Beale-Kato-Majda's criterion for magneto-hydrodynamic equations with zero viscosity

Ahmad M. Alghamdi¹, Sadek Gaka²³⁴ and Maria Alessandra Ragusa⁵⁶,

Abstract. This paper is concerned with studying the blow-up criterion of smooth solutions to the three dimensional magneto-hydrodynamic equations with zero viscosity. We prove that the smooth solution may be extended by standard energy method, provided the norm of the gradient of velocity in a space much bigger than $\dot{B}_{\infty,\infty}^0$. The result obtained in this manuscript improves the former corresponding result.

AMS Mathematics Subject Classification (2010): 35Q35; 35B65; 76D05 Key words and phrases: Magneto-hydrodynamic equations with zero viscosity; $\dot{B}^{0}_{\infty,\infty}$ space, blow-up criterion

1. Introduction

This paper deals with the well-known problem of the breakdown of classical solutions to the incompressible magneto-hydrodynamic equations with zero viscosity in \mathbb{R}^3 :

(1.1)
$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla \pi - b \cdot \nabla b = 0, \\ \partial_t b - \Delta b + u \cdot \nabla b - b \cdot \nabla u = 0, \\ \nabla \cdot u = \nabla \cdot b = 0, \\ u(x,0) = u_0(x), \qquad b(x,0) = b_0(x), \end{cases}$$

where u = u(x, t) is the velocity of the flows, b = b(x, t) is the magnetic field, $\pi = \pi(x, t)$ is the scalar pressure, while u_0 and b_0 are given initial velocity and initial magnetic field with $\nabla \cdot u_0 = \nabla \cdot b_0 = 0$ in the sense of distribution.

The system (1.1) describes the macroscopic behavior of electrically conducting incompressible fluids (see [10]). In the turbulent flow regime which occurs when the Reynolds number is very big, we ignore the viscosity of fluids to

 $^{^1 \}rm Department$ of Mathematical Science , Faculty of Applied Science, Umm Alqura University, P. O. Box 14035, Makkah 21955, Saudi Arabia, e-mail: amghamdi@uqu.edu.sa

²Department of Mathematics, University of Mostaganem, Algeria

³Dipartimento di Mathematica e Informatica, Università di Catania, Viale Andrea Doria 6, Catania, 95125, Italy, e-mail: sgala793@gmail.com

⁴Corresponding author

⁵Dipartimento di Mathematica e Informatica, Università di Catania, Viale Andrea Doria 6, Catania, 95125, Italy;

⁶RUDN University, 6 Miklukho - Maklay St, Moscow, 117198, Russia, e-mail: maragusa@dmi.unict.it

obtain our system (1.1) (see e.g. [9]). In the extremely high electrical conductivity cases, which occur frequently in the cosmical and geophysical problems, we ignore the resistivity term to obtain our system (1.1) (see e.g. [4]).

The local well-posedness of the Cauchy problem of the partially viscous magneto-hydrodynamic systems (1.1) is rather standard and similar to the case of fully viscous magnetohydrodynamic system which is done in [13]. At present, there is no global-in-time existence theory for strong solutions to systems (1.1). In the absence of a well-posedness theory, the development of blowup / non-blowup theory is of major importance for both theoretical and practical purposes (see e.g. [9] and references therein). This system with zero magnetic field *b* leads to the Euler equations, for which the Beale-Kato-Majda blow up condition

(1.2)
$$\int_0^T \|\nabla \times u(\cdot, \tau)\|_{L^\infty} \, d\tau < \infty$$

is well-known (see [1]). A similar condition is known for the MHD equations. For example, Caffisch, Klapper and Steel [3] extended the well-known result of Beale, Kato and Majda on the 3D Euler equation to the 3D ideal MHD equations (i.e. without the resistivity term, Δb , in the left-hand side of $(1.1)_2$) and obtained the endpoint type continuation criterion for smooth solutions (u, b), i.e.

