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Solvability of one nonlocal Dirichlet problem for the
Poisson equation

Valery Karachik1 and Batirkhan Turmetov23

Abstract. In this paper the solvability of a new class of nonlocal
boundary value problems for the Poisson equation is studied. These
problems are a generalization of the classical Dirichlet boundary value
problem. Existence and uniqueness theorems for the considered prob-
lem are proved. An integral representation of the solution is established.
The notion of the Green’s function for the problem under consideration
is introduced and an explicit form of this function is constructed. The
corresponding spectral issues are also studied, namely eigenfunctions and
eigenvalues of the considered problem are found. For one particular case
of the problem the completeness of the system of eigenfunctions is proved.
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1. Introduction

Nonlocal boundary value problems for elliptic equations in which boundary
conditions are given in the form of a connection between the values of the un-
known function and its derivatives at various points of the domain’s boundary
are called the problems of Bitsadze-Samarskii type [1]. Numerous applications
of nonlocal boundary value problems for elliptic equations to the problems of
physics, engineering, and other branches of science are described in detail in
[15, 16]. Solvability of nonlocal boundary value problems for elliptic equations
is discussed in [2, 5, 10]. Boundary value problems for the second and fourth
order elliptic equations with involution, as a special cases of the nonlocal prob-
lems, are considered in [9, 12, 13, 14, 17].

In the present paper the solvability conditions of a new class of nonlocal
boundary value problems for the Poisson equation is studied.

Let Ω = {x ∈ Rn : |x| < 1} (n ≥ 2) be the unit ball, ∂Ω be the unit sphere
and S be a real orthogonal matrix S · ST = E. Suppose also that there exists
a natural l ∈ N such that Sl = E. Note that if x ∈ Ω, or s ∈ ∂Ω, then for
any k ∈ N the following containments Skx ∈ Ω, or Sks ∈ ∂Ω hold. This is
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true because the transformation of the space Rn with matrix S saves the norm
|x|2 = (x, x) = (STSx, x) = (Sx, Sx) = |Sx|2.

Let us give some simple examples of such a matrix S.

Example 1.1. Assign to any point x ∈ Ω the corresponding point Sx = −x.
In this case S = −E. It’s clear that S · ST = −E (−E) = E and therefore
S2 = E, which means l = 2.

Example 1.2. It is obvious that the transformation performed by the matrix
S can also be a rotation in space the Rn. Indeed let ϕi = 2πli/l and li ∈ N.
Consider the following matrix S = C1

ϕ1
C2
ϕ2
· · ·Cn−2

ϕn−2
, where

Ciϕ =


Ei 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 En−i−2

 ,

and Ei is a i × i unit matrix, i = 1, n− 2. Then ST = Cn−2
−ϕn−2

· · ·C2
−ϕ2

C1
−ϕ1

and CiϕC
i
ψ = Ciϕ+ψ which means

SST = C1
ϕ1
C2
ϕ2
· · ·Cn−2

ϕn−2
· Cn−2
−ϕn−2

· · ·C2
−ϕ2

C1
−ϕ1

= E.

Let a1, a2, . . . , al be some real numbers, f(x) and g(x) be functions defined
on Ω and ∂Ω, respectively. Consider the following problem in Ω:

Find a function u(x) ∈ C2(Ω) ∩ C(Ω̄) satisfying the following conditions

−∆u(x) = f(x), x ∈ Ω,(1.1)

l∑
k=1

aku
(
Sk−1x

)
|∂Ω = g(s), s ∈ ∂Ω.(1.2)

When a1 6= 0, ak = 0, k = 2, 3, . . . , l we have the classical Dirichlet bound-
ary value problem for the Poisson equation. Note that in the case n = 2 the
problem (1.1), (1.2) with matrix S, taken from Example 1.2 are studied in [11].

2. Auxiliary statements

To investigate the formulated above problem we need some auxiliary results.
Consider the following matrix

A =


a1 a2 . . . al
al a1 . . . al−1

...
...

. . .
...

a2 a3 · · · a1

 ,

generated by the numbers a1, a2, . . . , al.
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Lemma 2.1. Let λ1 = ei
2π
l be a primitive l th root of unity. Then

detA =

l∏
k=1

(
a1λ

k
1 + . . .+ alλ

k
l

)
,

where λk = ei
2πk
l , k = 1, . . . , l.

Proof. It is not difficult to see that λk = e(i
2π
l )k = λk1 and λl = λ0 = 1. Make

sure that the number

(2.1) µk = a1λ
k
0 + . . .+ alλ

k
l−1 =

l∑
q=1

aqλ
k
q−1,

where k = 1, . . . , l is an eigenvalue of the matrix A, and the vector Bk =(
1, λk1 , . . . , λ

k
l−1

)T
is an eigenvector corresponding to the eigenvalue µk. Since

the indices of numbers λk can be calculated modulo l, then in the calculations
below we can consider the indices of numbers ak also modulo l. Then, for
example, a0 = al, a−1 = al−1 and al+1 = a1 and so on. We find the element of
the m-th row of the following vector

Ck ≡ ABk =


a1 a2 . . . al
al a1 . . . al−1

...
...

. . .
...

a2 a3 · · · a1



λk0
λk1
...

λkl−1

 ,

where m = 1, . . . , l. Since the m th row of the matrix A has the form(
a2−m, a3−m, . . . , al−m+1

)
, then

(ABk)m =

l∑
j=1

aj−m+1λ
k
j−1 = λkm−1

l∑
j=1

aj−m+1λ
k
j−m = µkλ

k
m−1,

where the equality λkm = λksλ
k
m−s was used. Therefore ABk = Ck = µkBk.

