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Abstract. In this paper we give some applications to integral equations
as well as homotopy theory via Suzuki type fixed point theorems in par-
tially ordered complete Sb - metric space by using generalized contractive
conditions. We also furnish an example which supports our main result.
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1. Introduction

Banach contraction principle in metric spaces is one of the most important
results in fixed point theory and nonlinear analysis in general. Since 1922, when
Stefan Banach [2] formulated the concept of contraction and posted his famous
theorem, scientists around the world publish new results about generalization
of metric space or with contractive mappings (see [1], [2], [3], [4], [5], [7], [6], [8],
[9], [10], [22], [11], [12], [13], [17], [15], [14], [18], [16], [19], [20], [21]). Banach
contraction principle is considered to be the initial result of the study of the
fixed point theory in metric spaces.

Recently Sedghi et al. [15] defined Sb-metric spaces using the concept of
S-metric spaces [14].

The aim of this paper is to prove some Suzuki type unique fixed point
theorems for generalized contractive conditions in partially ordered Sb-metric
spaces, also provide an application of integral equations as well as an application
of Homotopy Theory. Throughout this paper R,R+ and N denote the set of all
real numbers, non-negative real numbers and positive integers, respectively.

First we recall some definitions, lemmas and examples.
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Definition 1.1. ([14]) Let X be a non-empty set. An S−metric on X is
a function S : X3 → [0,+∞) that satisfies the following conditions for each
x, y, z, a ∈ X,

(S1) S(x, y, z) = 0 if and only if x = y = z,

(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

Then the pair (X,S) is called an S-metric space.

Definition 1.2. ([15]) Let X be a non-empty set and b ≥ 1 be a given real
number. Suppose that a mapping Sb : X

3 → [0,∞) is a function satisfying the
following properties :

(Sb1) Sb(x, y, z) = 0 if and only if x = y = z,

(Sb2) Sb(x, y, z) ≤ b(Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)) for all x, y, z, a ∈ X.

Then the function Sb is called an Sb-metric on X and the pair (X,Sb) is called
an Sb-metric space.

Remark 1.3. ([15]) It should be noted that the class of Sb-metric spaces is
effectively larger than the class of S-metric spaces. Indeed each S-metric space
is an Sb-metric space with b = 1.

The following example shows that an Sb-metric on X need not be an S-
metric on X.

Example 1.4. ([15]) Let (X,S) be an S-metric space, and
S∗(x, y, z) = (S(x, y, z))p, where p > 1 is a real number. Note that S∗ is an
Sb-metric with b = 22(p−1). Also, (X,S∗) is not necessarily an S-metric space.

Definition 1.5. ([15]) Let (X,Sb) be an Sb-metric space. Then, for x ∈ X,
r > 0 we defined the open ball BSb

(x, r) and the closed ball BSb
[x, r] with center

x and radius r as follows, respectively:

BSb
(x, r) = {y ∈ X : Sb(y, y, x) < r} and BSb

[x, r] = {y ∈ X : Sb(y, y, x) ≤ r}.

Lemma 1.6. ([15]) In an Sb-metric space, we have
Sb(x, x, y) ≤ bSb(y, y, x) and Sb(y, y, x) ≤ bSb(x, x, y).

Lemma 1.7. ([15])In an Sb-metric space, we have

Sb(x, x, z) ≤ 2bSb(x, x, y) + b2Sb(y, y, z)

Definition 1.8. ([15]) Let (X,Sb) be an Sb-metric space. A sequence {xn} in
X is said to be:

(1) Sb-Cauchy if, for each ϵ > 0, there exists n0 ∈ N such that
Sb(xn, xn, xm) < ϵ for each m,n ≥ n0.
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(2) Sb-convergent to a point x ∈ X if, for each ϵ > 0, there exists a positive
integer n0 such that Sb(xn, xn, x) < ϵ or Sb(x, x, xn) < ϵ for all n ≥ n0.
We denote by lim

n→∞
xn = x.

Definition 1.9. ([15]) An Sb-metric space (X,Sb) is called complete if every
Sb-Cauchy sequence is Sb-convergent in X.