(1.3)
$$\int_0^T \|\nabla \times u(\cdot,\tau)\|_{L^{\infty}} d\tau < \infty \quad \text{and} \quad \int_0^T \|\nabla \times b(\cdot,\tau)\|_{L^{\infty}} d\tau < \infty,$$

which implies the smooth solution (u, b) can be extended beyond t = T. Yuan [16, 17], Zhang and Liu in [18] studied the continuation or blow-up criterion of the smooth solutions to the MHD system and the ideal MHD system, respectively. They proved that smooth solutions (u, b) can be extended beyond t = T if

(1.4)
$$\int_0^T \|\nabla \times u(\cdot, \tau)\|_{\dot{B}^0_{\infty,\infty}} \, d\tau < \infty,$$

and

(1.5)
$$\int_0^T \|\nabla \times b(\cdot, \tau)\|_{\dot{B}^0_{\infty,\infty}} d\tau < \infty,$$

for the ideal MHD system or the MHD system, respectively, where $\dot{B}_{\infty,\infty}^{,0}$ denotes the homogeneous Besov space.

Motivated by numerical experiments [7, 12] which seem to indicate that the velocity field plays a more important role than the magnetic field in the regularity theory of solutions to the MHD equations, in a lot of work the focus is on the regularity problem of magnetohydrodynamic equations under assumptions only on the velocity field, but not on the magnetic field (see [2, 6, 20, 19] and the references cited therein). In their paper [5], Gala and Chen established the Beale-Kato-Majda type criterion for the system (1.1) as: the solution (u, b) is smooth up to time T provided that (1.4) holds (see also [9, 18]).

The purpose of this paper is to improve (1.2) in the homogeneous Besov type space V_{Θ} (see the definition in the next section) in order to establish a new blow-up criterion.

Definition 1.1 ([14]). Let $\{\varphi_j\}_{j\in\mathbb{Z}}$ be the Littlewood-Paley dyadic decomposition of unity that satisfies $\widehat{\varphi} \in C_0^{\infty}\left(B_2 \setminus B_{\frac{1}{2}}\right), \ \widehat{\varphi}_j(\xi) = \widehat{\varphi}\left(2^{-j}\xi\right)$ and $\sum_{j\in\mathbb{Z}}\widehat{\varphi}_j(\xi) = 1$ for any $\xi \neq 0$. The homogeneous Besov space

$$\dot{\boldsymbol{B}}_{p,q}^{s} = \left\{ \boldsymbol{f} \in \mathcal{S}' : \|\boldsymbol{f}\|_{\dot{\boldsymbol{B}}_{p,q}^{s}} < \infty \right\}$$

is introduced by the norm

$$\|f\|_{\dot{B}^{s}_{p,q}} = \left(\sum_{j \in \mathbb{Z}} \|2^{js}\varphi_{j} * f\|_{L^{p}}^{q}\right)^{\frac{1}{q}}$$

for $s \in \mathbb{R}$, $1 \leq p, q \leq \infty$.

Next we introduce the Banach space of Besov type introduced by Vishik [15], which is wider than $\dot{B}_{\infty,\infty}^{0}$.

Definition 1.2 (homogeneous Vishik's space). Let $\Theta(\alpha) \ge 1$ be a nondecreasing function on $[1, +\infty[$. $\dot{V}_{\Theta} := \left\{ f \in \mathcal{S}' : \|f\|_{\dot{V}_{\Theta}} < \infty \right\}$ is introduced by the norm

$$\|f\|_{\overset{\cdot}{V}\Theta} = \sup_{N=1,2,\dots} \frac{\left\|\sum_{j=-N}^{N} \varphi_j * f\right\|_{L^{\infty}}}{\Theta(N)}.$$

We note that the space V_{Θ} is a homogeneous version of spaces introduced by Vishik [15]. We also note that

$$L^{\infty}(\mathbb{R}^3) \subset BMO(\mathbb{R}^3) \subset \overset{\cdot}{B}^0_{\infty,\infty}(\mathbb{R}^3) \subset \overset{\cdot}{V}_{\Theta}(\mathbb{R}^3) \quad \text{if} \quad \Theta(N) \ge N.$$

In order to prove our main result, we need the following logarithmic Sobolev inequality. Ogawa and Taniuchi [11] proved the same inequality for the inhomogeneous space \dot{V}_{Θ} .

