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Commutative rings whose proper homomorphic images
are nil clean

Mahdi Samiei12

Abstract. As defined by Diesl a (noncommutative) ring R is called nil
clean if every element of R is a sum of a nilpotent and an idempotent.
The purpose of this paper is to study and investigate a new class of rings
called nil neat rings, which is presented in [7, Problem 4]. Actually, these
rings are a natural generalization of the notion of neat rings, as rings for
which any proper homomorphic images are nil clean. It is well-known
that any homomorphic image of a nil clean ring is again nil clean. In
this paper, it is proved that a nil neat ring which is not nil clean is either
a field that is not isomorphic to Z2 or a one-dimensional domain. We
also show that a ring R is nil neat if and only if every nonzero prime
ideal of R is maximal, and that for all nonzero maximal ideals M of R,
R/M ∼= Z2.
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1. Introduction

Throughout this article we assume that all rings are commutative and pos-
sess an identity. The letters Nil(R), Id(R) and U(R) will stand for the set of
nilpotents, the set of idempotents and the set of units of R, respectively. The
ring R is said to be clean if every element of R can be written as a sum of a
unit and an idempotent. The notion of a clean ring was first introduced by
Nicholson[11]. Later in [1], the notion of commutative clean rings is discussed
and several important results were obtained. All commutative von Neumann
regular rings (Boolean rings) and local rings provided the earliest nontrivial
examples of clean rings. The notion of a nil clean ring, that is, a (not neces-
sarily commutative) ring in which every element can be written as a sum of
a nilpotent and an idempotent is introduced and discussed in detail by Diesl
[8]. For other recent articles related to nil clean rings see [2, 4, 5, 9]. A basic
property of clean (nil clean) rings is that any homomorphic image of a clean
(a nil clean) ring is again clean (nil clean). The ring R is said to be a neat
ring provided that every nontrivial homomorphic image of R is clean. W. Wm.
McGovern [10] introduced and investigated the notion of a neat ring. The ring
of integers, Z, and any nonlocal PID are examples of neat rings which are not
clean. We say a ring R is a nil neat ring if every nontrivial homomorphic image
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is nil clean. One can see that this concept is a modification of the notion of
neat ring. We first characterize local nil clean rings (Theorem 2.5), and then
we shift our attention to the relationship between nil clean and nil neat rings.
Finally, we provide a complete classification of the nil neat rings.

2. Main results

As it was mentioned earlier, a ring R is called nil clean provided that every
element of R can be written as the sum of an idempotent and a nilpotent. Also,
a ring R is said to be indecomposable when the only idempotents of R are 0
and 1. Otherwise, the ring is called decomposable. It is easy to see that local
rings are indecomposable. Indeed, let (R,m) be a local ring and e ∈ Id(R). It
follows easily that e or e − 1 are units, since, if e ∈ m and e − 1 ∈ m, then
1 ∈ m. It is a contradiction. Thus e is 0 or 1, since e(e − 1) = 0. In the
following, we give a list of characterizations of commutative nil clean rings.

Theorem 2.1. Let R be a ring. Then the following statements are true:

(1) The class of nil clean rings is closed under homomorphic images.

(2) [8, Proposition 3.15] Let I be any nil ideal of R. Then R is nil clean if
and only if R/I is nil clean.

(3) [8, Proposition 3.13] Any finite direct product of nil clean rings is nil
clean.

(4) A reduced indecomposable ring is nil clean if and only if it is isomorphic
to Z2. In particular, any nil clean domain is isomorphic to Z2.

(5) A nil clean ring is zero-dimensional, and hence a clean ring.

Proof. The part (1) is clear since the homomorphic image of a nilpotent (resp.
an idempotent) element is again a nilpotent (resp. an idempotent).

For (4), notice that we are saying that 0 is the only nilpotent element and
0 and 1 are the only idempotents. That a ring is nil clean in this case only
leaves us with two possibilities for elements in R: 0, 1.

As for (5) let R be a nil clean ring. If R is a domain, we are done, by (4).
Now, let P be a nonzero prime ideal of R. Then by (2) and (4), the quotient
R/P is isomorphic to Z2, and so P is a maximal ideal. The second half is true
by [1, Corollary 11].

In light of Theorem 2.1(4), it is of interest to give a description of inde-
composable nil clean rings (which are not necessarily reduced). Recall that an
element in a ring, say r ∈ R, is called unipotent if it can be written as 1 + b
for some nilpotent b ∈ R. It is a well-known fact that every unipotent of R is
unit. The set of unipotent elements of R is denoted by Uni(R). A ring R is
said to be a UU ring if all units are unipotent. The class of UU rings has been
extensively investigated in [6]. We start with the following easy observation.
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Lemma 2.2. A ring R is indecomposable nil clean if and only if for every
element x in R, either x ∈ Nil(R) or x ∈ Uni(R).