Lemma 1.10. ([15]) Let (X,Sb) be an Sb-metric space with b ≥ 1 and suppose
that {xn} is Sb-convergent to x, then we have

(i) 1
2bSb(y, y, x) ≤ lim

n→∞
inf Sb(y, y, xn) ≤ lim

n→∞
supSb(y, y, xn)

≤ 2bSb(y, y, x) and

(ii) 1
b2Sb(x, x, y) ≤ lim

n→∞
inf Sb(xn, xn, y) ≤ lim

n→∞
supSb(xn, xn, y)

≤ b2Sb(x, x, y) for all y ∈ X

In particular, if x = y, then we have lim
n→∞

Sb(xn, xn, y) = 0.

Now we prove our main results.

2. Main Results

Definition 2.1. Let (X,Sb,≼) be a partially ordered complete Sb - metric space
which is also regular, and f : X → X be mapping. We say that f is a Suzuki
type generalized φ - contraction if there exists φ : [0,∞) → [0,∞) such that

(2.1.1) f is non-decreasing and φ is lower semi continuous,

(2.1.2) φ(t) = 0 if and only if t = 0,

(2.1.3) 1
4b3 min {Sb(x, x, fx), Sb(y, y, fy)} ≤ Sb(x, x, y) implies that

4b4 Sb (fx, fx, fy) ≤ M i
f (x, y)− φ

(
M i

f (x, y)
)
,

for all x, y ∈ X, x comparable to y, i = 3 or 4 or 5. Also

M5
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy),

Sb(x, x, fy), Sb(y, y, fx)

}
.

M4
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy),

1
4b4 [Sb(x, x, fy) + Sb(y, y, fx)]

}
.

M3
f (x, y) = max

{
Sb(x, x, y),

1
4b4 [Sb(x, x, fx) + Sb(y, y, fy)] ,

1
4b4 [Sb(x, x, fy) + Sb(y, y, fx)]

}
.

Definition 2.2. Suppose (X,≼) is a partially ordered set, and f is a
mapping of X into itself. We say that f is non-decreasing if for every x, y ∈ X,

(2.1) x ≼ y implies that fx ≼ fy.
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Definition 2.3. Let (X,Sb,≼) be a partially ordered complete Sb - metric
space. (X,Sb,≼) is said to be regular if every two elements of X are comparable,
i.e., if x, y ∈ X ⇒ either x ≼ y or y ≼ x.

Theorem 2.4. [21] Let (X, d) be a complete metric space and let T be a map-
ping on X. Define a non increasing function θ from [0, 1) into (1/2, 1] by

θ(r) =


1,

(1− r)r−2,

(1 + r)
−1

,

if 0 ≤ r ≤
(√

5− 1
)
/2

if
(√

5− 1
)
/2 ≤ r ≤ 2−

1/2

if 2−
1/2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X. Then there exists a unique fixed point z of T . Moreover,
lim
n→∞

Tnx = z for all x ∈ X.

Theorem 2.5. Let (X,Sb,≼) be an ordered complete Sb metric space, which
is also regular and let f : X → X be a Suzuki type generalized φ - contraction
with i = 5. If there exists x0 ∈ X with x0 ≼ fx0, then f has a unique fixed
point in X.

Proof. Since f is a mapping from X into X, there exists a sequence {xn}
in X such that

xn+1 = fxn, n = 0, 1, 2, 3, . . .

Case (i): If xn = xn+1, then xn is a fixed point of f .
Case (ii): Suppose xn ̸= xn+1 for all n.
Since x0 ≼ fx0 = x1 and f is non-decreasing, it follows that

x0 ≼ fx0 ≼ f2x0 ≼ f3x0 ≼ · · · ≼ fnx0 ≼ fn+1x0 ≼ · · ·

Using 1
4b3 min {Sb(x0, x0, fx0), Sb(x1, x1, fx1)} ≤ Sb(x0, x0, x1), from (2.1.3)

we have that

4b4 Sb

(
fx0, fx0, f

2x0

)
= 4b4 Sb (fx0, fx0, fx1)

≤ M5
f (x0, x1)− φ

(
M5

f (x0, x1)
)
,

≤ max

{
Sb (x0, x0, fx0) , Sb

(
fx0, fx0, f

2x0

)
,

Sb

(
x0, x0, f

2x0

) }
−φ

(
max

{
Sb (x0, x0, fx0) , Sb

(
fx0, fx0, f

2x0

)
,

Sb

(
x0, x0, f

2x0

) })

≤ max

{
Sb (x0, x0, fx0) , Sb

(
fx0, fx0, f

2x0

)
,

Sb

(
x0, x0, f

2x0

) }
.