Lemma 1.3. For any $s > \frac{3}{2}$ and $\Theta(\alpha) \ge 1$, there exists a constant $C(s, \Theta) > 0$ such that

(1.6)
$$||f||_{L^{\infty}} \leq C(1 + ||f||_{\dot{V}_{\Theta}} \Theta(\ln(e + ||f||_{H^s})),$$

for all $f \in H^s(\mathbb{R}^3) \cap V_{\Theta}(\mathbb{R}^3)$.

Remark 1.4. In this paper, we shall take $\Theta(\alpha) = \alpha \ln(\alpha + e)$. Then Lemma 1.3 will be

$$\|f\|_{L^{\infty}} \leq C(1 + \|f\|_{\dot{V}_{\Theta}} \ln \left(e + \|f\|_{H^{s}}\right) \ln(e + \ln \left(e + \|f\|_{H^{s}}\right)).$$

Now our result reads as follows.

Theorem 1.5. Let T > 0 and let $(u_0, b_0) \in H^s(\mathbb{R}^3)$ with $s \ge 3$ and $\nabla \cdot u_0 = \nabla \cdot b_0 = 0$. Suppose that (u, b) is a smooth solution to equations (1.1). If (u, b) satisfies the condition

(1.7)
$$\nabla u \in L^1\left(0, T; \dot{V}_{\Theta}\right),$$

then (u, b) can be extended smoothly beyond t = T.

Theorem 1.5 implies that if T is the maximal existence time, then

$$\int_0^T \|\nabla u(\cdot,t)\|_{\overset{\cdot}{V}_{\Theta}}\,dt = \infty.$$

Remark 1.6. Since \dot{V}_{Θ} is much wider than the Besov space $\dot{B}_{\infty,\infty}^{o}$, hence Theorem 1.5 improves a regularity result of [5, 9, 18]. Therefore, it is possible to verify that the velocity field plays a more important role than the magnetic field in the regularity theory of solutions of the partially viscous MHD equations.

In this paper, the letter C denotes an absolute constant which may vary at different places.

2. Proof of Theorem 1.5

This section is devoted to the proof of the main Theorem.

Proof. The proof is based on the establishment of a priori estimates under condition (1.7). We will divide the proof of Theorem 1.5 into two steps. One is to establish an estimate for H^1 -norm, while the second one is to do the same for H^3 -norm.

First of all, for classical solutions to (1.1), one has the following basic energy law

$$\frac{1}{2}\frac{d}{dt}(\|\nabla u\|_{L^2}^2 + \|\nabla b\|_{L^2}^2) + \|\nabla b\|_{L^2}^2 = 0.$$

Step 1. H^1 estimates. Multiplying the first equation of (1.1) by Δu , after integration by parts and taking the divergence free property into account, we have

$$\frac{1}{2}\frac{d}{dt}\|\nabla u\|_{L^{2}}^{2} = -\int_{\mathbb{R}^{3}}\partial_{i}u_{k}\cdot\partial_{k}u_{j}\cdot\partial_{i}u_{j}dx + \int_{\mathbb{R}^{3}}\partial_{i}b_{k}\cdot\partial_{k}b_{j}\cdot\partial_{i}u_{j}dx$$

$$(2.1) \qquad -\int_{\mathbb{R}^{3}}b_{k}\cdot\partial_{i}\partial_{k}u_{j}\cdot\partial_{i}b_{j}dx.$$

