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Sharp Wirtinger’s type inequalities for double integrals
with applications

Mohammad W. Alomari]

Abstract. In this work, sharp Wirtinger type inequalities for double in-
tegrals are established. As applications, two sharp Cebysev type inequal-
ities for absolutely continuous functions whose second partial derivatives
belong to L? space are proved.
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1. Introduction

The theory of Fourier series has a significant role in almost all branches of
mathematical and numerical analysis. A very interesting connection between
inequalities and Fourier series has been made more than a hundred years ago.
The celebrated Bessel’s integral inequality

o0

1 T
(1.1) 205+ (an+b3) <= [ f*(x)de,

mJ_
n=1 a
was named after Bessel’s death and considered from that time as the first link
in this connection and starting point for other related works after the end of
18-th century.

In 1916, Wirtinger [8] credibly proved his inequality regarding square inte-

grable periodic functions, which reads:

Theorem 1.1. Let f be a real valued function with period 27 and foh f(x)de =
0. If f € L]0, 27], then

(1.2) " 2 (x)dr < u f? (z) de,
0 0

with equality if and only if f(x) = Acosx + Bsinz, A,B € R.

Many authors have considered a main attention for Wirtinger’s inequality
and therefore, several generalizations, counterparts and refinements was col-
lected in a chapter of the book [16].

In 1967, Diaz and Metcalf [9] have extended and generalized Wirtinger
inequality and they proved the following result:
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Theorem 1.2. Let f be continuously differentiable on (a,b). Suppose f(t1) =
fte) for a <t <tg <b, then the inequality

b
(1.3) / f (@) — f (0] da

<4 . zbtztz—f12 b d
< maxd (- -t (257 ) 4 [ @)
holds. In particular, if t1 = to = t, then
4 [b— 2ot
B ] | @
For other related results see [7], [6] and [I5].
One of the most dlrectly applicable usages of (| is in several works re-

b

1) [ @ rePes B
o m 2

garding the famous Cebysev functional

2

+‘t—

(1.5) frg /f dt——/ f(t)dt- g(t)dt.

which compare or measure the difference between the integral of the product
of two functions with the product of their integrals.

In 1970, Ostrowski [17] proved that if f’, g’ € L?[a,b], then there exists a
constant C, 0 < C < b_T“, such that

(1.6) T DI <CU NN N -

After that in 1973, A. Lupasg [14] has improved the result of Ostrowski’s (1.6))
and proved that

(17) T (ol <2

lg'llz»

where the constant % is the best possible.
In this work we deal with the problem: what is the best possible constant
C such that the inequality

(1.8) //f2zydxdy<0/ / (a ay) dxdy

holds whenever f,g € £2(I). This question is a natural extension of Diaz-
Metcalf inequality , as well as the complementary works of Beesack and
Milovanovié¢ in one variable, see [7], [6] and [15].

Accordingly, for the Cebysev functional

b pd
1 bopd 1 b pd
_ m /C; A f (t; S) detm /a /L g (t, S) dtdS,
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what is the best possible constant C’ such that the inequality

5?2
0x0y ||y

0%g
0x0y ||y

T (f,9)l<C’

holds, and this is an extension of the Lupag inequality (1.7]).

2. Wirtinger’s type inequalities

Let I be a two dimensional interval and denote by I° its interior. For
a,b,c,d € R, we consider the subset D := {(2,9) :a <2 <b,c <y <d} CR?
such that D C I°. Also, define the subsets I_ and I~ of I as follows:

Im:=1—-{b,d} =][a,b) X [c,d), and I_:=1—{a,c} = (a,b] x (c,d]

In the sequel, throughout this work, we assume that f : I — R satisfies the
boundary conditions: f(a,-) = f(-,¢) =0, faz(a,:) = fo(-,¢) =0, fy(a,-) =
fy(-,¢) =0o0n I~. Also, we assume f(b,-) = f(-,d) =0, fz(b,-) = fz(-,d) =0,
fy(b,-) = fy(-,d) =0 on I_, and both conditions on I°.

Let £2(1) be the space of all functions f which are absolutely continuous on

1, with [ [°

8:1: ay ‘ dzdy < oo and f satisfies the above boundary conditions.

