to be a δω−cluster point of A if for each open set U containing
x, we have Int(clω(U))∩A ̸= ∅. The set of all δω−cluster points of A is called
the δω−closure of A, which is denoted by clδω(A).

A subset A ⊆ X is called δω−closed if A = clδω(A). The complement of a
δω−closed set is called δω−open. The family of all δω−open sets in (X, τ) will
be denoted by τδω .

It is clear that if (X, τ) is a countable space, then τδω = τ .

Theorem 2.2. Let (X, τ) be a topological space. Then:
(i) ∅ and X are δω−closed sets.
(ii) Finite union of δω−closed sets is δω−closed.
(iii) Arbitrary intersection of δω−closed sets is δω−closed.

Proof. (i) It is obvious.
(ii) The proof is complete if we prove that clδω(A∪B) = clδω(A)∪clδω(B). It is
clear that clδω(A)∪clδω(B) ⊆ clδω(A∪B). Let x /∈ clδω(A)∪clδω(B), then there
are U, V ∈ τ such that x ∈ U∩V , Int(clω(V ))∩B = ∅ and Int(clω(U))∩A = ∅.
Thus we have x ∈ U ∩ V ∈ τ and Int(clω(U ∩ V )) ∩ (A ∪B) ⊆ (Int(clω(U)) ∩
A) ∪ (Int(clω(V )) ∩B) = ∅.
(iii) Let {Aα : α ∈ ∆} be a family of δω−closed sets in (X, τ). Then for all
α ∈ ∆, clδω(Aα) = Aα. We show that clδω(∩{Aα : α ∈ ∆}) ⊆ ∩{Aα : α ∈
∆}. Let x ∈ clδω(∩{Aα : α ∈ ∆}) and let U ∈ τ such that x ∈ U . Then
Int(clω(U)) ∩ (∩{Aα : α ∈ ∆}) ̸= ∅. Therefore, Int(clω(U)) ∩ Aα ̸= ∅ for all
α ∈ ∆. It follows that x ∈ {clδω(Aα) : α ∈ ∆} = ∩{Aα : α ∈ ∆}.

Theorem 2.3. Let (X, τ) be a topological space. Then τδω is a topology on X.

Proof. It is follows directly from Theorem 2.2.

Theorem 2.4. Let (X, τ) be a topological space and A ⊆ X. Then A is
δω−open if and only if for each x ∈ A, there exists U ∈ τ such that x ∈ U ⊆
Int(clω(U)) ⊆ A.

The proof is obvious.

Proposition 2.5. Let (X, τ) be a topological space. Then τδ−ω = τδω

Proof. If A ∈ τδ−ω, then A =
∪
{

α∈∆

Oα : Oα ∈ RωO(X), α ∈ ∆}. So if

x ∈ A, then there exists α◦ ∈ ∆ such that x ∈ Oα◦ = Int(clω(Oα)) ⊆
Int(clω(Int(clω(Oα)))) ⊆ A. Thus by Theorem 2.4, A ∈ τδω . Now if A ∈ τδω ,
then by Theorem 2.4, there exists U ∈ τ such that x ∈ U ⊆ Int(clω(U)) ⊆ A.
But Int(clω(U)) ∈ RωO, thus A ∈ τδ−ω.

Therefore the open sets of τδ−ω coincide with the open sets of τδω . So from
now we shall use the notation δω−open set instead of δω−open set.

It is clear that, in any space the singleton is δω−open if and only if it is
regular ω−open.
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Theorem 2.6. Let (X, τ) be a topological space. Then:
(i) τδ ⊆ τδω ⊆ τ .
(ii) If (X, τ) is regular, then τδ = τδω = τ .

Proof. (i) Follows from the definitions and the fact that τω is a topology on X
finer than τ .
(ii) It follows from the fact that if (X, τ) is regular then τ = τδ.

The equality in Theorem 2.6 part (i) does not hold in general as we show
in the next example.

Example 2.7. Let X = R with the topology τ = {U : 1 ∈ U} ∪ {∅}. Then
τδ = τind while τδω = τ .

Example 2.8. Let X = R with the topology τ = {∅, X,R−Q}. Then τδω =
τind ̸= τ .