Based on above, we have that
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(2.2) Sb

(
fx0, fx0, f

2x0

)
≤ max


1

4b4 Sb (x0, x0, fx0) ,

1
4b4 Sb

(
fx0, fx0, f

2x0

)
,

1
4b4 Sb

(
x0, x0, f

2x0

)

 .

But here, by Lemma 1.7,

1

4b4
Sb

(
x0, x0, f

2x0

)
≤ 1

4b4
[
2bSb (x0, x0, fx0) + b2Sb

(
fx0, fx0, f

2x0

)]
≤ max

{
1

b3
Sb (x0, x0, fx0) ,

1

2b2
Sb

(
fx0, fx0, f

2x0

)}
.

From (2.2), we have that

(2.3) Sb

(
fx0, fx0, f

2x0

)
≤ max

{
1
b3Sb (x0, x0, fx0) ,

1
2b2Sb

(
fx0, fx0, f

2x0

) }
.

If 1
2b2Sb

(
fx0, fx0, f

2x0

)
is the maximum, we get a contradiction. Hence

(2.4) Sb

(
fx0, fx0, f

2x0

)
≤ 1

b3
Sb (x0, x0, fx0) .

Also, from 1
4b3 min {Sb(x1, x1, fx1), Sb(x2, x2, fx2)} ≤ Sb(x1, x1, x2) and

(2.1.3), it follows

4b4 Sb

(
f2x0, f

2x0, f
3x0

)
= Sb (fx1, fx1, fx2)

≤ M5
f (x1, x2)− φ

(
M4

f (x1, x2)
)
,

≤ max

 Sb

(
fx0, fx0, f

2x0

)
,

Sb

(
f2x0, f

2x0, f
3x0

)
,

Sb

(
fx0, fx0, f

3x0

)


−φ

max

 Sb

(
fx0, fx0, f

2x0

)
,

Sb

(
f2x0, f

2x0, f
3x0

)
,

Sb

(
fx0, fx0, f

3x0

)



≤ max

 Sb

(
fx0, fx0, f

2x0

)
,

Sb

(
f2x0, f

2x0, f
3x0

)
,

Sb

(
fx0, fx0, f

3x0

)
 .

Based on above, we have that

(2.5) Sb

(
f2x0, f

2x0, f
3x0

)
≤ max


1

4b4 Sb

(
fx0, fx0, f

2x0

)
,

1
4b4 Sb

(
f2x0, f

2x0, f
3x0

)
,

1
4b4 Sb

(
fx0, fx0, f

3x0

)

 .
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Here

1
4b4 Sb

(
fx0, fx0, f

3x0

)
≤ 1

4b4

[
2bSb

(
fx0, fx0, f

2x0

)
+ b2Sb

(
f2x0, f

2x0, f
3x0

)]
≤ max

{
1
b3Sb

(
fx0, fx0, f

2x0

)
, 1
2b2Sb

(
f2x0, f

2x0, f
3x0

)}
.

From (2.5), we have that

(2.6) Sb

(
f2x0, f

2x0, f
3x0

)
≤ max

{
1
b3Sb

(
fx0, fx0, f

2x0

)
,

1
2b2Sb

(
f2x0, f

2x0, f
3x0

) }
.

If 1
2b2Sb

(
f2x0, f

2x0, f
3x0

)
is maximum, we get a contradiction. After applying

(2.4), we get

Sb

(
f2x0, f

2x0, f
3x0

)
≤ 1

b3
Sb

(
fx0, fx0, f

2x0

)
≤ 1

(b3)
2Sb (x0, x0, fx0) .

Continuing this process, we can conclude that

Sb

(
fnx0, f

nx0, f
n+1x0

)
≤ 1

b3
Sb

(
fn−1x0, f

n−1x0, f
nx0

)
(2.7)

...

≤ 1

(b3)
n−1Sb

(
fx0, fx0, f

2x0

)
≤ 1

(b3)
nSb (x0, x0, fx0)

→ 0 as n → ∞.

As a consequence, we have

lim
n→∞

Sb

(
fnx0, f

nx0, f
n+1x0

)
= 0.(2.8)

Now we must prove that {fnx0} is an Sb-Cauchy sequence in (X,Sb,≼).
On the contrary, we suppose that {fnx0} is not an Sb−Cauchy. Then there
exist ϵ > 0 and monotonically increasing sequences of natural numbers {mk}
and {nk} such that nk > mk.