Similarly, multiplying the second equation of (1.1) by Δb , we obtain

(2.2)

$$\frac{1}{2} \frac{d}{dt} \|\nabla b\|_{L^{2}}^{2} + \|\Delta b\|_{L^{2}}^{2}$$

$$= -\int_{\mathbb{R}^{3}} \partial_{i} u_{k} \cdot \partial_{k} b_{j} \cdot \partial_{i} b_{j} dx + \int_{\mathbb{R}^{3}} \partial_{i} b_{k} \cdot \partial_{k} u_{j} \cdot \partial_{i} b_{j} dx$$

$$+ \int_{\mathbb{R}^{3}} b_{k} \cdot \partial_{k} \partial_{i} u_{j} \cdot \partial_{i} b_{j} dx.$$

Combining (2.1) and (2.2) yields

$$(2.3) \begin{aligned} \frac{1}{2} \frac{d}{dt} \left(\|\nabla u\|_{L^{2}}^{2} + \|\nabla b\|_{L^{2}}^{2} \right) + \|\Delta b\|_{L^{2}}^{2} \\ &= -\int_{\mathbb{R}^{3}} \partial_{i} u_{k} \cdot \partial_{k} u_{j} \cdot \partial_{i} u_{j} dx + \int_{\mathbb{R}^{3}} \partial_{i} b_{k} \cdot \partial_{k} b_{j} \cdot \partial_{i} u_{j} dx \\ &- \int_{\mathbb{R}^{3}} \partial_{i} u_{k} \cdot \partial_{k} b_{j} \cdot \partial_{i} b_{j} dx + \int_{\mathbb{R}^{3}} \partial_{i} b_{k} \cdot \partial_{k} u_{j} \cdot \partial_{i} b_{j} dx \\ &\leq C \|\nabla u\|_{L^{\infty}} \left(\|\nabla u\|_{L^{2}}^{2} + \|\nabla b\|_{L^{2}}^{2} \right), \end{aligned}$$

Under (1.7), one concludes that for any small $\epsilon > 0$, there exists $T_0 < T$ such that

(2.4)
$$\int_{T_0}^T \|\nabla u(\cdot,\tau)\|_{\dot{V}_{\Theta}} d\tau < \epsilon$$

Now, let

(2.5)
$$y(t) = \sup_{T_0 \le \tau \le t} \left[\|u(\cdot, \tau)\|_{H^3}^2 + \|b(\cdot, \tau)\|_{H^3}^2 \right], \text{ for all } T_0 \le t < T.$$

Step 2. H^3 estimates. We will show how to deduce H^{α} estimates from H^1 . Let $\alpha \geq 1$ be an integer. Taking the operation ∇^{α} on both sides of (1.1), then multiplying them by $\nabla^{\alpha} u$ and $\nabla^{\alpha} b$ respectively, after integrating over \mathbb{R}^3 , we get

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\left(\left\|\nabla^{\alpha}u(\cdot,t)\right\|_{L^{2}}^{2}+\left\|\nabla^{\alpha}b(\cdot,t)\right\|_{L^{2}}^{2}\right)+\left\|\nabla^{\alpha}\nabla b(\cdot,t)\right\|_{L^{2}}^{2}\\ &= -\int_{\mathbb{R}^{3}}\nabla^{\alpha}\left(u\cdot\nabla u\right)\nabla^{\alpha}udx+\int_{\mathbb{R}^{3}}\nabla^{\alpha}\left(b\cdot\nabla b\right)\nabla^{\alpha}udx\\ &-\int_{\mathbb{R}^{3}}\nabla^{\alpha}\left(u\cdot\nabla b\right)\nabla^{\alpha}bdx+\int_{\mathbb{R}^{3}}\nabla^{\alpha}\left(b\cdot\nabla u\right)\nabla^{\alpha}bdx. \end{split}$$