Proposition 2.9. Let (X, τ) be topological space and let A ⊆ X. Then
(i) cl(A) ⊆ clδω(A) ⊆ clδ(A).
(ii) For each A ∈ τω, clδω(A) ⊆ cl(A).
(iii) For each A ∈ τ , clδ(A) ⊆ clδω(A) ⊆ cl(A).

Proof. (i) Follows from Theorem 2.6 part (i).
(ii) Suppose, by the way of contradiction, that x ∈ clδω(A)∩(X−cl(A)). Since
X − cl(A) ∈ τ , we have Int(clω(X − cl(A)))∩A ̸= ∅. Choose y ∈ Int(clω(X −
cl(A))) ∩A ⊆ clω(X − cl(A)) ∩A. Since A ∈ τω, then (X − cl(A)) ∩A ̸= ∅. A
contradiction.
(iii) Follows from part (ii) and Lemma 1.2.

The following two examples show that the conditions in part (ii) and (iii)
in Proposition 2.9 are essential.

Example 2.10. Let X = {a, b} with the topology τ = {∅, X, {a}} and let A =
{b}. Then a ∈ clδ(A) but a /∈ clδω(A) since {a} ∈ τ and {b}∩Int(clω({a})) = ∅.

Example 2.11. Consider the space (X, τ) given in Example 2.8 and let A = Q.
Then clδω(A) = R while cl(A) = Q.

Proposition 2.12. Let (X, τ) be a space.
(i) If (X, τ) is anti-locally countable, then τδ = τδω.
(ii) (τω)δω = (τω)δ.

Proof. (i) The proof follows immediately from the definitions, Lemma 1.2 and
Theorem 2.6 part (i).
(ii) From Theorem 2.6, we have (τω)δ ⊆ (τω)δω . To prove the reverse in-
clusion, let A ∈ (τω)δω and x ∈ A. Then there exists W ∈ τω such that
x ∈ W ⊆ Intω(cl(ω)ω (W )) ⊆ A. By Lemma 1.2 part (iii), cl(ω)ω (W ) = clω(W ).
Therefore, Intω(cl(ω)ω (W )) = Intω(clω(W )) ∈ (τω)δ and so A ∈ (τω)δ.

Note that Example 2.10 shows that the condition that X is anti-locally
countable in Proposition 2.12 part(i) is essential.
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Theorem 2.13. Let (X, τ) be any space, then (τδω )δω = τδω if one of the
following hold
(i) (X, τ) is anti-locally countable.
(ii) (X, τ) is regular.
(iii) X is countable.

Proof. The proofs of (ii) and (iii) are clear, so we will prove (i). It is clear that
(τδω )δω ⊆ τδω . To prove the other subset, let U ∈ τδω such that x ∈ U , so
there exists an open set H such that x ∈ H ⊆ Int(clω(H)) ⊆ U . Take G =
Int(clω(H)). Then G ∈ τδω such that x ∈ G ⊆ Intτδω (cl(τδω )

ω
(G)) and by using

Proposition 2.9 and Lemma 1.2 Intτδω (cl(τδω )
ω
(G)) ⊆ Int(clω(H)) ⊆ U .

We can conclude from the proof of Theorem 2.13, that clδω (A) = clω(A),
where A is an ω−open subset of an anti-locally countable space (X, τ).

Proposition 2.14. Let (X, τ) be a topological space. If A ∈ τ then (τδω )A =
(τA)δω .

Proof. Let B ∈ (τδω )A. Then B = W∩A, where W ∈ τδω . If x ∈ B then x ∈ W,
so by Theorem 2.4, there exists V ∈ τ such that x ∈ V ⊆ Int(clω(V )) ⊆ W .
Now IntA(clωA

(V ∩ A)) = (Lemma 1.2, iv) IntA(clω(V ∩ A) ∩ A) = (IntA
(clω(V ∩ A))) ∩ A =(A is open)(Int (clω(V ∩ A))) ∩ A ⊆ Int (clω(V )) ∩ A ⊆
W ∩ A = B. Therefore, B ∈ (τA)δω . Now let B ∈ (τA)δω . Then by Theorem
2.4, there exists UA = V ∩A ∈ τA such that x ∈ UA = V ∩A ⊆ IntA(clωA

(V ∩
A)) ⊆ B. As Int (clω(V )) ∩ A ⊆ Int (clω(V ) ∩ A) ⊆ Int(clω(V ∩ A)) = Int
(clωA

(V ∩ A)) ⊆ IntA(clωA
(V ∩ A)) ⊆ B, and Int(clω(V )) ∈ (τδω )A, so B ∈

(τδω )A.