Further taking advantage of the equality

detA =

l∏
k=1

µk =

l∏
k=1

(
a1λ

k
0 + . . .+ alλ

k
l−1

)
we obtain the necessary statement. The lemma is proved.

Example 2.2. Let l = 3, then λ1 = ei
2π
3 and therefore λk = ei

2πk
3 . In this

case we have

detA = det

a0 a1 a2

a2 a0 a1

a1 a2 a0


=
(
a0 + a1e

i 2π3 + a2e
i 4π3

)(
a0 + a1e

i2 2π
3 + a2e

i2 4π
3

)
(a0 + a1 + a2)

=
(
a0 + a1e

i 2π3 + a2e
i 4π3

)(
a0 + a1e

i 4π3 + a2e
i 2π3

)
(a0 + a1 + a2)

= (a0 + a1 + a2) (a2
0 +a2

1 +a2
2−a1a2−a0a1−a0a2) = a3

0 +a3
1 +a3

2−3a0a1a2.
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Lemma 2.3. Let the numbers µk be taken from (2.1) and be such that µk 6= 0

for k = 1, . . . , l, where λk = ei
2πk
l . Then there exists an inverse matrix to the

matrix A

A−1 ≡


a1 a2 . . . al
al a1 . . . al−1

...
...

. . .
...

a2 a3 . . . a1


−1

=
1

l
M+diag−1 (µ1, . . . , µl)M

T
− ,

where

M+ =


λ0 λ2

0 . . . λl0
λ1 λ2

1 . . . λl1
...

...
. . .

...
λl−1 λ2

l−1 . . . λll−1

 , M− =


λ−1

0 λ−2
0 . . . λ−l0

λ−1
1 λ−2

1 . . . λ−l1
...

...
. . .

...

λ−1
l−1 λ−2

l−1 . . . λ−ll−1

 .

Proof. It is not difficult to see that M+ = (B1, . . . , Bl), where

Bk =
(
λk0 , λ

k
1 , . . . , λ

k
l−1

)T
is an eigenvector of the matrix A corresponding to the eigenvalue µk (see
Lemma 2.1). Then AM+ = (µ1B1, . . . , µlBl) and therefore

AM+diag−1 (µ1, . . . , µl) = (µ1B1, . . . , µlBl) diag
(
µ−1

1 , . . . , µ−1
l

)
= (B1, . . . , Bl) = M+,

whence

AM+diag−1 (µ1, . . . , µl)M−
T = M+M

T
− .

Calculate the product of the resulting matrices

M+M
T
− ≡ (mi,j)i,j=1,l.

It is not hard to see that

(2.2) mi,j =

l∑
k=1

λki−1λ
−k
j−1 =

l∑
k=1

(
λi−1

λj−1

)k
=

l∑
k=1

λki−j ,

where it was taken into account that λk/λj = λk−j and λ0 = e0 = 1. It’s

obvious that λi−j = λi−j1 is l th root of unity for any i and j.

Let us make sure that if λ is a l th root of unity, then

(2.3)

l∑
k=1

λk =

{
l, λ = 1

0, λ 6= 1
.
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Indeed, for λ = 1 the equality is obvious, and for λ 6= 1 we have

λ+ λ2 + . . .+ λl−1 + λl =
1

1− λ
(
λ+ λ2 + . . .+ λl−1 + λl

)
(1− λ)

=
1

1− λ
(
λ+ λ2 + . . .+ λl−1 + λl − λ2 − λ3 − . . .− λl − λl+1

)
=

1

1− λ
(λ− λ) = 0.

Thus using (2.2) we obtain

mi,j =

{
l, i = j

0, i 6= j

and therefore

AM+ diag
(
µ−1

1 , . . . , µ−1
l

)
MT
− = lE.

This proves the lemma.

Theorem 2.4. Let

µk = a1λ
k
0 + . . .+ alλ

k
l−1 6= 0, k = 1, . . . , l,

where {λj : j = 0, . . . , l− 1} are l th roots of unity, then solution of the system
of algebraic equations Ab = g can be written as

b = (bi)i=1,l =
1

l

 l∑
k=1

1

µk

l∑
j=1

λi−jk gj


i=1,l

.

Proof. Find elements of the inverse matrix, which by Lemma 2.3 exists. Similar
to formula (2.2), we can write

(2.4)
(
A−1

)
i,j=1,l

=
1

l
M+diag−1 (µ1, . . . , µl)M

T
− =

1

l

l∑
k=1

λki−1

µk
λ−kj−1

=
1

l

l∑
k=1

λki−j
µk

=
1

l

l∑
k=1

λi−jk

µk
.

This implies

bi =
(
A−1g

)
i

=
1

l

l∑
j=1

gj

l∑
k=1

λi−jk

µk
=

1

l

l∑
k=1

1

µk

l∑
j=1

λi−jk gj .

The theorem is proved.
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3. Uniqueness of the problem’s solution

To study uniqueness of the solution of the problem (1.1), (1.2) we first give
the following statement.

Lemma 3.1. The operator ISu(x) = u(Sx) and the Laplace operator ∆ com-
mute, i.e., ∆ISu(x) = IS∆u(x). The operators

Λ =

n∑
i=1

xiuxi(x)

and IS also commute, i.e., ΛISu(x) = ISΛu(x) and the equality ∇IS = ISS
T∇

holds.

Proof. Let us write the orthogonal matrix S in the form S = (si,j)i,j=1,l. Since

∂

∂xi
ISu(x) =

∂

∂xi
u(Sx) =

∂

∂xi
u
(
(S1
row, x), . . . , (Snrow, x)

)
=

n∑
j=1

sj,iISuxj (x) =
(
Sicol, IS∇u(x)

)
= IS(Sicol,∇)u(x),

then

ΛISu(x) = Λu(Sx) =

n∑
i=1

xi
∂

∂xi
u(Sx) =

n∑
i=1

xi
(
Sicol, IS∇u(x)

)
=

(
n∑
i=1

xiS
i
col, IS∇u(x)

)
= (Sx, IS∇u(x)) = IS(x,∇u(x)) = ISΛu(x).