Theorem 2.1. Let f € £2(I7). Then the inequality

(2.1) /Cd/abf2(at,y)dwdy§7lj(b—a d—c) //(aw;,) dxdy

18 valid. The constant % s the best possible, in the sense that it cannot be

replaced by a smaller one.

Proof. Let a < z < band ¢ <y < d. Since f is absolutely continuous then
we can write f (z,y) = fcy f: fis (t,8) dtds. If a and ¢ are real numbers this
is equivalent to saying that f(a,c¢) = 0 and f is absolutely continuous on
[a,b) x [e,d). Setting

f(x,y) = g1(2)g2(y)h(, y),

where
g1 () =sinw; (x — a) ,Vz € [a, ),

>, and

with wp = A/ and Ay = 75

92 (y) =sinws (y — ¢) ,Vy € [e,d),

with wy = A% and Ay = s,

Firstly, let us observe that since g; (x) = wy coswy (x — a), so that
g1 (x) = —wigy (z) . Similarly, we have g5 (y) = —w3g2 ().
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For simplicity, since

6f oh
9 =~ 925 + g2hg,

then

P Pho Ok Oh
8x8y 91928 dy 91928 9192 91928y

d oh . b
dy 91928 9192

oh d [ Oh
= g5 (glax +g’1h) + 92y (max +gih> :

Setting

Jfa

oh
D= (I)(CE,y) g1 +glh*97:>92(1) fza

oz

therefore

d oh oh oh '
& <91928 +9192h) g5 (918 +91h> + 92 (gla +91h) = gy + 2Py,

Now, ifa <a < <b,and ¢ <~y < d <d, we have

// (3$8y) dydx:/ﬁ/é (g + g2®,)? dydz
o5
o (122 o
-/ / (g3)" dyd +2 / /5<q>g/2)g2q,/ydydx
[ ot ) e
+ / B / (@gt)* dyda
L et )
+/j/7 (®g5)° dyda

—~
o
[\

~

| |
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518 B
gé)tI)QM —|—w§/ / G202 dydx
/ / <I>2dyda:—|—/ / (®g5) dydm
g)qﬁyv‘ +w§/ / R2o2dyda

« a Jy
B o 2

N a2l0]? 2 ﬁ
5) @ Ma—l—wQ/a [y (8x> dydzx

where, in (2.2) we integrate by parts, assuming that u = ga (g3) and dv = 2} ®.
Now, we also have

(2.3)

(2.4)
B 6f 2
-
/a ints (8:10) dydx
/ / {(9192 +glgzh>} dydzx
/ / gngh 1+ 91923z d’ydl‘
9192h
B pé Oh
91928
> gigah)? [ 14222202 ) 4 gy
/a /7 {( 192 ) g'lgzh
B pé ) B ré ) oh
/ / (9192h) dyd:z:—&—Q/ / (9192h) (919289:) dydzx
9291 h2| ’ / / g9y + ) thydx
+ / / (g192h)* dyda
/ / wlg1 )2> g%hzdydx
+ / / (g1.92h)* dyda
a Jy

8

518

= gn (gll)h2|yla+wf/ / gigsh*dydz
o Y

B rd ) B 6 )
- / / (90)” g3h*dydz + / / (¢, g2h)° dyda
a vy a Jy

B

518

9391(9’1)h2|7’a+Wf/ /glgzh2dydx
«

= 9291 91 h2

—~
o
ot

~—~

I
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Substitute (2.5)) in , we get
dxdy > g (g’)@2|5‘6 +wigsgr (91) B
3$ay = 92\Y2 e 29291 \91 ,

B 6
+ w%w% / / gfg%thydm
a Jy

B

518

@

518

4 2

fz

= g2(95) r + w3391 (91)
2

2 2
9192
Tl

oo [T 5o
+W1W2/ / 91955 sdydx
[e% o 9192

518
g °
_ (92 2
(92) i

!
a(f)s
Y] 91

Tl

B o
+ wiw3 / / fPdydx
o Jy

B

Hence,

B 5

(2.6) / / fPdydx
a Jy

IR A

<l [ () vz ()