In Proposition 2.14 it is essential that A ⊆ X is open as we see in the next
example.

Example 2.15. Again we consider the space (X, τ) given in Example 2.8. We
take A = Q ∪

√
2. Then (τδω )A = τind, while

√
2 ∈ (τA)δω .

If (X, τ) and (Y, σ) are two topological spaces, then δ × σ will denote the
product topology on X × Y [see[5]].

Lemma 2.16. [1] Let (X, τ) and (Y, σ) be two topological spaces.
(i) (τ × σ)ω ⊆ τω × σω.
(ii) If A ⊆ X and B ⊆ Y , then clω(A)× clω(B) ⊆ clω(A×B).

Theorem 2.17. Let (X, τ) and (Y, σ) be two topological spaces. Then
(τ × σ)δω ⊆ τδω × σδω .

Proof. Let W ∈ (τ × σ)δω and (x, y) ∈ W . There exist U ∈ τ and V ∈ σ such
that (x, y) ∈ U × V ⊆ Int(clω(U × V )) ⊆ W . By Theorem 2.4 and Lemma
2.16 we have (x, y) ∈ U ×V ⊆ Int(clω(U))× Int(clω(V )) ⊆ Int(clω(U ×V )) ⊆
W .

The following example shows that the reverse conclusion of the previous
theorem is not true in general.
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Example 2.18. Let X = R with topologies τ = {∅,R,R − Q} and σ =
{∅,R,Q}. Let A = R and B = Q. Then A ∈ τδω , B ∈ σδω . However,
A×B /∈ (τ × σ)δω since cl(τ×σ)ω (A×B) = R× R.

Let {(Xα, τα) : α ∈ ∆} be a collection of topological spaces such that
Xα ∩Xβ = ∅ for each α ̸= β. Let X = ∪

α∈∆
Xα be topologized by τs = {G ⊆

X : G∩Xα ∈ τα for each α ∈ ∆}. Then (X, τs) is called the sum of the spaces
{(Xα, τα) : α ∈ ∆} and we write X = ⊕

α∈∆
Xα [see [5]].

Theorem 2.19. For any collection of spaces {(Xα, τα) : α ∈ ∆} we have
(τs)ω = (ταω

)s.

Proof. Let W ∈ (τs)ω and let x ∈ W ∩Xα. Then x ∈ W and so there exists
U ∈ τs such that x ∈ U and U−W = C is a countable. Put V = U ∩Xα. Then
V is an open in Xα such that x ∈ V and V −(W∩Xα) = (U−W )∩Xα ⊆ U−W
and so V − (W ∩ Xα) is countable. Therefore, W ∩ Xα ∈ ταω

. Now, let
W ∈ (ταω

)s and let x ∈ W . Then there exists α◦ ∈ ∆ such that x ∈ Xα◦

and so x ∈ W ∩Xα◦ ∈ τ(α◦)ω . So there exists an open set V ⊆ Xα◦ such that
x ∈ Vα◦ and Vα◦ − (W ∩Xα) is countable. Since Vα◦ = Vα◦ − (W ∩Xα◦) and
Vα◦ ∈ τs, thus W ∈ (τs)ω.

Theorem 2.20. Let {(Xα, τα) : α ∈ ∆} be a collection of spaces and Aα◦ ⊆
Xα◦ , then
(i) cl(τα◦ )ω

(Aα◦) = cl(τs)ω (Aα◦).
(ii) Intτα◦

(Aα◦) = Intτs(Aα◦).

Proof. (i) Let x ∈ cl(τα◦ )ω
(Aα◦) and let W ∈ (τs)ω such that x ∈ W . Then

by Theorem 2.19, W ∩Xα◦ ∈ (τα◦)ω and so ∅ ̸= W ∩Xα◦ ∩ Aα◦ = W ∩ Aα◦ .
Therefore, x ∈ cl(τs)ω (Aα◦). Conversely, suppose that x ∈ cl(τs)ω (Aα◦) and let
W ∈ (τα◦)ω such that x ∈ W . So for each β ̸= α◦, W ∩ Xβ = ∅ and hence
W ∈ (ττβω

)s = (τs)ω. Therefore, W ∩Aα◦ ̸= ∅. Thus x ∈ cl(τα◦ )ω
(Aα◦).