Further

∂2

∂x2
i

ISu(x) =
∂

∂xi
IS(Sicol,∇)u(x) = IS(Sicol,∇)

2
u(x),

and therefore

∆ISu(x) =

n∑
i=1

IS(Sicol,∇)
2
u(x) = IS

∣∣((S1
col,∇), . . . , (Sncol,∇)

)∣∣2u(x)

= IS
∣∣ST∇∣∣2u(x) = IS(ST∇, ST∇)u(x) = IS(SST∇,∇)u(x) = IS∆u(x).

Finally,

∇ISu(x) = IS
(
(S1
col,∇), . . . , (Sncol,∇)

)
u(x) = IS(ST∇)u(x).

Lemma is proved.

Corollary 3.2. If the function u(x) is harmonic in Ω, then the function
u(Sx) = ISu(x) is also harmonic in Ω.
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Indeed, by the virtue of Lemma 3.1 ∆u(x) = 0⇒ ∆ISu(x) = IS∆u(x) = 0.

Corollary 3.3. If the function u(x) is harmonic in Ω, then it satisfies in Ω
the homogeneous equation

(3.1)

l∑
k=1

ak∆u(Sk−1x) = 0, x ∈ Ω.

Indeed, by the virtue of Lemma 3.1, for x ∈ Ω we have

l∑
k=1

ak∆u
(
Sk−1x

)
=

l∑
k=1

ak∆ISk−1u (x) =

l∑
k=1

akISk−1∆u (x) = 0.

The converse assertion is also true.

Lemma 3.4. Let the function u(x) ∈ C2(Ω) satisfy the homogeneous equation
(3.1). Then under the condition detA 6= 0 the function u(x) is harmonic in Ω.

Proof. Let the function u(x) ∈ C2(Ω) satisfy the homogeneous equation (3.1).
Denote

(3.2) v(x) =

l∑
k=1

aku(Sk−1x).

It’s obvious that v(x) ∈ C2(Ω) and ∆v(x) = 0, x ∈ Ω, i.e., the function
v(x) is harmonic in Ω. By the virtue of Corollary 3.2, the functions v(Skx)
are also harmonic in Ω. On the other hand, from (3.2), due to the condition
Sl = E, the following equalities hold

(3.3)

v(Sx) = alu(x) + a1u(Sx) + . . .+ al−1u(Sl−1x)

v(S2x) = al−1u(x) + alu(Sx) + . . .+ al−2u(Sl−1x)

...................................................................

v(Sl−1x) = a2u(x) + a3u(Sx) + . . .+ a1u(Sl−1x).

So for the functions u(x), u(Sx), . . . , u(Sl−1x) we obtain a system of alge-
braic equations (3.2), (3.3) with the matrix A

v(x)
v(Sx)

...
v(Sl−1x)

 =


a1 a2 . . . al
al a1 . . . al−1

...
...

. . .
...

a2 a3 · · · a1




u(x)
u(Sx)

...
u(Sl−1x)

 .

By the lemma’s conditions the determinant of this system does not vanish.

We make use of Theorem 2.4 for b =
(
u(x), u(Sx), . . . , u(Sl−1x)

)T
and g =(

v(x), v(Sx), . . . , v(Sl−1x)
)T

. From Theorem 2.4 when i = 1 it follows that

u(x) = b1 =
1

l

l∑
k=1

1

µk

l∑
j=1

λ1−j
k gj =

1

l

l∑
k=1

1

µk

l∑
j=1

λ1−j
k v(Sj−1x)
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=

l∑
j=1

v(Sj−1x)
1

l

l∑
k=1

1

λj−1
k µk

,

where according to (2.1) µk = a1λ
k
0 + . . . + alλ

k
l−1 and λk = e(i

2π
l )k = λk1 . If

we denote

bj =
1

l

l∑
k=1

1

λj−1
k µk

, j = 1, 2, . . . , l,

then we obtain

(3.4) u(x) =

l∑
j=1

bjv(Sj−1x) = b1v(x) + b2v(Sx) + . . .+ blv(Sl−1x).

As noted above, the functions v(Skx), where k = 0, 1, . . . , l−1 are harmonic
in Ω, and hence the function u(x) from (3.4) is also harmonic in Ω. The lemma
is proved.

According to Lemma 3.4, the following statement holds.

Theorem 3.5. Let for all k = 1, 2, . . . , l the conditions µk = a1λ
k
0 + . . . +

alλ
k
l−1 6= 0 hold. If a solution of the problem (1.1), (1.2) exists, then it is

unique.

Proof. Let us prove that the homogeneous problem (1.1), (1.2) has only the
zero solution. In this case the solution of the inhomogeneous problem (1.1),
(1.2) is unique. Let u(x) be a solution of the homogeneous problem (1.1),
(1.2). As we already noted, if the function u(x) is harmonic, then the functions
u(Sk−1x), k = 2, 3, . . . , l are also harmonic. Then the function u(x) satisfies
the equation (3.1). Consider the function

v(x) =

l∑
k=1

aku(Sk−1x), x ∈ Ω.

It’s obvious that v(x) ∈ C2(Ω) ∩ C(Ω̄). If µk = a1λ
k
0 + . . . + alλ

k
l−1 6= 0,

where k = 1, 2, . . . , l, then by Lemma 2.1 detA 6= 0. Then, by Lemma 3.4, the
function v(x) is harmonic in the domain Ω and therefore it is a solution to the
following Dirichlet problem

∆v(x) = 0, x ∈ Ω; v(x)|∂Ω = 0.