Y

518

1 (9’1) 2
-5 (2 f
w1y \91

R

B

Now, since
2 v e
0< f2(a,7) (/ / fis (t,s dtds) < (a—a)(’y—c)/ / f2 (t,s)dtds
then
vy pa
V<P <la-ab-a [ [ fhEsdds—o
as a — at and v — ¢F, i.e., f2(a,) = 0 and therefore

1 /
{2 <gl>}~f2(o¢,'y) —0 as a —at and v — .
w1 \ 91

Similarly,

0< 72 (/ Foy (@09) — fay (@, y)dy>2
<=0 [ (@) = Fuy i) dy



Sharp Wirtinger’s type inequalities for double integrals with applications 7

then
v 2
0< f2(a,7) < (v — ) / (Fry (@) — fay (a,9))* dy — 0,

as v — ct, ie., f2(a,y) = 0 and therefore

1
{ 2 ( )} f2(a,y) — 0 as a — a™ and v — c*.
wiws \ g2

Then, from (2.6))) it follows

B 5
//f2dydx
a Jy

AN A 1 ;
<zl [ (ay) -2z (2
wiwy Sy Ja 0zdy wiws go

dxd

_wle// (8x6y) T4y

where a < B <bandc < § <d. Now let « — a¥, 8 — b~ and v — ¢,
d — d~ to obtain the inequality (2.1)).

To obtain the sharpness, assume that (2.1) holds with another constant
K >0,

(2.7) //szydxdy<K(b—a d—c) //(axa>dxdy

Define the function f : [a,b) X [¢,d) = R, given by

T xz—a\ . (7 y—c
flz,y) = C’sm(2 — )Sl <2 d—c)

Therefore, we have

518

1 (4}
- = <1> f2
w1 \%1

Tl

518

)12

Tl

0% f B 2 cos [T 2ma) (T y=c¢
0z0y 4(b—a)(d—c) 2 b—a 2 d—c
b rd —a)(d— bopd [ 925 \2 o
fa fc f2 (.I, y) dyd.’L' =& a)4(d 0)7 and fa fc (8(?125{.1;) dyd$ = 64(b—a)(d—c)" If
we substitute in ([2.7)

(b-a)(d—c) O
I e UM C O My sy

which means that K > %, thus the constant % is the best possible and the
inequality (2.1]) is sharp. O
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Corollary 2.2. If f € £2(I_), then the inequality ([2.1)) still holds, and the

iequality is sharp.

Proof. The proof goes similarly to the proof of Theorem [2.1] with a few changes
in the auxiliary function ‘sin’ in both variables x and y defined on the bidi-
mensional interval I_. To obtain the sharpness, define the function f : (a,b] x
(¢,d] = R, given by

(T b—x\ . (7w d—y
flz,y) = Cbln<2-b_a>bln<2-d_c>,

where C' is constant. O

Corollary 2.3. Let f € £2(I). Under the assumptions of Theorem and
Corollary[2.9 together, the inequality

//Ifmy )| dady

G[ba ‘ a+b} {dc ‘ c+d
= +

< —
- ot 2

] // <8x5y> ey

is valid for all (§,m) € D°. The constant 4 is the best possible.

Proof. Apply Theorem [2:1] and Corollary 2:3] on the right hand side of the
equation

//|f$y £ (&) dedy
:/ / |f(1‘ay)—f(§ﬂ7)gdxdy+/d/gf(x,y)—f(g,n)dedy
//'f“’ F&ml dxdy+//|fwy F (€ dedy

and the make the substitution h(z,y) = |f (z,y) — f (&,n)|°>. To obtain the
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sharpness define f : [a,b] X [¢,d] — R, given by

f(z,y)
K sin (g . ‘”‘;_7_(12”) sin (g . H;}"%fy) ue (7) uy (),
a<z<&c<y<n
K sin (g . 2‘””1;_55717) sin <§ . ct;’%f’) ue (—7) uy (),
E<z<beLy<n

Fysin (5 20 ) sin (3 22120 ) e () wy ().
a<z<{n<z<d

Ky sin (g : wa__i_b) sin (g . m’%";d) ug (—7) uy (—9),
§<z<bn<z<d

where Ky, Ky, Ko, K3 and K5 are arbitrary constants, 7 = 26 —a — b, ¢ =
2n — ¢ — d and wu; (t) is the unit step function. O

3. Sharp bounds for the Cebysev functional

The Cebysev functional

b pd
T(ﬁg)::(b_a%//f(t,s)g(t,s)dsdt

(3.1) = 70//ftsdsdt( 70// (t,s)dtds

has interesting applications in the approximation of the integral of a product,
as pointed out in the references below.