Proof. The proof is routine by using the definitions.

Lemma 2.3. If R is an indecomposable nil clean, then so is every homomorphic
image of R.

Proof. Suppose that R is an indecomposable nil clean ring and S an arbitrary
ring such that f : R → S is an epimorphism. Let b ∈ S. Then b = f(a),
for some a ∈ R and hence either b = f(n) or b = 1 + f(n′) for some n, n′ ∈
Nil(R), by Lemma 2.2. Again, by using Lemma 2.2, we conclude that S is an
indecomposable nil clean ring.

Theorem 2.4. A ring R is an indecomposable nil clean if and only if R is a
UU ring and it has exactly one prime ideal.

Proof. Supoose that R is an indecomposable nil clean ring. It is clear that
every unit of R is unipotent. Assume that R is a nil clean domain. Theorem
2.1(4) shows that R is isomorphic to Z2, and so we are done. Now, suppose,
on the contrary, that P1 and P2 are two nonzero prime ideals of R. It follows
from Chinese reminder theorem and Theorem 2.1(4) that R/P1P2

∼= Z2 × Z2.
Combining this with Lemma 2.3, we conclude that Z2×Z2 is an indecomposable
nil clean ring. It is a contradiction, because (0̄, 1̄) ∈ Id(Z2 × Z2). Conversely,
suppose R is a ring with exactly one prime ideal M and every unit of R is
unipotent. Let a ∈ R. It is clear that either a ∈ Nil(R) or a ∈ Uni(R). It
follows from Lemma 2.2 that R is an indecomposable nil clean ring.

We collect the above results of indecomposable nil clean rings in the follow-
ing theorem.

Theorem 2.5. Let R be a ring. The following statements are equivalent.

(1) R is a local nil clean ring.

(2) R is an indecomposable nil clean ring.

(3) Every element of R is either a nilpotent or an unipotent.

(4) R is a UU ring and it has exactly one prime ideal.

One of the fundamental properties of clean rings is that every homomorphic
image of a clean ring is clean. As mentioned before a neat ring is defined as
a ring in which every proper homomorphic image is clean. In particular, the
ring of integers, Z, and any nonlocal PID are examples of neat rings which are
not clean [10, Proposition 2.4]. In analogy to the above definition, we restrict
our attention to a new class of rings as follows:

Definition 2.6. The ring R is called nil neat if every proper homomorphic
image of R is nil clean.
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By the above definition it is clear that every nil neat ring is neat, but
the converse is not true in general. For instance, it is well-known that every
nontrivial factor of Z is a product of local rings and hence clean [1, Proposition
2(3)]. Thus, Z is neat while the ring Z6 is not nil clean. Consequently, the ring
of integers is not nil neat.

Proposition 2.7. If R is a nil neat ring which is not nil clean, then R is
reduced.

Proof. Suppose, on the contrary, that R is a nil neat ring which is not nil clean
and Nil(R) 6= 0. Thus R/Nil(R) is nil clean and hence R is also nil clean by
Theorem 2.1(2). It is a contradiction.

Theorem 2.8. Let R be a decomposable ring. Then, R is a nil neat ring if
and only if R is nil clean.

Proof. Assume that R is a decomposable ring. Then there are ideals I and J
such that R = I ⊕ J . Now, if R is nil neat, then J ∼= R/I(resp. I ∼= R/J) is
also nil clean. Thus, R being a direct product of nil clean rings is nil clean, by
Theorem 2.1(2).

Theorem 2.9. The following are equivalent for a ring R.

(1) R is nil neat.

(2) R/aR is nil clean for every nonzero a ∈ R.

(3) For any collection of nonzero prime ideals {Pj}j∈J of R with I = ∩j∈JPj

different than 0 we have R/I is nil clean.

(4) R/aR is nil neat for every a ∈ R.

(5) R/I is nil clean for every nonzero semiprime ideal.

(6) R/I is a Boolean ring for every nonzero semiprime ideal.

(7) R/P ∼= Z2 for every nonzero prime ideal.

Moreover, a homomorphic image of a nil neat ring is nil neat.