(ii) Let x ∈ Intα◦(Aα◦), so there exists Uα◦ ∈ τα◦ such that x ∈ Uα◦ ⊆ Aα◦ .
Since Uα◦ ∈ τs, then x ∈ Ints(Aα◦). Conversely, let x ∈ Ints(Aα◦), so there
exists U ∈ τs such that x ∈ U ⊆ Aα◦ . Thus x ∈ U ∩ Xα◦ ⊆ Aα◦ and
U ∩Xα◦ ∈ τα◦ . Therefore, x ∈ Intα◦(Aα◦).

Theorem 2.21. For any collection of spaces {(Xα, τα) : α ∈ ∆}, we have
(τs)δω = (ταδω

)s.

Proof. Let A ∈ (τs)δω . Let α ∈ ∆ and x ∈ A ∩ Xα. So there exists U ∈
τs such that x ∈ Ints(cl(τs)ω (U)) ⊆ A. Put V = U ∩ Xα. Then V ∈
τα such that x ∈ V and Intα(cl(τα)ω (V )) = (by Theorem 2.20, part (i))
Intα(cl(τ)ω (U ∩Xα)) = (by Theorem 2.20, part (ii)) Ints(cl(τs)ω (U ∩Xα)) ⊆
Ints((cl(τs)ω (U))∩ (cl(τs)ω (Xα))) = Ints(cl(τs)ω (U))∩Xα = Ints(cl(τs)ω (U))∩
Ints(Xα) = Ints(cl(τs)ω (U)) ∩ Xα ⊆ A ∩ Xα, i.e A ∩ Xα ∈ ταδω

and so
A ∈ (ταδω

)s. Now, let A ∈ (ταδω
)s and let x ∈ A. Then there exists

α◦ ∈ ∆ such that x ∈ Xα◦ . Now x ∈ A ∩ Xα◦ ∈ τ(α◦)δω
and so there exists

U ∈ τα◦ such that x ∈ Intα◦(cl(α◦)ω (U)) ⊆ A ∩Xα◦ . Now Ints(cl(τs)ω (U)) =
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(by Theorem 2.20, part (i)) Ints(cl(τα◦ )ω
(U)) = (by Theorem 2.20, part (ii))

Intα◦(cl(τα◦)ω (U)) ⊆ A ∩Xα◦ ⊆ A and U ∈ τs and so A ∈ (τs)δω .

3. Separation Axioms

In topology and related fields of mathematics, there are several restrictions
that one often makes on the kinds of topological spaces that one wishes to
consider. Some of these restrictions are given by the separation axioms. In this
section we investigate some of the relationship between the separation axioms
of (X, τδω ) and (X, τ).

Lemma 3.1. Let (X, τ) be a topological space. If U, V ∈ τ such that U∩V = ∅,
then :
(i) Int (clω(U)) ∩ Int (clω(V )) = ∅.
(ii) Int (clω(U)) ∩ V = U ∩ Int (clω(V )) = ∅.

The proof is obvious

Corollary 3.2. Let (X, τ) be a space. If x ∈ U , y ∈ V such that U and V are
two disjoint open sets, then there exist U1, V1 ∈ τδω such that x ∈ U1, y ∈ V1

and U1 ∩ V1 = ∅.

Proposition 3.3. If (X, τδω ) is a T◦−space (resp., a T1−space), then (X, τ)
is a T◦−space (resp., a T1−space).

Proof. It follows from the fact that τδω ⊆ τ.

The next example shows that the converse of Proposition 3.3 is not true in
general.

Example 3.4. Consider the space (R, τ) consisting the set of real numbers and
the cofinite topology τ on R. Then (R, τ) is T1−space and so it is T◦−space.
However, (X, τδω ) is an indiscrete topology which is not T◦−space.

Proposition 3.5. (X, τδω ) is a T2− space if and only if (X, τ) is T2.

Proof. Let (X, τδω ) be a T2−space. Since τδω ⊆ τ, then (X, τ) is T2. Conversely,
if (X, τ) is a T2−space and x ̸= y, then there exist U, V ∈ τ such that x ∈
U, y ∈ V and U ∩ V = ∅. By Lemma 3.1, there exist U1, V1 ∈ τδω such that
x ∈ U1, y ∈ V1 and U1 ∩ V1 = ∅. Thus (X, τδω ) is T2.