In order to represent the remainder of the Taylor formula in an integral form
which provides a better estimation using the Griiss type inequalities, Hanna
et al. [20], generalized the Korkine identity for double integrals and therefore
Griiss type inequalities were proved.

In 2002, Pachpatte [I8] has established two inequalities of Griiss type involv-
ing continuous functions of two independent variables whose first and second
partial derivatives exist, are continuous and belong to Ly (ID); for details see
[18]. For more results about multivariate and multidimensional Griiss type
inequalities the reader may refer to [2, [l [3 Bl 1T, [12] 20, 13| [19].

Recently, the author of this paper [I] established various inequalities of
Griiss type for functions of two variables under various assumptions on the
functions involved.

In view of Corollary we may state the following result.
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Theorem 3.1. If f,g € £3(D), then
82
0x0y ||,

0%g
0x0y ||,

(32 IT(gl< 0o

% is the best possible.

Proof. By the triangle inequality and then using the Cauchy-Schwartz inequal-
ity, we get

(3.3) [T (NI

“mo|[ [ e (5550
lf(:c,y)—i/cd/abf(t,s)dtds 2

<a [ o (525
Xi/cd/ab [f(x,y)—i/cd/abf(us)dtdsrdxdy.

ILf A//(xy A//f dtds)dmdy
=i/c/a[f2(x,y)—2f(w,y)i/c/Gf(t,S)dtds

1 /4 b 2
+<A/C/af(t,s)dtds>]dxdy
L pd b 1 pd b >
:A/C/afz(x,y)dwdy—<A/c/af(t,s)dtds> ,

where A := (b—a)(d — ¢).
Therefore, from ((3.3)

Iy 7A/ / { (a;b,c;d>]2dxdy
x%/c / [f(x,y)i/cd/abf(t,s)dtds] dady
L e ()] w00,

dxdy

Now, since
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Therefore,

d b 2
<x [ [ [ren-r (55250 aoas

Applying (2.8), we get

2

d b a+b c+d o || 92F
_ < (b — _ )
[ [ ren-r(525 )} dedy < 5 (b— o’ (d—o” | 0
Thus,
(3.4) Tp <L o-of - 2L
' R o 0xdy ||y
Using a similar argument we can observe that
1 2 829 2
. < —(b- - .
(3.5) T(9.9) < (b a)* (d ) 920y |,
Finally, since
1 0? 0?
< T1/2 1/2 < b2 (d— )2 g
TSN <TZENT R g9) < 7 b—a) (d=c)| 55 | awayll,

which proves (3.2). To obtain the sharpness, assume that (3.2) holds with
another constant K > 0,

82
0x0y ||y

0%g
0x0y ||y

(3.6) 1T (f,9) < K (b—a)*(d—c)?

Define the functions f,g: D — R, given by

B T a+b—2x y T c+d—2y _
Floa =sin (5 - 2 e (5 ) — g,

therefore, we have

0%f B 2 cos E_a+b—2x cos zlc+d—2y _ 0%g
0zdy  (b—a)(d—c) 2 b—a 2 d—c - 0xdy’

b pd —a —c
| [ 1wy e - =229,

/ab/cd<aa;gy>2dydx(b o //<8xay>2dyd$'

and
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Substituting in (3.6))
b-a =0 _ub-ad=o)
4 4
which means that K > %, thus the constant % is the best possible and the
inequality (3.2)) is sharp. O

Theorem 3.2. Let f € £2(D) and let g : D — R satisfy that there exist real
numbers v, such that v < g(z,y) <T for all (z,y) € D, then
o0 f
Ozxdy

B TGl 0= -0 ()|

2
The constant % is the best possible.

Proof. Since

T(f,9)
:i/b/d [f(x’y)_f(a,c>+f(a,d)+f(b,c)+f(b,d)}

4
X [g(ar,y)—i/ab/cdg(m)] dydx

Taking the absolute value of both sides and making use of the triangle inequal-
ity, we get