(2.9) Sb (f
mkx0, f

mkx0, f
nkx0) ≥ ϵ

and

(2.10) Sb

(
fmkx0, f

mkx0, f
nk−1x0

)
< ϵ.

Firstly, let us see that

(2.11)
1

4b3
min

{
Sb (xmk

, xmk
, fxmk

) ,
Sb (xnk−1, xnk−1, fxnk−1)

}
≤ Sb (xmk

, xmk
, xnk−1) .
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On the contrary, suppose that

(2.12)
1

4b3
min

{
Sb (xmk

, xmk
, fxmk

) ,
Sb (xnk−1, xnk−1, fxnk−1)

}
> Sb (xmk

, xmk
, xnk−1) .

Then

ϵ ≤ Sb (f
mkx0, f

mkx0, f
nkx0)

≤ 2bSb

(
fmkx0, f

mkx0, f
nk−1x0

)
+ b2Sb

(
fnk−1x0, f

nk−1x0, f
nkx0

)
<

1

2b2
min

{
Sb

(
fmkx0, f

mkx0, f
mk+1x0

)
, Sb (xnk−1, xnk−1, xnk

)
}

+b2Sb

(
fnk−1x0, f

nk−1x0, f
nkx0

)
.

Letting k → ∞, it follows that ϵ ≤ 0. It is a contradition. Thus, (2.11) holds.
Now, from (2.9) and (2.10), we have

ϵ ≤ Sb (f
mkx0, f

mkx0, f
nkx0)

≤ 2bSb

(
fmkx0, f

mkx0, f
mk+1x0

)
+ b2Sb

(
fmk+1x0, f

mk+1x0, f
nkx0

)
.

Letting k → ∞, we have

4b2ϵ ≤ lim
k→∞

4b4Sb

(
fmk+1x0, f

mk+1x0, f
nkx0

)
(2.13)

Now

lim
k→∞

4 b4Sb

(
fmk+1x0, f

mk+1x0, f
nkx0

)
= lim

k→∞
4b4Sb (xmk+1, xmk+1, xnk

)

= lim
k→∞

4b4 Sb (fxmk
, fxmk

, fxnk−1)

≤ lim
k→∞

M5
f (xmk

, xnk−1)− lim
k→∞

φ
(
M5

f (xmk
, xnk−1)

)
≤ lim

k→∞
M5

f (xmk
, xnk−1)

= lim
k→∞

max


Sb

(
fmkx0, f

mkx0, f
nk−1x0

)
,

Sb

(
fmkx0, f

mkx0, f
mk+1x0

)
,

Sb

(
fnk−1x0, f

nk−1x0, f
nkx0

)
,

Sb (f
mkx0, f

mkx0, f
nkx0) ,

Sb

(
fnk−1x0, f

nk−1x0, f
mk+1x0

)


< lim

k→∞
max

{
ϵ, 0, 0, Sb (f

mkx0, f
mkx0, f

nkx0) ,
Sb

(
fnk−1x0, f

nk−1x0, f
mk+1x0

) }
= lim

k→∞
max

{
ϵ, Sb (f

mkx0, f
mkx0, f

nkx0) ,
Sb

(
fnk−1x0, f

nk−1x0, f
mk+1x0

) }
.

But
lim
k→∞

Sb (f
mkx0, f

mkx0, f
nkx0)

≤ lim
k→∞

[
2b Sb

(
fmkx0, f

mkx0, f
nk−1x0

)
+b2Sb

(
fnk−1x0, f

nk−1x0, f
nkx0

) ]
< 2bϵ.
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Also
lim
k→∞

Sb

(
fnk−1x0, f

nk−1x0, f
mk+1x0

)
≤ lim

k→∞

[
2bSb

(
fnk−1x0, f

nk−1x0, f
mkx0

)
+b2Sb

(
fmkx0, f

mkx0, f
mk+1x0

) ]
< 2b2ϵ.

Therefore from (2.13), we have that

4b2ϵ ≤ max
{
ϵ, 2bϵ, 2b2ϵ

}
= 2b2ϵ.