Definition 3.6. A space (X, τ) is said to be τ ω−Urysohn if for any pair
(x, y) of distinct point in X there exist U, V ∈ τ such that x ∈ U , y ∈ V and
clω(U) ∩ clω(V ) = ∅.

Proposition 3.7. (X, τδω ) is a τδω ω−Urysohn space if and only if (X, τ) is
a τ ω−Urysohn space.
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Proof. Let (X, τδω ) be a τδω ω−Urysohn space. Since τδω ⊆ τ and (τδω )ω ⊆ τω,
then (X, τ) is τ ω−Urysohn space. Conversely, suppose that (X, τ) is a τ
ω−Urysohn space. Then for any pair (x, y) of distinct points in X there exist
U, V ∈ τ such that x ∈ U , y ∈ V and clω(U) ∩ clω(V ) = ∅. Since Int(clω(U)),
Int (clw(V ) ∈ τδω and clω(Int(clω(U))) ∩ clω(Int(clw(V ))) ⊆ clω(clω(U)) ∩
clω(clω(V )) = clω(U)∩clω(V ) = ∅. Thus (X, τδω ) is a τδω ω−Urysohn space.

Continuing our study of the separation axioms we will study the relationship
between the regularity of (X, τ) and (X, τδω ).

Proposition 3.8. Let (X, τ) be a topological space. Then the following are
equivalent:
(i) (X, τ) is a regular space.
(ii) For every closed set F and x /∈ F there exist U ∈ τ and V ∈ τδω such that
F ⊆ U , x ∈ V and U ∩ V = ∅.
(iii) For every closed set F and x /∈ F there exist U ∈ τδω and V ∈ τ such that
F ⊆ U , x ∈ V and U ∩ V = ∅.
(iv) For every closed set F and x /∈ F there exist U, V ∈ τδω such that F ⊆ U ,
x ∈ V and U ∩ V = ∅.

Proof. It follows from Lemma 3.1.

Proposition 3.9. Let (X, τ) be a topological space. Then the following are
equivalent:
(i) (X, τδω ) is a regular space.
(ii) For every δω−closed set F and x /∈ F there exist U ∈ τ and V ∈ τ such
that F ⊆ U , x ∈ V and U ∩ V = ∅.
(iii) For every δω−closed set F and x /∈ F there exist U ∈ τ and V ∈ τδω such
that F ⊆ U , x ∈ V and U ∩ V = ∅.
(iv) For every δω−closed set F and x /∈ F there exist U ∈ τδω and V ∈ τ such
that F ⊆ U , x ∈ V and U ∩ V = ∅.

Proof. It follows immediately form Lemma 3.1 and the fact that τδω ⊆ τ .

Proposition 3.10. Let (X, τ) be a topological space. If (X, τ) is a regular
space, then (X, τδω ) is regular.

It follows from Theorem 2.6.
The converse of the above proposition is not true as we see in the following
example.

Example 3.11. Here we consider the space (X, τ) given in Example 2.8. Since
(X, τδω ) is the indiscrete space, it is regular. However, (X, τ) is not regular.

Proposition 3.12. Let (X, τ) be a topological space. Then the following are
equivalent:
(i) (X, τδω ) is a regular space.
(ii) For every δω−open set U and x ∈ U there exists V ∈ τδω such that x ∈
V ⊆ cl(V ) ⊆ U .
(iii) For every δω−open set U and x ∈ U there exists V ∈ τδω such that
x ∈ V ⊆ clδω (V ) ⊆ U .
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It is follows from Proposition 3.9.

Definition 3.13. A space (X, τ) is said to be almost ω−regular if for each
Rω−closed set A of X and x ∈ X −A, there exist U , V ∈ τ such that A ⊆ U ,
x ∈ V and U ∩ V = ∅.

Theorem 3.14. A space (X, τ) almost ω−regular if and only if (X, τδω ) is
regular.

Proof. Let (X, τ) be an almost ω−regular space and F be a δω−closed set in

(X, τ) such that x /∈ F . Since F is δω−closed, then F =
∩
α∈∆

Fi , where Fi is

Rω− closed set in (X, τ). Thus there exists α◦ ∈ ∆ such that x ∈ X − F
α◦
.