By the virtue of the uniqueness of the Dirichlet problem, we have v(x) ≡
0, x ∈ Ω̄. Then the function u(x) which is determined by (3.4) is identically
equal to zero, i.e. u(x) ≡ 0, x ∈ Ω̄. The theorem is proved.

Remark 3.6. If µk = 0 for some k = 1, 2, . . . , l, then the homogeneous problem
can have infinitely many solutions.
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4. Existence of the problem’s solution

In this section we investigate the existence of a solution to the main problem
(1.1), (1.2). Let

P (x, y) =
1

ωn

1− |x|2

|x− y|n

be the Poisson kernel, ωn be the surface area of the unit sphere, G(x, y) be the
Green’s function of the Dirichlet problem in Ω, which can be represented as
(see, for example, [3])

(4.1) G(x, y) =
1

ωn

[
E(x, y)− E

(
x|y|, y

|y|

)]
,

where E(x, y) is the elementary solution of the Laplace equation

E(x, y) =

{
− ln |x− y|, n = 2

1
n−2 |x− y|

2−n, n ≥ 3
.

Let us prove some auxiliary assertions.

Lemma 4.1. Let the function g(x) be continuous on ∂Ω. Then for any k ∈ N
the following equalities are true∫

∂Ω

g(Sky) dsy =

∫
∂Ω

g(y) dsy,

∫
Ω

g(Sky) dy =

∫
Ω

g(y) dy.

Proof. Let’s prove the first equality. Let the function w(x) be a solution of the
Dirichlet problem for the Laplace equation in Ω with the boundary condition
w(x) = g(x) on ∂Ω. Then the function w(Skx) is a solution of the Dirich-
let problem for the Laplace equation in Ω (Corollary 3.2) with the boundary
condition w(Skx) = g(Skx) on ∂Ω. It is known that the solutions of these
problems are represented by Poisson integrals

w(x) =

∫
∂Ω

P (x, y)g(y) dsy, w(Skx) =

∫
∂Ω

P (x, y)g(Sky) dsy.

Since

P (0, y) =
1

ωn

1

|y|n
=

1

ωn
,

where y ∈ ∂Ω, then

1

ωn

∫
∂Ω

g(y) dsy = w(0) =
1

ωn

∫
∂Ω

g(Sky) dsy.

This implies the required equality. The second equality follows from the
rule of changing variables in a multiple integral∫

Ω

g(Sy) dy =

∫
Ω

g(z)|detST | dz =

∫
Ω

g(y) dy.

The lemma is proved.
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Lemma 4.2. Let µk = a1λ
k
0 + . . . + alλ

k
l−1 6= 0, where k = 1, . . . , l, then the

matrix A−1 has a structure of the matrix A
a1 a2 . . . al
al a1 . . . al−1

...
...

. . .
...

a2 a3 · · · a1


−1

=


b1 b2 . . . bl
bl b1 . . . bl−1

...
...

. . .
...

b2 b3 · · · b1

 ,

where, similar to formula (3.4),

(4.2) bj =
1

l

l∑
k=1

1

λj−1
k µk

for j = 1, 2, . . . , l, and µk are defined from (2.1). In addition, if k = 1, 2, . . . , l
the equality

µk(b) = 1/µk(a)

holds, where µk(a) = a1λ
k
0 + . . .+ alλ

k
l−1 and µk(b) = b1λ

k
0 + . . .+ blλ

k
l−1.

Proof. It is clear that the indices of numbers ak can be considered modulo l.
Then, as it is easy to see, the matrix A can be written as A = (aj−i+1)i,j=1,l.

By the formula (2.4) from Theorem 2.4 we can find

(
A−1

)
i,j

=
1

l

l∑
k=1

λi−jk

µk
=

1

l

l∑
k=1

1

µkλ
j−i
k

.

Since the indices i and j of the elements
(
A−1

)
i,j

are the powers of numbers

λk, then they can be calculated modulo l and the following equality is true

(
A−1

)
i,j

=
1

l

l∑
k=1

1

µkλ
j−i+1−1
k

= bj−i+1,

where

bj =
1

l

l∑
k=1

1

λj−1
k µk

.

Therefore we have A−1 = (bj−i+1)i,j=1,l.

Let us calculate µk(b). Bearing in mind (2.3) we can find

µk(b) =

l∑
j=1

bjλ
k
j−1 =

1

l

l∑
j=1

λkj−1

l∑
p=1

1

λj−1
p µp(a)

=
1

l

l∑
p=1

1

µp(a)

l∑
j=1

λkj−1

λj−1
p

=

l∑
p=1

1

µp(a)

1

l

l∑
j=1

λkj−1

λpj−1

=

l∑
p=1

1

µp(a)

1

l

l∑
j=1

λk−pj−1 =
1

µk(a)
.

The lemma is proved.
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Remark 4.3. Since λlk = 1, where k = 1, . . . , l, then the equalities

µl(a) = a1λ
l
0 + . . .+ alλ

l
l−1 =

l∑
j=1

aj , µl(b) = b1λ
l
0 + . . .+ blλ

l
l−1 =

l∑
i=1

bi,

are true, so by Lemma 4.2

l∑
j=1

aj

l∑
i=1

bi = 1.

The following statement concerning the problem (1.1), (1.2) is true.