It is a contradiction.
Hence {fnx0} is an Sb−Cauchy sequence in the complete regular Sb - metric

space (X,Sb,≼). By completeness of (X,Sb), it follows that the sequence
{fnx0} converges to α in (X,Sb). Thus

lim
n→∞

fnx0 = α = lim
n→∞

fn+1x0.

Next, we will need the following. For each n ≥ 1, at least one of the
following assertions holds:

1

4b3
Sb (xn+1, xn+1, xn) ≤ Sb(α, α, xn)

or
1

4b3
Sb (xn, xn, xn−1) ≤ Sb(α, α, xn−1).

On the contrary, suppose that

1

4b3
Sb (xn+1, xn+1, xn) > Sb(α, α, xn)

and
1

4b3
Sb (xn, xn, xn−1) > Sb(α, α, xn−1).

Now consider

Sb (xn−1, xn−1, xn) ≤ 2bSb (xn−1, xn−1, α) + b2Sb (α, α, xn)

< 2b2Sb (α, α, xn−1) + b2
1

4b3
Sb (xn+1, xn+1, xn)

< 2b2
1

4b3
Sb (xn, xn, xn−1) +

1

4b
Sb (xn+1, xn+1, xn)

=
1

2b
b Sb (xn−1, xn−1, xn) +

1

4b
b Sb (xn, xn, xn+1)

≤ 1

2
Sb (xn−1, xn−1, xn) +

1

4b3
Sb (xn−1, xn−1, xn)

=
2b3 + 1

4b3
Sb (xn−1, xn−1, xn)

≤ 3

4
Sb (xn−1, xn−1, xn) .
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It is a contradiction. Hence our claim is valid.

Now we have to prove that α is fixed point of f . Since xn, α ∈ X and X
is regular, it follows that either xn ≼ α or α ≼ xn. Suppose fα ̸= α. From
(2.1.3) and Lemma 1.10, we have that

4b4
(

1

2b
Sb(fα, fα, α)

)
≤ lim

n→∞
inf 4b4

(
Sb

(
fα, fα, fn+1x0

))
≤ lim

n→∞
inf M5

f (α, xn)− lim
n→∞

inf φ
(
M5

f (α, xn)
)
.(2.14)

Then, from Lemmas 1.6 and 1.10 we get

lim
n→∞

inf M5
f (α, xn)

≤ lim
n→∞

sup max
{

0, Sb (α, α, fα) , 0, 0, Sb (xn, xn, fα)
}

≤ max
{

bSb (fα, fα, α) , b
3Sb (fα, fα, α)

}
= b3Sb (fα, fα, α) .

Hence, from (2.14) and above calculations, we have

2b3Sb(fα, fα, α) ≤ b3 Sb (fα, fα, α)− lim
n→∞

inf φ
(
M5

f (α, xn)
)

≤ b3 Sb (fα, fα, α) .

It is a contradiction. So α is a fixed point of f .

Finally, let us prove the uniqueness of the fixed point.
Suppose α∗ is another fixed point of f such that α ̸= α∗.
It is clear that 1

4b3 min {Sb (α, α, fα) , Sb (α
∗, α∗, fα∗)} ≤ Sb (α, α, α

∗).
Since α, α∗ ∈ X and X is regular we have that α and α∗ are comparable.

From (2.1.3), we have

4b4Sb (α, α, α
∗) ≤ M5

f (α, α∗)− φ
(
M5

f (α, α∗)
)

= max{Sb (α, α, α
∗) , Sb (α

∗, α∗, α)}
−φ (max{Sb (α, α, α

∗) , Sb (α
∗, α∗, α)})

≤ bSb (α, α, α
∗) .

It is a contradiction. Hence α is the unique fixed point of f in (X,Sb) and
the proof is completed.

Example 2.6. Let X = [0, 1] and Sb : X
3 → R+ by Sb(x, y, z) = (|y+z−2x|+

|y − z|)2 and ≼ by a ≼ b ⇐⇒ a ≤ b, then (X,Sb,≼) is a complete ordered
Sb - metric space with b = 4. Define f : X → X by f(x) = x

32
√
2
. Also define

φ : R+ → R+ by φ(t) = t
2 .
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Clearly for all x, y ∈ X, 1
4b3 min{Sb(x, x, fx), Sb(y, y, fy)} ≤ Sb(x, x, y). And

4b4 Sb(fx, fx, fy)
= 4b4(|fx+ fy − 2fx|+ |fx− fy|)2

= 4b4
(
2
∣∣∣ x
32

√
2
− y

32
√
2

∣∣∣)2

= 1
2Sb(x, x, y)

≤ 1
2M

5
f (x, y)

= M5
f (x, y)− φ

(
M5

f (x, y)
)
,

where

M5
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy),

Sb(x, x, fy), Sb(y, y, fx)

}
.