Noting that $\nabla \cdot u = \nabla \cdot b = 0$ and integrating by parts, we write (2.6) as

$$(2.6) \begin{aligned} \frac{1}{2} \frac{d}{dt} \left(\|\nabla^{\alpha} u(\cdot,t)\|_{L^{2}}^{2} + \|\nabla^{\alpha} b(\cdot,t)\|_{L^{2}}^{2} \right) + \|\nabla^{\alpha} \nabla b(\cdot,t)\|_{L^{2}}^{2} \\ &= -\int_{\mathbb{R}^{3}} \left[\nabla^{\alpha} (u \cdot \nabla u) - u \cdot \nabla^{\alpha} \nabla u \right] \nabla^{\alpha} u dx \\ &- \int_{\mathbb{R}^{3}} \left[\nabla^{\alpha} (u \cdot \nabla b) - u \cdot \nabla^{\alpha} \nabla b \right] \nabla^{\alpha} b dx \\ &+ \int_{\mathbb{R}^{3}} \left[\nabla^{\alpha} (b \cdot \nabla b) - b \cdot \nabla^{\alpha} \nabla b \right] \nabla^{\alpha} u dx \\ &+ \int_{\mathbb{R}^{3}} \left[\nabla^{\alpha} (b \cdot \nabla u) - b \cdot \nabla^{\alpha} \nabla u \right] \nabla^{\alpha} b dx \end{aligned}$$

Let $\alpha = 3$ and we will show the estimate of the right hand side of (2.6). Now, we recall the commutator estimate given by Kato and Ponce [8]:

$$\|\Lambda^{\alpha}(fg) - f\Lambda^{\alpha}g\|_{L^{2}} \le C(\|g\|_{L^{\infty}} \|f\|_{H^{\alpha}} + \|\nabla f\|_{L^{\infty}} \|g\|_{H^{\alpha-1}}).$$

The above inequality yields

(2.7)
$$\|\nabla^{\alpha} (u \cdot \nabla u) - u \cdot \nabla^{\alpha} \nabla u\|_{L^{2}} \le C \|\nabla u\|_{L^{\infty}} \|u\|_{H^{\alpha}}, \quad \alpha \ge 1.$$

Hence, it is easy to see that

(2.8)
$$|\Pi_1| \le C \|\nabla u\|_{L^{\infty}} \|u\|_{H^3}^2.$$

After integrating by parts, we obtain

$$\begin{aligned} |\Pi_{2}| + |\Pi_{4}| &\leq 4 \|\nabla u\|_{L^{\infty}} \|b\|_{H^{3}}^{2} \\ &+ 3 \left| \int_{\mathbb{R}^{3}} \nabla^{3} b \left[\nabla^{2} u \cdot \nabla^{2} b \right] dx \right| + 3 \left| \int_{\mathbb{R}^{3}} \nabla^{3} b \left(\nabla^{3} u \cdot \nabla b \right) dx \right| \\ (2.9) &+ 3 \left| \int_{\mathbb{R}^{3}} \nabla^{3} b \nabla^{2} b \cdot \nabla^{2} u dx \right| + 3 \left| \int_{\mathbb{R}^{3}} \nabla^{3} b \nabla b \cdot \nabla^{3} u dx \right| \\ &\leq 14 \|\nabla u\|_{L^{\infty}} \|b\|_{H^{3}}^{2} + 10 \|\nabla u\|_{L^{\infty}} \|\nabla^{2} b\|_{L^{2}} \|\nabla^{4} b\|_{L^{2}} \\ &+ 4 \|\nabla^{2} u\|_{L^{4}} \|\nabla b\|_{L^{4}} \|\nabla^{4} b\|_{L^{2}} . \end{aligned}$$

By the following interpolation inequalities

$$\begin{split} \|f\|_{L^{\infty}} &\leq C \left\|\nabla^{2}f\right\|_{L^{2}}^{\frac{3}{4}} \|f\|_{L^{2}}^{\frac{1}{4}}, \\ \|f\|_{L^{4}} &\leq C \left\|\nabla^{2}f\right\|_{L^{2}}^{\frac{3}{8}} \|f\|_{L^{2}}^{\frac{5}{8}}, \\ \|\nabla f\|_{L^{2}} &\leq C \left\|\nabla^{2}f\right\|_{L^{2}}^{\frac{1}{2}} \|f\|_{L^{2}}^{\frac{1}{2}}, \\ \left\|\nabla^{k}f\right\|_{L^{\frac{2\alpha}{k}}} &\leq C \left\|f\right\|_{L^{\infty}}^{1-\frac{k}{\alpha}} \left\|\nabla^{\alpha}f\right\|_{L^{2}}^{\frac{k}{\alpha}}, \quad 0 \leq k \leq \alpha, \end{split}$$