Theorem 4.4. Let the numbers {ak : k = 1, . . . , l} be such that µk = a1λ
k
0 +

. . . + alλ
k
l−1 6= 0 for k = 1, . . . , l, where {λk} are l th roots of unity and

f ∈ Cλ(Ω̄), g ∈ Cλ+2(∂Ω), 0 < λ < 1. Then the solution to the problem (1.1),
(1.2) exists, is unique, belongs to the class Cλ+2(Ω̄) and can be represented in
the form

(4.3) u(x) =

∫
Ω

GS(x, y)f(y) dy +

∫
∂Ω

PS(x, y)g(y) dsy,

where

(4.4) GS(x, y) =

l∑
k=1

ak

l∑
q=1

bqG
(
Sq−1x,

(
Sk−1

)T
y
)
,

PS(x, y) =

l∑
q=1

bqP (Sq−1x, y),

the function G(x, y) is defined in (4.1), and

bq =
1

l

l∑
k=1

1

λq−1
k µk

, q = 1, . . . , l,

is defined in (4.2).

Proof. For the function v(x) in the domain Ω consider the following Dirichlet
boundary value problem

(4.5) −∆v(x) = F (x), x ∈ Ω; v(x)
∣∣∣
∂Ω

= g(s), s ∈ ∂Ω,

where

F (x) ≡
l∑

k=1

akf(Sk−1x).

It is clear that if f(x) ∈ Cλ(Ω̄), then F (x) ∈ Cλ(Ω̄) and hence when
g(x) ∈ Cλ+2(∂Ω) the solution of the Dirichlet problem (4.5) exists, is unique,
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and belongs to the class Cλ+2(Ω̄) [4]. It is also known (see, for example, [3, p.
35]), that with the given functions g(x) and

F (x) =

l∑
k=1

akf(Sk−1x)

the solution of the problem (4.5) can be represented in the form

(4.6) v(x) =

l∑
k=1

ak

∫
Ω

G(x, y)f(Sk−1y) dy +

∫
∂Ω

P (x, y)g(y) dsy.

Consider the vector V =
(
v(x), v(Sx), . . . , v(Sl−1x)

)T
. By Lemma 4.2, the

matrix A−1 has a structure of the matrix A. Therefore, from the vector equality

U = A−1V , we can define the vector U =
(
u(x), u(Sx), . . . , u(Sl−1x)

)T
. Since

µk = a1λ
k
0 + . . . + alλ

k
l−1 6= 0, then by Lemma 2.1 detA 6= 0 and therefore

detA−1 6= 0. Because AU = V , the function u(x) is uniquely determined
through the function v(x) from (4.6) by the formula

(4.7) u(x) =

l∑
j=1

bjv(Sj−1x),

where bj are obtained from (4.2). Let us verify that the function u(x), deter-
mined from (4.7), is a solution of the problem (1.1), (1.2). Indeed f ∈ Cλ(Ω̄),
g ∈ Cλ+2(∂Ω) ⇒ v ∈ Cλ+2(Ω̄) ⇒ u ∈ Cλ+2(Ω̄). Therefore, according to
Lemma 3.1 and equality (4.5), in the domain Ω we have

−∆u(x) = −
l∑

j=1

bj∆v(Sj−1x) = −
l∑

j=1

bjISj−1∆v(x)

=

l∑
j=1

bjISj−1(−∆)v(x) =

l∑
j=1

bjISj−1

l∑
k=1

aqf(Sq−1x).

We investigate the functions

uj(x) = ISj−1

(
l∑

q=1

aqf(Sq−1x)

)
, j = 1, 2, . . . , l.

If j = 1 we get

u1(x) =

l∑
q=1

aqf(Sq−1x).

Further, when j = 2 we have

u2(x) = IS
(
a1f(x) + a2f(Sx) + . . .+ alf(Sl−1x)

)
= a1f(Sx) + a2f(S2x) + . . .+ al−1f(Sl−1x) + alf(x).
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If we assume here al = a0, then we get

u2(x) = a0f(x) +

l−1∑
q=1

aqf(Sqx) =

l∑
q=1

aq−1f(Sq−1x).

Continuing in this way and assuming a−q = al−q, by the induction, we get

uj(x) =

l∑
q=1

aq−j+1f(Sq−1x), j = 1, 2, . . . , l.

Thus

−∆u(x) =

l∑
j=1

bj

l∑
q=1

aq−j+1f(Sq−1x) =

l∑
q=1

f(Sq−1x)

l∑
j=1

aq−j+1bj .

Calculate the inner sum in the obtained equality. To do this, we change the
indices p = q − j + 1 ⇒ j = q − p + 1 and, remembering the meanings of bj
from (4.2) and µk from (2.1), we calculate

l∑
j=1

aq−j+1bj =

l∑
p=1

apbq−p+1 =
1

l

l∑
p=1

ap

l∑
k=1

1

λq−pk µk

=
1

l

l∑
k=1

1

λq−1
k µk

l∑
p=1

λkp−1ap =
1

l

l∑
k=1

µk

λq−1
k µk

=
1

l

l∑
k=1

λ1−q
k =

1

l

l∑
k=1

λk1−q.

Taking into account (2.3), we get

(4.8)

l∑
p=1

apbq−p+1 =

{
1, q = 1

0, q 6= 1

and then equation (1.1) is satisfied

−∆u(x) =

l∑
q=1

f(Sq−1x)

l∑
j=1

aq−j+1bj = f(x).