(3.8)

|T

(f,9)|
- iLb Zd

£ (2,y) — f(a,c)+f(a,d)1rf(b,c)+f(b,d)‘

g(m,y)—i/ab/cdg(w)

(a,0) + fla,d) + f (b,c) + [ (b, d)

L :
X /ab/cd g(x,y)—i/ab/cdg(tas)

As in Theorem 1 in [I], we have observed that since there exist v,I" > 0 such
that v < g(z,y) <T for all (z,y) € D, then

(3.9) /Cd/ab9($>y)—i/cd/abg(t,s)dtds

X dydx

f(x,y)— f

IN

9 1/2
dydac)

1/2

2
dydzx

2
1
dedy < (T =7)* A
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On the other hand, using the elementary inequality

(A+B+C+ D)’ <4 (A’ +B?+C*+ D?),
for all A, B,C, D > 0, we also have

fla,e)+ fla,d)+ f(bc)+ f(bd) |
4

b d b d
s// |f<x,y>—f<a,c>|2dydx+/ / f @y) — 1 (a,d)[? dydz
b d b d
+//|f<x,y>—f<b,c>\2dydx+//|f<x,y>—f<b,d>|2dydx

Applying (2.8) for each integral above and simplifying we get

f(z,y) — dydx

f(a,c>+f(a,d>If(b,c>+f<b,d> * dyda

<So-ora-ot [ [ () e

Combining the inequalities (3.9) and (3.10) with (3.8)) we get the desired result
B).

To prove the sharpness of (3.7) assume that it holds with constant C' > 0,
ie.,

(3.10)

f(a:,y) -

B11) [Tl <Ch-a)?[d—o 2 (r H

0x0y ||,

and consider the functions f,g : D — R be defined as

£ )=s T a+b—2x . ™ c+d—2y
,1y) = sin R — in 5 i )

o= (o5 (s 22

As in the proof of Theorem feL?D),andl—y = 2, f: fcd g (t,s)dsdt =0,

b pd 4
[ ] teng@pds = 5 0-a@-o.

/b /d 82](‘
o Jeo \0z0
Making use of (3 we get > < C, which proves that 7r2 is the best possible
and thus the proof is completely finished. O

and

) dydz = W.
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3.1. An inequality of Ostrowski’s type

The mean value theorem for double integrals reads that: If f is continuous
on [a,b] X [c,d], then there exists (1,£) € [a, b] X [c,d] such that

(3.12) f08=g—0a _c//ftsdtds

What about if one needs to measure the difference between the image of an
arbitrary point (z,y) € [a,b] X [¢,d] and the average value

(b_a)l(d_c)/cd/abf(t,s)dtds?

In this way Ostrowski introduced his famous inequality regarding differen-
tiable functions and its average values. In [10 1T}, 12} 20, 13] and other related
works many authors have studied the Ostrowski type inequalities for various
types of functions of several variables.

In the following, we present a which bound belongs to L, norm for the
Ostrowski inequality.

Theorem 3.3. Let f € £3(D) , then

1 b pd
(3.13) ’f($>y) - m/{l /C f(t,s)dtds

4 b—aJr 7a—|—b d—c+ c+d
Az | T2 TP T 2 YT 8tas

2

for all (z,y) € [a,b] X [¢,d]. In special case, choose (x,y) = (“7%, C;d)
a+b c+d 1 0% f
ts) dids| < A /2
‘f<2’2>(—a —c//fs ’ otds |,

Proof. Since

1 b d
f($7y>_m/a /L f(hs)dtds

b d
:m// [f (z,y) — [ (t,s)] dtds

Taking the modulus, applying the triangle inequality and then using the Cauchy-
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Schwarz inequality, we get

b pd
’f(%y)i//f(t,s)dtds
b pd
<x [ [ 1w - s

1 b d 1/2
SA/<// f<x,y>—f<t,s>|2dtds>

< 4 b—a+ _a+b d—c+ -
Seaz | T2 TP T 2 Y

c+d 0% f
2 Otos

)
2

which follows by ([2.8)), and this proves (3.13). O
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