and (2.5), we do the following estimate

$$10 \|\nabla u\|_{L^{\infty}} \|\nabla^{2}b\|_{L^{2}} \|\nabla^{4}b\|_{L^{2}}$$

$$\leq \frac{1}{8} \|\nabla^{4}b\|_{L^{2}}^{2} + C \|\nabla u\|_{L^{\infty}}^{2} \|\nabla^{2}b\|_{L^{2}}^{2}$$

$$\leq \frac{1}{8} \|\nabla^{4}b\|_{L^{2}}^{2} + C \|\nabla u\|_{L^{\infty}} \|\nabla^{3}u\|_{L^{2}}^{\frac{3}{4}} \|\nabla u\|_{L^{2}}^{\frac{1}{4}} \|\nabla^{3}b\|_{L^{2}} \|\nabla b\|_{L^{2}}$$

$$\leq \frac{1}{8} \|\nabla^{4}b\|_{L^{2}}^{2} + C \|\nabla u\|_{L^{\infty}} \left(\|u\|_{H^{3}}^{2} + \|b\|_{H^{3}}^{2}\right)^{\frac{7}{8}} \|\nabla b\|_{L^{2}} \|\nabla u\|_{L^{2}}^{\frac{1}{4}}$$

$$(2.10) \leq \frac{1}{8} \|\nabla^{4}b\|_{L^{2}}^{2} + C_{0} \|\nabla u\|_{L^{\infty}} [y(t)]^{\frac{7}{8}} (1 + y(t))^{\frac{3C\epsilon}{4}}.$$

Here we made use of the Young's inequality

$$ab \le \delta a^q + C(\delta)b^{q'}$$

for any $a, b, \delta > 0$ and any q, q' > 1 $\frac{1}{q} + \frac{1}{q'} = 1$, where $C(\delta) = (\delta q)^{-\frac{q'}{q}} (q')^{-1}$. Similarly to (2.10), we obtain

$$\begin{aligned} 4 \left\| \nabla^{2} u \right\|_{L^{4}} \left\| \nabla b \right\|_{L^{4}} \left\| \nabla^{4} b \right\|_{L^{2}} \\ &\leq 4 \left\| \nabla u \right\|_{L^{\infty}}^{\frac{1}{2}} \left\| \nabla^{3} u \right\|_{L^{2}}^{\frac{1}{2}} \left\| \nabla^{3} b \right\|_{L^{2}}^{\frac{3}{8}} \left\| \nabla b \right\|_{L^{2}}^{\frac{5}{8}} \left\| \nabla^{4} b \right\|_{L^{2}} \\ &\leq \frac{1}{8} \left\| \nabla^{4} b \right\|_{L^{2}}^{2} + C \left\| \nabla u \right\|_{L^{\infty}} \left\| u \right\|_{H^{3}} \left\| b \right\|_{H^{3}}^{\frac{3}{4}} \left\| \nabla b \right\|_{L^{2}}^{\frac{5}{4}} \\ &\leq \frac{1}{8} \left\| \nabla^{4} b \right\|_{L^{2}}^{2} + C_{0} \left\| \nabla u \right\|_{L^{\infty}} \left[y(t) \right]^{\frac{7}{8}} \left(1 + y(t) \right)^{\frac{5C\epsilon}{4}} \end{aligned}$$