Since (X, τ) is almost ω−regular, there exist U, V ∈ τ such that F ⊆ F
α◦

⊂
U, x ∈ V and U ∩ V = ∅. By Lemma 3.1, Int (clω(U))∩ Int (clω(V )) = ∅ such
that F ⊆ Fα◦

= Int (clω(Fα◦
)) ⊆ Int (clω(U)) and x ∈ Int (clω(V )) ∈ τδω .

Therefore, (X, τδω ) is regular. Conversely, suppose that A is Rω−closed such
that x ∈ X − A. By the regularity of (X, τδω ) there exist U, V ∈ τδω ⊆ τ
such that A ⊆ U , x ∈ V and U ∩ V = ∅. Thus (X, τ) is an almost ω−regular
space.

Corollary 3.15. A space (X, τ) is regular if and only if it is semi regular and
almost ω−regular space.

Definition 3.16. A space (X, τ) is said to be almost completely ω−regular
if for each Rω− closed set A of X and x ∈ X − A, there exists a continuous
function f : (X, τ) −→ [0, 1] such that f(x) = 1 and f(A) = 0.

Theorem 3.17. A space (X, τ) is almost completely ω−regular if and only if
(X, τδω ) is completely regular.

Proof. Let F be closed in τδω and x /∈ F . Since F is δω−closed in (X, τ) then

F =
∩
α∈∆

Fi , where Fi is a Rω− closed set. Thus there exists α◦ ∈ ∆ such

that x ∈ X − F
α◦

where F
α◦

is Rω−closed. Then there exists a continuous
function f : (X, τ) −→ [0, 1] such that f(x) = 1 and f(Fα◦

) = 0. As [0, 1]
is regular, so by Lemma 1.3, f : (X, τδω ) −→ [0, 1] is continuous such that
f(x) = 1 and f(F ) = 0. Conversely, suppose A is Rω−closed set and x ∈
X − A. Since (X, τδω ) is completely regular there is a continuous function
f : (X, τδω ) −→ [0, 1] such that f(x) = 1 and f(A) = 0. Since τδω ⊆ τ so
f : (X, τ) −→ [0, 1] is continuous such that f(x) = 1 and f(A) = 0.

4. Connectedness of the space (X, τδω)

In this section we shall study some of connectedness properties of (X, τδω )
and some covering properties.

The following proposition gives the relationship between the connectedness
properties of (X, τδω ) and (X, τ).
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Proposition 4.1. A topological space (X, τ) is connected if and only if (X, τδω )
is connected.

Proof. Let (X, τ) be connected. To show that (X, τδω ) is connected we need to
show that the only subsets of (X, τδω ) which are both open and closed (clopen
sets) are X and the empty set. Since τδω ⊆ τ , so if A is clopen in (X, τδω )
then A is clopen in (X, τ). But as (X, τ) is connected, so A must be either
X or the empty set. Thus (X, τδω ) is connected. Conversely, let (X, τδω ) be
connected. If A is clopen in (X, τ), then X −A and A are open in τδ ⊆ τδω ,
so X −A,A ∈ τδω . But as (X, τδω ) is connected, so A must be either X or the
empty set. Thus (X, τ) is connected.

We can conclude from the proof of Proposition 4.1 that the collection of
clopen sets of (X, τ) coincides with the collection of clopen sets of (X, τδω ).

A subset A of a topological space (X, τ) is said to be connected if (A, τA) is
connected and A is called a connected set in (X, τ) if A can not be written as
a union of two disjoint open sets in (X, τ). Now we will present the definition
of δω−connected relative to X.

Definition 4.2. A subset A of a space (X, τ) is called a δω−connected set in
(X, τ) if A is a connected set in (X, τδω ).

Proposition 4.3. Let (X, τ) be a topological space and A ⊆ X. If A is a
connected set in (X, τ), then A is a δω−connected set in (X, τ).

Proof. As A is a connected set in (X, τ) and τδω ⊆ τ so A is a δω−connected
set in (X, τ).

The converse of Proposition 4.3, is not true as we will see in the following
example.

Example 4.4. Consider the space (N, τ) consisting the set of the natural
numbers and the cofinite topology τ on N. Let A = {1, 2}. Then (X, τδω ) is the
indiscrete topology, so A is a disconnected set in (N, τ) but it is a δω−connected
set in (N, τ).

So what are the additional conditions that make the reversal of previous
relationships true? This is what will be shown in the following proposition.