Hence from Theorem 2.5, 0 is the unique fixed point of f .

Theorem 2.7. Let (X,Sb,≼) be an ordered complete Sb metric space and let
f : X → X be a Suzuki type generalized φ - contraction with i = 3 or 4. If
there exists x0 ∈ X with x0 ≼ fx0, then f has a unique fixed point in X.

Proof. If we replace M3
f (x, y) or M4

f (x, y) in place of M5
f (x, y), the rest

of the proof follows from Theorem 2.5.

Theorem 2.8. Let (X,Sb,≼) be an ordered complete Sb metric space and let
f : X → X satisfy
1

4b3 min {Sb (x, x, fx) , Sb (y, y, fy)} ≤ Sb (x, x, y)
⇒ Sb (fx, fx, fy) ≤ λM i

f (x, y) ,

where λ ∈
[
0, 1

4b4

)
and i = 3 or 4 or 5. If there exists x0 ∈ X with x0 ≼ fx0,

then f has a unique fixed point in X.

3. Application to Integral Equations

In this section, we study the existence of a unique solution to an initial
value problem, as an application of Theorem 2.5.

Theorem 3.1. Consider the initial value problem

(3.1) x′(t) = T (t, x(t)), t ∈ I = [0, 1], x(0) = x0

where T : I ×
[
x0

4 ,∞
)
→

[
x0

4 ,∞
)
with

t∫
0

T (x(s), y(s))ds = min

{
t∫
0

T (s, x(s))ds,
t∫
0

T (s, y(s))ds

}
and x0 ∈ R. Then there exists a unique solution in C

(
I,
[
x0

4 ,∞
))

for the initial
value problem (3.1).
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Proof. The integral equation corresponding to the initial value problem
(3.1) is

x(t) = x0 +

t∫
0

T (s, x(s))ds.

Let X = C
(
I,
[
x0

4 ,∞
))

and Sb(x, y, z) = (|y+ z− 2x|+ |y− z|)2 for x, y ∈ X.
Define φ : [0,∞) → [0,∞) by φ(t) = 3t

4 . Define f : X → X by

fx(t) =
x0

4b2
+

t∫
0

T (x(s), y(s))ds.(3.2)

Clearly for all x, y ∈ X, we have
1

4b3 min{Sb(x, x, fx), Sb(y, y, fy)} ≤ Sb(x, x, y).
Now

4b4 Sb(fx(t), fx(t), fy(t))

= 4b4 {| fx(t) + fy(t)− 2fx(t) |+ | fx(t)− fy(t) |}2

= 16b4 | fx(t)− fy(t) |2

= 16b4

16b4 | x0 − y0 |2

≤ | x(t)− y(t) |2

= 1
4 Sb(x, x, y)

≤ M5
f (x, y)− φ

(
M5

f (x, y)
)
,

where

M5
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy),

Sb(x, x, fy), Sb(y, y, fx)

}
.

Applying Theorem 2.5, we conclude that f has a unique fixed point in X.

4. Application to Homotopy

Theorem 4.1. Let (X,Sb) be a complete Sb - metric space, U an open subset
of X and U a closed subset of X such that U ⊆ U . Suppose H : U × [0, 1] → X
is an operator such that the following conditions are satisfied:
(4.1.1) x ̸= H(x, λ) for each x ∈ ∂U and λ ∈ [0, 1],

(here ∂U denotes the boundary of U in X),

(4.1.2) 1
4b3 min {Sb (x, x,H(x, λ)) , Sb (y, y,H(y, λ))} ≤ Sb (x, x, y) implies that

4b4Sb(H(x, λ),H(x, λ),H(y, λ)) ≤ Sb(x, x, y)− φ(Sb(x, x, y))
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for all x, y ∈ U and λ ∈ [0, 1], where f : [0,∞) → [0,∞) is continuous, non-
decreasing and φ : [0,∞) → [0,∞) is lower semi continuous with φ(t) > 0 for
t > 0,
(4.1.3) there exists an M ≥ 0 such that

Sb(H(x, λ),H(x, λ),H(x, µ)) ≤ M |λ− µ|,

for every x ∈ U and λ, µ ∈ [0, 1].
Then H(., 0) has a fixed point if and only if H(., 1) has a fixed point.