Proof. (1)⇔ (2) follows from the standard fact that a homomorphic image of
a nil clean ring is nil clean and the fact that any nontrivial ideal contains a
principal nontrivial ideal.
(1)⇒ (4). We know that R/aR is a nil clean ring where a is a nonzero element
of R and so R/aR is nil neat for every a ∈ R.
(4)⇒ (1) is clear by using a = 0.
(1)⇒ (5) is obvious.
(5) ⇒ (1). Suppose that I is a nonzero ideal of R. Thus, R/

√
I is nil clean

since
√
I is a nonzero semiprime ideal of R. It follows that R/I√

I/I
is nil clean

and so does R/I, by [8, Proposition 3.15]. Thus R is a nil neat ring.
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(3)⇔ (5) are straightforward.
(5) ⇒ (6). Assume that I is a nonzero semiprime ideal of R and R/I a nil
clean ring. It follows from Nil(R/I) = 0 that R/I is a Boolean ring.
(6)⇒ (7) is clear
(7) ⇒ (5). Suppose that I is a nonzero semiprime ideal of R. Then, by an
easy verification, we can show that R/I is a subring of the Boolean ring

∏
Z2.

Thus R/I is Boolean and hence nil clean.

While every nil clean ring is nil neat, the following example shows that the
two notions are not equivalent in general.

Example 2.10. Consider the ring R = Z(2), the localization of the integers at
the prime 2. It is clear that 0(2) and 2(2) are the only prime ideals of Z(2) and
hence Z(2) is not nil clean by Theorem 2.1(5). To show that Z(2) is nil neat,
we use the homomorphism f : Z(2) → Z2 with f(m/n) = 1̄ when (m, 2) = 1
and otherwise f(m/n) = 0̄. It is easy to check that f is an epimorphism with
the kernel 2(2) and so Z(2)/2(2) ∼= Z2. It follows from Theorem 2.9(7) that R
is a nil neat ring.

Corollary 2.11. A ring R is nil neat if and only if

(i) Every nonzero prime ideal of R is maximal, and

(ii) R/M ∼= Z2 for every nonzero maximal ideal.

Proof. Suppose that R is a nil neat ring. (i) can be obtained by applying
Theorem 2.1(4) to any nonzero prime ideal of R and (ii) is clear by Theorem
2.9(7). The converse is obvious by using Theorem 2.9.

Corollary 2.12. Let R be a ring. Then R is nil neat if and only if either R is
a field or R/J(R) is isomorphic to a subring of a product of copies of Z2 and,
moreover every nonzero prime ideal of R is maximal.

Proof. Suppose that R is a nil neat ring which is not a field. Then R/J(R) is
embeddable inside of

∏
M∈Max(R)(R/M); which is isomorphic to a product of

copies of Z2 by Corollary 2.11. It follows that R/J(R) is also isomorphic to a
subring of product of copies of Z2. Conversely, it is clear that R is a nil neat ring
when R is a field. Now, assume that R is a non-field and ϕ : R/J(R) →

∏
Z2

is a monomorphism. We know that the order of the element 1R/J(R) divides
the order of 1ϕ(R/J(R)). This implies that o(1R/J(R)) = 2, since

∏
Z2 has

characteristic 2. Now let Mj be a nonzero prime ideal of R, and consider
the epimorphism πj : R/J(R) → R/Mj. By our hypothesis, Mj is a nonzero
maximal ideal and it is clear that πj(1R/J(R)) = 1R/Mj

and so, 2 divides the
order of the element 1R/Mj

. We conclude that the field R/Mj has characteristic
2 and hence R/Mj

∼= Z2. Combining this fact and Theorem 2.9(7), we deduce
that R is a nil neat ring.

Recall that a ring is called uniquely (nil)clean if every element is uniquely
the sum of an idempotent and a (nilpotent)unit.
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Theorem 2.13. For any ring R, the following are equivalent:

(1) R is a clean UU ring.

(2) R is a nil clean ring;

(3) R is a uniquely nil clean ring;

(4) R is a uniquely clean ring such that every prime ideal of R is maximal;

(5) J(R) is a nil ideal, and R/J(R) is a Boolean ring;

(6) R is an exchange UU ring.

Moreover, if R is not a domain, then the above six statements are equivalent
to:

(7) R is a nil neat ring.

Proof. (1)⇒ (2). If x is an element of a clean ring R, then x+1 = u+e for some
u ∈ U(R) and e ∈ Id(R). This shows, by our hypothesis, that x+1 = (1+n)+e
for some n ∈ Nil(R), and so x = n+ e; i.e., R is a nil clean ring.
(2) ⇒ (1). Suppose that R is a nil clean ring. We conclude from Theorem
2.1(5) that R is a clean ring. Moreover, the second half can be deduced from
[8, Corollary 3.10].
(2)⇔ (3). By definition, a uniquely nil clean ring is nil clean and the converse
is true by [7, Proposition 1.6].
(3)⇔ (4) is true by [3, Corollary 4.2].
(1)⇔ (5)⇔ (6) follows by [6, Theorem 4.3].
Now, let R be a ring which is not a domain.
(7)⇒ (1). Let R be a nil neat ring which is not a domain. The first half is clear
from Corollary 2.11 (i) and [1, Corollary 11]. To see the second half, consider
a nonzero prime ideal P of R. It follows from Theorem 2.9(7) that R/P ∼= Z2

and so R = P ∪ (1 +P ). We conclude that U(R) ⊆ 1 + P for every prime ideal
P of R. Thus U(R) = 1 + Nil(R).
(2)⇒ (7) is trivially true.