Proposition 4.5. Let (X, τ) be a topological space and A be an open subset
of (X, τ). Then the following are equivalent:
(i) (A, τA) is connected.
(ii) A is a connected set in (X, τ).
(iii) A is a δω−connected set in (X, τ).

Proof. (i)→(ii) Follows from the definitions.
(ii)→(iii) It is follows from Proposition 4.3.
(iii)→(i) Suppose, by the way of contradiction, that (A, τA) is disconnected.
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Then there exist two disjoint non empty sets U, V ∈ τA such that A = U ∪
V. Since A is open, by Lemma 3.1, it follows that A = (Int(clω(U)) ∩ A) ∪
(Int(clω(V )) ∩A), which contradicts the assumption.

Definition 4.6. [5] A space (X, τ) is called:
(i) locally connected at x if for every open set V containing x there exists a
connected open set U in (X, τ) with x ∈ U ⊂ V . The space X is said to be
locally connected if it is locally connected at x for all x in X.
(ii) path-connected if for any two points x ̸= y in X there is a continuous
function f : [0, 1] → X such that f(0) = x and f(1) = y.

Since τδω ⊆ τ , we can get the following proposition.

Proposition 4.7. If (X, τ) is path connected then (X, τδω ) is path connected.

The converse of the above proposition is not true. Again, we consider the
space (N, τ) given in Example 4.4. Then (N, τ) is not path connected, but
(X, τδω ) is the indiscrete topology so it is path connected.

Definition 4.8. A topological space (X, τ) is said to be almost ω−locally
connected at a point x ∈ X if whenever U is a Rω−open set containing x, then
there exists an open connected set V such that x ∈ V ⊆ U . A space (X, τ)
is almost ω−locally connected if it is almost locally connected at each of it is
points.

Theorem 4.9. A topological space (X, τ) is almost ω−locally connected if and
only if (X, τδω ) is locally connected.

Proof. Let (X, τ) be almost ω−locally connected. Let x ∈ X and A ∈ τδω such
that x ∈ A. Then there exists a Rω− open set U in (X, τ) such that x ∈ U ⊆ A.
As (X, τ) is almost ω−locally connected there is a connected open set V in
(X, τ) such that x ∈ V ⊆ U . So x ∈ V ⊆ Int(clω(V )) ⊆ Int(clω(U)) = U ⊆ A.
Since V is a connected set in (X, τ), then Int (clω(V )) is connected in (X, τ),
so Int(clω(V )) is an open set in (X, τδω ) and it’s δω−connected set in (X, τ).
Thus (X, τδω ) is locally connected. Conversely, let x ∈ X and U be a Rω−
open set containing x. Since (X, τδω ) is locally connected then there exists an
open set V in (X, τδω ) containing x which is δω−connected in (X, τ) such that
V ⊆ U . Also as V is open in (X, τ), hence V is connected in (X, τ). Thus
(X, τ) is almost ω− locally connected.

From Theorem 4.9, we can get the following two corollaries.

Corollary 4.10. If (X, τ) is locally connected then (X, τδω ) is locally connected.

Corollary 4.11. If (X, τ) is semi-regular then it is locally connected if and
only if it is almost ω− locally connected.

At the end of this section we have the following discussion of some covering
properties.

Using the fact that τδω ⊆ τ we easily obtain the next result.
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Proposition 4.12. If (X, τ) is a Lindelöf space, then (X, τδω ) is Lindelöf.

The following example shows that the converse of Proposition 4.12 is not
true in general.

Example 4.13. Let X = A ∪ B with the topology τ = {U : U ⊆ A} ∪ {U :
A ⊆ U} where A and B are uncountable sets such that A ∩ B = ∅. To prove
that τδω = {U : U ⊆ A}, we consider the following two cases:

(i) If U ∈ τ such that U ⊆ A then U ∈ τδω , since if U is countable, then
clω(U) = U and if U is uncountable, then clω(U) = U ∪ B. To show that, let
x ∈ B and suppose there exists W ∈ τω such that x ∈ W and W ∩ U = ∅.
There exists an open set V such that x ∈ V and V − W is a countable set.
Now A ∪ {x} ⊆ V and A ∪ {x} = c′ ∪ W , where c′ is a countable set. Thus
U = U ∩ (A ∪ {x}) ⊆ (c′ ∪W ) ∩ U ⊆ c′ ∩ U , a contradiction.