Proof. Consider the set

A = {λ ∈ [0, 1] : x = H(x, λ) for some x ∈ U}.

Suppose that H(., 0) has a fixed point in U . Then we have that 0 ∈ A. So A
is non-empty set. We will show that A is both open and closed in [0, 1] and so
by the connectedness we have that A = [0, 1]. As a result, H(., 1) has a fixed
point in U .

First we show that A is closed in [0, 1]. To see this let {λn}∞n=1 ⊆ A with
λn → λ ∈ [0, 1] as n → ∞. We must show that λ ∈ A. Since λn ∈ A for
n = 1, 2, 3, . . . , there exists xn ∈ U with xn = H(xn, λn).

Consider

Sb (xn, xn, xn+1)
= Sb(H(xn, λn),H(xn, λn),H(xn+1, λn+1))
≤ 2bSb(H(xn, λn),H(xn, λn),H(xn+1, λn))

+b2Sb(H(xn+1, λn),H(xn+1, λn),H(xn+1, λn+1))
≤ 2bSb(H(xn, λn),H(xn, λn),H(xn+1, λn)) + b2M |λn − λn+1|.

Letting n → ∞, we get

lim
n→∞

Sb(xn, xn, xn+1) ≤ lim
n→∞

2bSb(H(xn, λn),H(xn, λn),H(xn+1, λn)) + 0.

Since

1

4b3
min

{
Sb (xn, xn,H(xn, λ)) ,

Sb (xn+1, xn+1,H(xn+1, λ))

}
≤ Sb (xn, xn, xn+1) ,

from (4.1.2), we have that

lim
n→∞

Sb(xn, xn, xn+1) ≤ lim
n→∞

4b4Sb(H(xn, λn),H(xn, λn),H(xn+1, λn))

≤ lim
n→∞

[Sb(xn, xn, xn+1)− φ(Sb(xn, xn, xn+1))] .

It follows that

(4.1) lim
n→∞

Sb(xn, xn, xn+1) = 0.

Now we prove that {xn} is an Sb−Cauchy sequence in (X,Sb). On the
contrary, suppose that {xn} is not Sb−Cauchy. There exists an ϵ > 0 and
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monotone increasing sequences of natural numbers {mk} and {nk} such that
nk > mk,

(4.2) Sb(xmk
, xmk

, xnk
) ≥ ϵ

and

(4.3) Sb(xmk
, xmk

, xnk−1) < ϵ.

From (4.2) and (4.3), we obtain

ϵ ≤ Sb(xmk
, xmk

, xnk
)

≤ 2bSb(xmk
, xmk

, xmk+1) + b2Sb(xmk+1, xmk+1, xnk
).

Letting k → ∞, we have that

ϵ
b2 ≤ lim

n→∞
Sb (xmk+1, xmk+1, xnk

) .

But

lim
n→∞

Sb (xmk+1, xmk+1, xnk
)

≤ 4b4 lim
n→∞

Sb (H(xmk+1, λmk+1),H(xmk+1, λmk+1),H(xnk
, λnk

))

≤ lim
n→∞

[Sb(xmk+1, xmk+1, xnk
)− φ(Sb(xmk+1, xmk+1, xnk

))] .

It follows that
lim
n→∞

Sb (xmk+1, xmk+1, xnk
) = 0.

Therefore,

(4.4) ϵ = 0,

which is a contradiction. Hence {xn} is an Sb−Cauchy sequence in (X,Sb) and
by the completeness of (X,Sb), there exists an α ∈ U with

(4.5) lim
n→∞

xn = α = lim
n→∞

xn+1.

Since

1

4b3
min {Sb (α, α,H(α, λ)) , Sb (xn, xn,H(xn, λ))} ≤ Sb (α, α, xn) ,

we have
1
2b Sb (H(α, λ),H(α, λ), α)

≤ lim
n→∞

inf 1
2bSb (H(α, λ),H(α, λ),H(xn, λ))

≤ lim
n→∞

inf 4b4Sb (H(α, λ),H(α, λ),H(xn, λ))

≤ lim
n→∞

inf[Sb (α, α, xn)− φ(Sb(α, α, xn))]

= 0.