Corollary 2.14. If R is a nil neat ring which is not nil clean, then R is either
a field that is not isomorphic to Z2 or a one-dimensional domain.

Proof. Suppose that R is a nil neat ring which is not nil clean. Theorem 2.13
(7) ⇒ (2) implies that R is a domain and so we can deduce from Corollary
2.11 (i) that R is either a one-dimensional domain or a field that by Theorem
2.1(4) is not isomorphic to Z2.

Theorem 2.15. A ring R is nil clean if and only if R is a zero-dimensional
ring, and R/M ∼= Z2 for every maximal ideal M .
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Proof. Suppose that R is a nil clean ring. Theorem 2.1(5) shows that dimR = 0
and the second part is clear by the fact that a homomorphic image of a nil
clean ring is nil clean and Theorem 2.1(4). Conversely, assume that R is a
zero-dimensional ring and R/M ∼= Z2 for every maximal ideal M . It follows
from Corollary 2.11 that R is a nil neat ring and so R is nil clean, by using
Corollary 2.14.

Corollary 2.16. A ring R is nil neat if and only if R is either a field, or a
zero-dimensional ring in which R/M ∼= Z2 for every nonzero maximal ideal M ,
or a one-dimensional domain in which R/N ∼= Z2 for every nonzero maximal
ideal N .

Proof. Suppose that R is a nil neat ring. If R is also nil clean, then R is a
zero-dimensional ring and R/M ∼= Z2 for every maximal ideal M by Theorem
2.15. Now, if R is not nil clean, then Corollary 2.14 shows that R is either a
field which is not isomorphic to Z2 or a one-dimensional domain. Moreover,
from Theorem 2.9 we conclude that R/N ∼= Z2 for every nonzero maximal ideal
N . The converse is clear by using Theorems 2.15 and 2.9.

The following results provide some conditions under which the notions of
UU, uniquely clean, nil clean and nil neat rings are the same.

Theorem 2.17. Let (R,M) be a local ring which is not a field. The following
statements are equivalent:

(1) R is a uniquely clean ring and M is a nil ideal.

(2) R is a nil clean ring.

(3) R is a nil neat ring.

(4) R is a UU ring.

Proof. Assume that (R,M) is a local ring with the nonzero maximal ideal. The
proof of (1) ⇔ (2) is obtained by comparing Theorem 2.15 and [1, Theorem
22]. Also, (2) ⇒ (3) is clear and (3) ⇒ (2) follows by Corollary 2.16. Finally,
Theorem 2.13 (7) ⇒ (1) implies the implication (3) ⇒ (4) and, the converse
is already well covered by the fact that local rings are clean by [1, proposition
2(1)] and (1)⇒ (7) of Theorem 2.13.

Theorem 2.18. Let R be a von Neumann regular ring which is not a field.
The following statements are equivalent:

(1) R is an uniquely clean ring.

(2) R is a Boolean ring.

(3) R is a nil clean ring.

(4) R is a nil neat ring.

(5) R is a UU ring.
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Proof. First, suppose that R is a von Neumann regular ring which is not a field.
We know that R is a reduced ring and a zero-dimensional ring. (1) ⇒ (2).
Suppose that R is a uniquely clean ring. It follows from Corollary 2.15 and
[3, Corollary 2.3] that R is a reduced nil clean ring, and hence a Boolean ring.
Second, (2) ⇒ (3) ⇒ (4) is clear and (4) ⇒ (1) can be obtained by Corollary
2.16, [3, Corollary 2.3] and the fact that R is a zero-dimensional ring. Finally,
(5)⇔ (3) is true by applying (5)⇔ (3) in [6, Theorem 4.1].
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[5] Chen, H., Köse, H., and Kurtulmaz, Y. Strongly P -clean rings and matrices.
Int. Electron. J. Algebra 15 (2014), 116–131.

[6] Danchev, P. V., and Lam, T.-Y. Rings with unipotent units. Publ. Math.
Debrecen 88, 3-4 (2016), 449–466.

[7] Danchev, P. V., and McGovern, W. W. Commutative weakly nil clean
unital rings. J. Algebra 425 (2015), 410–422.

[8] Diesl, A. J. Nil clean rings. J. Algebra 383 (2013), 197–211.
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