(ii) If U ∈ τ and A ⊆ U , then U = A ∪ U ′ where U ′ ⊆ B and clω(U) =
clω(U

′) ∪ clω(A). We show that, clω(A) = X. Let x ∈ B and suppose there
exists W ∈ τω such that x ∈ W and W ∩ A = ∅, so W ⊆ B. Hence, there
exists an open set V in (X, τ) such that x ∈ V and V −W is countable. Then
V = A ∪ V ′ where V ′ ⊆ B. Thus A ⊆ A ∪ V ′ − W countable, which is a
contradiction.
Note that if x◦ ∈ B, then the only open set containing x is X and so (X, τδω )
is Lindelöf. But (X, τ) is not Lindelöf, since {A∪{x} : x ∈ B} is an open cover
which has no countable subcover.

Recall that a space (X, τ) is called almost Lindelöf [11] (resp. weakly Lin-
delöf [4], nearly Lindelöf [3]) if whenever U = {Uα : α ∈ ∆} is an open cover
of (X, τ) there exists a countable subset ∆◦ of ∆ such that X = ∪

α∈∆◦
cl(Uα)

(resp. X = cl( ∪
α∈∆◦

Uα), X = Int(cl( ∪
α∈∆◦

Uα))).

Proposition 4.14. Let (X, τ) be any space.
(i) (X, τ) is weakly Lindelöf if and only if (X, τδω ) is weakly Lindelöf.
(ii)(X, τ) is almost Lindelöf if and only if (X, τδω ) is almost Lindelöf.
(iii) (X, τ) is nearly Lindelöf if and only if (X, τδω ) is nearly Lindelöf.

Proof. (i) Necessity follows directly from the fact that τδω ⊆ τ . To prove
sufficiency, let U = {Uα : α ∈ ∆} be an open cover of (X, τ). Then W =
{Int(clω(Uα)) : α ∈ ∆} is a τδω−open cover of the weakly Lindelöf space
(X, τδω ). Therefore, there exists a countable subset ∆◦ of ∆ such that X =
clδω ( ∪

α∈∆◦
(Int(clω(Uα)))). By Proposition 2.9, we get

X = cl( ∪
α∈∆◦

Int(clω(Uα)))

⊆ cl( ∪
α∈∆◦

clω(Uα)) (τω is a topology on X)

⊆ cl(clω( ∪
α∈∆◦

(Uα)))

⊆ cl( ∪
α∈∆◦

Uα).
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Thus (X, τ) is weakly Lindelöf.
(ii) The proof is similar to part (i).
(iii) Necessity. Let U be a τδω−open cover of (X, τδω ). For every x ∈ X, choose
Ux ∈ U and Vx ∈ τ such that x ∈ Int(clω(Vx)) ⊆ Ux. Then, the collection
{Int(clω(Vx)) : x ∈ X} is a τ−open cover of the nearly Lindelöf space (X, τ)
and so there exist a countable subset X ′ of X such that

X = ∪
x∈X′

Int(cl(Int(clω(Vx))))

= ∪
x∈X′

Int(clδω (Int(clω(Vx)))) (by Proposition 2.9)

= ∪
x∈X′

Intδω (clδω (Int(clω(Vx))))

⊆ ∪
x∈X′

Intδω (clδω ((Ux)).

Therefore, (X, τδω ) is nearly Lindelöf. To prove sufficiency, let U be a τ−open
cover of (X, τ). For every x ∈ X, choose Ux ∈ U such that x ∈ Ux. Then, the
collection {Int(clω(Ux)) : x ∈ X} is a τδω−open cover of (X, τδω ) and so there
exists a countable subset X ′ of X such that

X = ∪
x∈X′

Intδω (clδω (Int(clω(Ux))))

= ∪
x∈X′

Intδω (cl(Int(clω(Ux)))

= ∪
x∈X′

Int(cl(Int(clω(Ux))) ⊆ ∪
x∈X′

Int(cl(clω(Ux))

⊆ ∪
x∈X′

Int(cl(Ux)).

Therefore, (X, τ) is nearly Lindelöf.
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[10] Veličko, N. V. H-closed topological spaces. Mat. Sb. (N.S.) 70 (112) (1966),
98–112.

[11] Willard, S., and Dissanayake, U. N. B. The almost Lindelöf degree. Canad.
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