It follows that α = H(α, λ). Thus λ ∈ A. Hence A is closed in [0, 1].
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Now, let us prove that A is open in [0, 1]. Let λ0 ∈ A. Then there exists
x0 ∈ U with x0 = H(x0, λ0). Since U is open, then there exists r > 0 such that
BSb

(x0, r) ⊆ U . Choose λ ∈ (λ0− ϵ̃, λ0+ ϵ̃) such that |λ−λ0| ≤ 1
Mn < ϵ̃. Then

for x ∈ Bp(x0, r) = {x ∈ X|Sb(x, x, x0) ≤ r + b2Sb(x0, x0, x0)}. Also

1

4b3
min {Sb (x, x,H(x, λ)) , Sb (x0, x0,H(x0, λ))} ≤ Sb (x, x, x0) .

Sb (H(x, λ),H(x, λ), x0)
= Sb(H(x, λ),H(x, λ),H(x0, λ0))
≤ 2bSb(H(x, λ),H(x, λ),H(x, λ0)) + b2Sb(H(x, λ0),H(x, λ0),H(x0, λ0))
≤ 2bM |λ− λ0|+ b2Sb(H(x, λ0),H(x, λ0),H(x0, λ0))
≤ 2b

Mn−1 + b2Sb(H(x, λ0),H(x, λ0),H(x0, λ0)).

Letting n → ∞, we obtain

Sb(H(x, λ),H(x, λ), x0) ≤ b2Sb(H(x, λ0),H(x, λ0),H(x0, λ0))
≤ 4b4Sb(H(x, λ0),H(x, λ0),H(x0, λ0))
≤ Sb(x, x, x0)− φ(Sb(x, x, x0))
≤ Sb(x, x, x0).

Sb(H(x, λ),H(x, λ), x0) ≤ Sb(x, x, x0)
≤ r + b2Sb(x0, x0, x0).

Thus for each fixed λ ∈ (λ0 − ϵ̃, λ0 + ϵ̃), H(x, λ) ∈ Bp(x0, r) implies

H(., λ) : Bp(x0, r) → Bp(x0, r). Since also (4.1.2) holds and φ is continuous
with φ(t) > 0 for t > 0, then all conditions of Theorem 2.5 are satisfied.

Thus we deduce that H(., λ) has a fixed point in U . But this fixed point
must be in U since (4.1.1) holds. Thus λ ∈ A for any λ ∈ (λ0 − ϵ̃, λ0 + ϵ̃).
Hence (λ0 − ϵ̃, λ0 + ϵ̃) ⊆ A and therefore A is open in [0, 1]. For the reverse
implication, we use the same strategy.

Corollary 4.2. Let (X, p) be a complete partial metric space, U is an open
subset of X and H : U × [0, 1] → X with the following properties:

(1) x ̸= H(x, t) for each x ∈ ∂U and each λ ∈ [0, 1] (here ∂U denotes the
boundary of U in X),
(2) there exist x, y ∈ U and λ ∈ [0, 1], L ∈

[
0, 1

4b4

)
, such that

Sb (H(x, λ),H(x, λ),H(y, µ)) ≤ LSb(x, x, y),

(3) there exists M ≥ 0, such that

1

4b3
min {Sb (x, x,H(x, λ)) , Sb (y, y,H(y, λ))} ≤ Sb (x, x, y) implies that

Sb(H(x, λ),H(x, λ),H(x, µ)) ≤ M |λ− µ)|
for all x ∈ U and λ, µ ∈ [0, 1].
If H(., 0) has a fixed point in U , then H(., 1) has a fixed point in U .

Proof. Proof follows by taking f(x) = x, φ(x) = x− Lx with L ∈
[
0, 1

4b4

)
in Theorem 4.1.
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5. Conclusions

In this paper we conclude some applications of fixed point theorems in
partially ordered Sb - metric spaces.
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[12] Rao, K. P. R., Kishore, G. N. V., and Hima Bindu, V. M. L. Suzuki type
fixed point theorem for rational contraction in partial metric spaces. Glob. J.
Pure Appl. Math. 11, 4 (2015), 2223–2231.
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