Next, we check the boundary conditions of the problem (1.1), (1.2). For
s ∈ ∂Ω from the equality (4.7) we obtain

u(x)
∣∣∣
∂Ω

=

l∑
q=1

bqv(Sq−1x)
∣∣∣
∂Ω

=

l∑
q=1

bqg(Sq−1s),

u(Sx)
∣∣∣
∂Ω

= ISu(x)
∣∣∣
∂Ω

= IS

(
l∑

q=1

bqg(Sq−1s)

)
=

l∑
q=1

bqg(Sqs)

= blg(s) +

l−1∑
q=1

bqg(Sqs) = b0g(s) +

l∑
q=2

bq−1g(Sq−1s) =

l∑
q=1

bq−1g(Sq−1s).
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Then by the induction

u(Sk−1x)
∣∣∣
∂Ω

=

l∑
q=1

bq−k+1g(Sq−1s), k = 1, 2, . . . , l.

Hence,

l∑
k=1

aku(Sk−1x)
∣∣∣
∂Ω

=
l∑

k=1

ak

l∑
q=1

bq−k+1g(Sq−1s) =

l∑
q=1

g(Sq−1s)

l∑
k=1

akbq−k+1.

Using (4.8) we finally obtain

l∑
k=1

aku(Sk−1x)|∂Ω = g(s),

i.e. the boundary condition (1.2) is also satisfied.
Further, substituting the representation of the function v(x) given by (4.6)

to the equality (4.7) and taking into account formulas (4.4) we obtain

u(x) =

l∑
q=1

bqv(Sq−1x) =

l∑
q=1

bq

(
l∑

k=1

ak

∫
∂Ω

G(Sq−1x, y)f(Sk−1y) dy

)

+

l∑
q=1

bq

∫
∂Ω

P (Sq−1x, y)g(y) dsy=

∫
Ω

[
l∑

k=1

ak

l∑
q=1

bqG(Sq−1x,
(
Sk−1

)T
y)

]
f(y) dy

+

∫
∂Ω

[
l∑

q=1

bqP (Sq−1x, y)

]
g(y) dsy=

∫
Ω

GS(x, y)f(y) dy+

∫
∂Ω

PS(x, y)g(y) dsy.

Thus, representation (4.3) for the function u(x) holds. The theorem is
proved.

Remark 4.5. Since ST = Sl−1 = S−1, then(
Sk−1

)T
=
(
ST
)k−1

=
(
S−1

)k−1
= S−k+1 = Sl−k+1

and therefore, under the conditions of Theorem 4.4, the Green’s function of the
problem (1.1), (1.2) can be represented in the form

GS(x, y) =

l∑
k=1

ak

l∑
q=1

bqG(Sq−1x, Sl−k+1y).

Example 4.6. Consider a particular case of the problem (1.1), (1.2), when
f(x) = −xi and g(s) = s2

j , i, j = 1, . . . , n. The auxiliary problem (4.5) has the
form

∆v(x) = (a1 − a2)xi, x ∈ Ω; v
∣∣
∂Ω

= s2
j .
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In this case it is better to use the results of [7]. It is not hard to find

v(x) = x2
j +

(
1− |x|2

)( 1

n
− a1 − a2

2(n+ 2)
xi

)
and therefore the problem’s solution according to (6.5) is

u(x) =
a1

a2
1 − a2

2

(
x2
j +

(
1− |x|2

)( 1

n
− a1 − a2

2(n+ 2)
xi

))
− a2

a2
1 − a2

2

(
x2
j +

(
1− |x|2

)( 1

n
+

a1 − a2

2(n+ 2)
xi

))
=

x2
j

a1 + a2
+
(
1− |x|2

)( 1

n(a1 + a2)
− xi

2(n+ 2)

)
.

Let us check this solution. Obviously the boundary condition (1.2) is ful-
filled

a1u(x) + a2u(−x)
∣∣
∂Ω

= s2
j ,

as well as the equation (1.1)

∆u(x) =
2

a1 + a2
− ∆|x|2

n(a1 + a2)
+

∆xi|x|2

2(n+ 2)
= xi.

Here is used the equality ∆
(
|x|2mPs(x)

)
= 2m(2m+2s+n−2)|x|2m−2Ps(x),

where Ps(x) is a homogeneous harmonic polynomial of degree s (see [7]).

5. The Green’s function of the nonlocal Dirichlet problem

As in the classical case for the problem (1.1), (1.2) we can introduce the
concept of Green’s function.

Definition 5.1. Green’s function of the problem (1.1), (1.2) is the function
GS(x, y) that satisfies the conditions:

1) the function GS(x, y) is harmonic in x ∈ Ω and y ∈ Ω if S-orbits of the
points x and y do not intersect

(5.1)
{
Skx : k = 1, . . . , l

}
∩
{
Sky : k = 1, . . . , l

}
= ∅

2) for the function GS(x, y) the equalities

l∑
k=1

akGS(Sk−1x, y) = 0,

l∑
k=1

akGS(x,
(
Sk−1

)T
y) = 0, x ∈ ∂Ω, y ∈ Ω

hold.

From Theorem 4.4 or rather from the representation (4.4) the following
assertion follows.
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Theorem 5.2. Let the numbers {ak : k = 1, . . . , l} be such that µk = a1λ
k
0 +

. . . + alλ
k
l−1 6= 0 for k = 1, . . . , l, where {λk} are l th roots of unity. Then

Green’s function of the problem (1.1), (1.2) exists, is unique and can be repre-
sented in the form

(5.2) GS(x, y) =

l∑
q=1

bq

l∑
k=1

akG
(
Sq−1x,

(
Sk−1

)T
y
)
,

where the numbers bq, q = 1, . . . , l are taken from (4.2), and G(x, y) is Green’s
function of the Dirichlet problem (4.1). The following symmetry of Green’s
function takes place GS(x, y) = GST (y, x).

Proof. We show that the function GS(x, y) satisfies conditions 1) and 2) from
Definition 5.1. It is known that Green’s function of the Dirichlet problem
G(x, y) from (4.1) is harmonic in x ∈ Ω and y ∈ Ω if x 6= y. It is not difficult
to see that if

{
Skx : k = 1, . . . , l

}
∩
{
Sky : k = 1, . . . , l

}
= ∅,

then the inequalities Sq−1x 6= Sl+1−py take place for any q, p = 1, 2, . . . , l,
which means

Sq−1x 6=
(
ST
)p−1

y =
(
Sp−1

)T
y.

Therefore the function G
(
Sq−1x,

(
Sp−1

)T
y
)

for q, p = 1, 2, . . . , l is also

harmonic in x ∈ Ω and y ∈ Ω, satisfying the condition (5.1). So the function
GS(x, y) is also harmonic in x ∈ Ω and y ∈ Ω subject to the condition (5.1).

Check the condition 2). Because

G(x, y)|x∈∂Ω∨y∈∂Ω = 0⇒ G
(
Sq−1x,

(
Sk−1

)T
y
)∣∣∣
x∈∂Ω∨y∈∂Ω

= 0,

then the following conditions hold

GS(x, y)|x∈∂Ω =

l∑
k=1

ak

l∑
q=1

bqG(Sq−1x,
(
Sk−1

)T
y)
∣∣∣
x∈∂Ω

= 0,

GS(x, y)|y∈∂Ω =

l∑
k=1

ak

l∑
q=1

bqG(Sq−1x,
(
Sk−1

)T
y)
∣∣∣
y∈∂Ω

= 0.
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Further, let x ∈ ∂Ω. Then by the virtue of (4.8)

l∑
j=1

ajGS(Sj−1x, y) =

l∑
j=1

ajISj−1GS(x, y) =

=

l∑
j=1

ajISj−1

(
l∑

k=1

ak

l∑
q=1

bqG
(
Sq−1x,

(
Sk−1

)T
y
))

=

l∑
k=1

ak

l∑
j=1

aj

(
l∑

q=1

bq−j+1G
(
Sq−1x,

(
Sk−1

)T
y
))

=

l∑
k=1

ak

l∑
j=1

aj

(
l∑

q=1

bq−j+1G
(
Sq−1x,

(
Sk−1

)T
y
))

=

l∑
k=1

ak

l∑
q=1

G
(
Sq−1x,

(
Sk−1

)T
y
) l∑
j=1

ajbq−j+1 =

l∑
k=1

akG
(
x,
(
Sk−1

)T
y
)
.

Therefore we have

G
(
x,
(
Sk−1

)T
y
)∣∣∣
x∈∂Ω

= 0⇒
l∑

j=1

ajGS
(
Sj−1x, y

)∣∣
x∈∂Ω

= 0.

Similarly, if y ∈ ∂Ω, then we can get

l∑
j=1

ajGS(Sj−1x, y)

∣∣∣∣∣∣
y∈∂Ω

=

l∑
k=1

akG
(
x,
(
Sk−1

)T
y
)∣∣∣∣∣
y∈∂Ω

=

l∑
k=1

akG(Sk−1x, y)

∣∣∣∣∣
y∈∂Ω

= 0.

Property 2) is proved.
Finally, since the function G(x, y) is symmetric and the equalities

ωnG(x, Sky) = E(x, Sky)− E
(
x/|x|, |x|Sky

)
= E

((
Sk
)T
x, y
)

− E
((
Sk
)T
x/
∣∣∣(Sk)Tx∣∣∣ , ∣∣∣(Sk)Tx∣∣∣ y) = ωnG

((
Sk
)T
x, y
)
,

are fulfilled, then we get

GS(x, y) =

l∑
k=1

ak

l∑
q=1

bqGD

(
Sq−1x,

(
Sk−1

)T
y
)

=

l∑
k=1

ak

l∑
q=1

bqGD

(
Sk−1x,

(
Sq−1

)T
y
)

=

l∑
k=1

ak

l∑
q=1

bqGD

((
Sq−1

)T
y, Sk−1x

)

=

l∑
k=1

ak

l∑
q=1

bqGD

((
ST
)q−1

y,
((
ST
)k−1

)T
x

)
= GST (y, x).
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The theorem is proved.

Remark 5.3. In the case l = 2, because of the equality ST = S Green’s function
GS(x, y) is symmetric.

6. Eigenfunctions and eigenvalues of the nonlocal Dirich-
let problem

Consider the following spectral problem

−∆u(x) = λu(x), x ∈ Ω,(6.1)

l∑
k=1

aku
(
Sk−1x

)
|∂Ω = 0.(6.2)

We call a function u(x) which belongs to to the class u(x) ∈ C2(Ω) ∩C(Ω̄)
and which satisfies the conditions (6.1), (6.2) in the classical sense the solution
to the problem (6.1), (6.2).

Consider the function

v(x) =

l∑
k=1

aku
(
Sk−1x

)
.

Let us apply the Laplace operator to this function. We get

∆v(x) =

l∑
k=1

ak∆u
(
Sk−1x

)
= −λ

l∑
k=1

aku
(
Sk−1x

)
= −λv(x).

In addition, from (6.2) it follows

v(x)|∂Ω =

l∑
k=1

aku
(
Sk−1x

) ∣∣∣
∂Ω

= 0.

Thus, for the function v(x) we obtain the spectral problem

(6.3) −∆v(x) = λv(x) , x ∈ Ω; v(x)|∂Ω = 0.

It is known (see, for example, [3]) that problem (6.3) has a complete in
L2(Ω) orthogonal system of eigenfunctions {vj(x), j ∈ N}, corresponding to
the eigenvalues λ(j), j ∈ N. Let the numbers {ak : k = 1, . . . , l} be such that
µk = a1λ

k
0 + . . .+ alλ

k
l−1 6= 0 for k = 1, . . . , l, where {λk : k = 1, . . . , l} are l th

roots of unity, and bk are given by (4.2). It is easy to show that the functions

(6.4) uj(x) =

l∑
k=1

bkvj(S
k−1x), j ∈ N
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are the eigenfunctions of the problem (6.1), (6.2), which correspond to the
eigenvalues λ(j), j ∈ N. Indeed

∆uj(x) =

l∑
k=1

bk∆vj(S
k−1x) =

l∑
k=1

bkISk−1∆vj(x)

= −λ(j)
l∑

k=1

bkISk−1vj(x) = −λ(j)
l∑

k=1

bkvj(S
k−1x) = −λ(j)uj(x),

as well as for any q = 1, 2, . . . , l we can write

uj(S
q−1x)

∣∣
∂Ω

=

l∑
k=1

bk−q+1vj(S
k−1x)

∣∣∣
∂Ω

= 0, j ∈ N.

Thus we have
l∑

k=1

akuj
(
Sk−1x

)
|∂Ω = 0, j ∈ N.

We have proved the following statement.

Theorem 6.1. Let the numbers {ak : k = 1, . . . , l} be such that µk = a1λ
k
0 +

. . . + alλ
k
l−1 6= 0 for k = 1, . . . , l, where {λk} are l th roots of unity. If{

vj(x), λ(j) : j ∈ N
}

are eigenfunctions and eigenvalues, respectively, of the
Dirichlet problem (6.3) and bk are defined in (4.2), then the system of functions
(6.4) is a system of eigenfunctions of the problem (6.1), (6.2) corresponding to
eigenvalues λ(j).

Consider one particular case of the problem (6.1), (6.2).

Theorem 6.2. Let Sx = −x and a1 6= ±a2, then the system of eigenfunctions
of the problem (6.1), (6.2) is orthogonal and complete in L2(Ω).

Proof. According to Theorem 6.1, the system of functions determined from
(6.4) is a system of eigenfunctions of the problem (6.1), (6.2), where {vj(x), λ(j) :
j ∈ N} is a complete in L2(Ω) system of eigenfunctions and eigenvalues of the
problem (6.3).

In our case Sx = −x, and therefore S2 = E and l = 2. Further, λ1 = eiπ =
−1, λ2 = e2iπ = 1, and according to (2.1) µ1 = a1 − a2, µ2 = a1 + a2. By the
formula (4.3) we find

b1 =
1

2

2∑
k=1

1

λ0
kµk

=
1

2

(
1

µ1
+

1

µ2

)
=

1

2

(
1

a1 − a2
+

1

a2 + a1

)
=

a1

a2
1 − a2

2

,

b2 =
1

2

2∑
k=1

1

λ1
kµk

=
1

2

(
1

−µ1
+

1

µ2

)
=

1

2

(
− 1

a1 − a2
+

1

a2 + a1

)
=
−a2

a2
1 − a2

2

.

Therefore the system of functions (6.4) has the form

(6.5) uj(x) =
a1

a2
1 − a2

2

vj(x)− a2

a2
1 − a2

2

vj(−x).
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According to [6, 8] the eigenfunctions of the Dirichlet problem vj(x) can be
taken in the form

v
(λ)
k (x) = gn+2k(λ|x|2)Hk(x), k ∈ N0,

where Hk(x) are homogeneous harmonic polynomials of degree k,

gm(t) =

∞∑
k=0

(−1)
k tk

(2, 2)k(m, 2)k
,

and λ is a root of the function gn+2k(t). Using expansion of Bessel functions
of the first kind Jm(t) in a series on t, it is not difficult to get the following
connection between gm(t) and Jm(t)

Jm(t) =
tm

2mΓ(m+ 1)
g2m+2(t2).

Therefore, the system of functions {vj(x) : j ∈ N} can be chosen so that the
condition vj(−x) = ±vj(x) hold.

We check that the system {uj(x) : j ∈ N} defined in (6.5) is orthogonal.
Indeed,∫

Ω

uj(x)uk(x) dx =
1

a2
1 − a2

2

∫
Ω

(a1vj(x)− a2vj(−x))(a1vk(x)− a2vk(−x)) dx

=

∫
Ω

a2
1vj(x)vk(x)− a1a2(vj(x)vk(−x)− vj(−x)vk(x)) + a2

2vj(−x)vk(−x)

a2
1 − a2

2

dx

=
−a1a2

a2
1 − a2

2

∫
Ω

(vj(x)vk(−x) + vj(−x)vk(x)) dx

=
−2a1a2

a2
1 − a2

2

∫
Ω

vj(x)vk(−x) dx = 0.

Let us show that the system of functions {uj(x) : j ∈ N} is also complete
in L2(Ω). Indeed, suppose that the function f(x) ∈ L2(Ω) is orthogonal to all
functions of the system (6.5). Then for j ∈ N we have

0 = (uj , f) =

∫
Ω

uj(x)f(x) dx =
1

a2
1 − a2

2

∫
Ω

[a1vj(x)− a2vj(−x)] f(x) dx

=
1

a2
1 − a2

2

∫
Ω

vj(x) [a1f(x)− a2f(−x)] dx

=
1

a2
1 − a2

2

∫
Ω

vj(x) [a1f(x)− a2f(−x)] dx.

Further, since the system {vj(x)} is complete in L2(Ω), then a1f(x) =
a2f(−x) for almost all x ∈ Ω, which means a1f(−x) = a2f(x) and therefore
a2

1f(x) = a1a2f(−x) = a2
2f(x), whence (a2

1−a2
2)f(x) = 0 and therefore f(x) =

0 for almost all x ∈ Ω. This proves the completeness of the system (6.5) in
L2(Ω). The theorem is proved.
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