Thus, if we choose $\epsilon > 0$ be small enough such that

$$3C\epsilon \leq 1,$$

then, by (2.9), we derive

(2.11)
$$|\Pi_2| + |\Pi_4| \le \frac{1}{4} \left\| \nabla^4 b \right\|_{L^2}^2 + C_0 \left\| \nabla u \right\|_{L^\infty} \left(1 + y(t) \right).$$

It remains to estimate the term Π_3 on the right hand side of (2.6). Integrating by parts, we obtain

$$\left| \int_{\mathbb{R}^3} \nabla^3 u \nabla^2 b \cdot \nabla^2 b dx \right| \le \left| \int_{\mathbb{R}^3} \nabla^2 u \nabla^3 b \cdot \nabla^2 b dx \right| + \left| \int_{\mathbb{R}^3} \nabla^2 u \nabla^2 b \cdot \nabla^3 b dx \right|$$

Then

$$(2.12) \qquad |\Pi_{3}| \leq \left| \int_{\mathbb{R}^{3}} \nabla^{3} u \nabla^{3} b \cdot \nabla b dx \right| + 3 \left| \int_{\mathbb{R}^{3}} \nabla^{3} u \nabla^{2} b \cdot \nabla^{2} b dx \right|$$
$$(2.12) \qquad + 3 \left| \int_{\mathbb{R}^{3}} \nabla^{3} u \nabla b \cdot \nabla^{3} b dx \right|$$
$$\leq \frac{1}{4} \left\| \nabla^{4} b \right\|_{L^{2}}^{2} + C \left\| \nabla u \right\|_{L^{\infty}} (1 + y(t)).$$

Combining (2.6) with (2.8), (2.11), (2.12) and using (2.7), we get

(2.13)
$$\begin{array}{rcl} & \frac{d}{dt} \left(\|u\|_{H^3}^2 + \|b\|_{H^3}^2 \right) + \|\nabla b\|_{H^3}^2 \\ & \leq & C \|\nabla u\|_{L^{\infty}} \left(e + y(t) \right) \\ & \leq & C(1 + \|\nabla u\|_{\dot{V}_{\Theta}} \Theta(\ln\left(e + y(t)\right)) \left(e + y(t) \right) \end{array}$$

for all $T_0 \leq t < T$. Integrating (2.13) on the time interval $[T_0, t)$ and using (1.7), we have

$$\begin{aligned} \ln(e + \|u(\cdot, t)\|_{H^3}^2 + \|b(\cdot, t)\|_{H^3}^2) \\ &\leq \quad \ln(e + \|u(\cdot, T_0)\|_{H^3}^2 + \|b(\cdot, T_0)\|_{H^3}^2) \\ &+ C \int_{T_0}^t \|\nabla u(\cdot, \tau)\|_{\dot{V}_{\Theta}} \ln(e + \ln(e + y(\tau))) \ln(e + y(\tau)) \, d\tau. \end{aligned}$$

Then the Gronwall inequality yields that

(2.14)

$$e + \|u(\cdot,t)\|_{H^{3}}^{2} + \|b(\cdot,t)\|_{H^{3}}^{2} \\
\leq \left(e + \|u(\cdot,T_{0})\|_{H^{3}}^{2} + \|b_{0}(\cdot,T_{0})\|_{H^{3}}^{2}\right) \\
\cdot \exp\left\{\exp\left(C\int_{T_{0}}^{t} \|\nabla u(\cdot,\tau)\|_{\dot{V}_{\Theta}} d\tau\right)\right\}$$

for all $T_0 \leq t < T$. Noting that the right hand side of (2.14) is independent of t, one concludes that (2.14) is also valid for t = T. Hence we have the H^3 regularity for the solution at t = T and the solution can be continued after t = T. This completes the proof of Theorem 1.5.

Acknowledgement

Part of the work was carried out while the second author was a long-term visitor at University of Catania. The hospitality of Catania University is graciously acknowledged. This research is partially supported by Piano della Ricerca 2016-2018 - Linea di intervento 2: "Metodi variazionali ed equazioni differenziali". The second author wishes to thank the support of "RUDN University Program 5-100". The authors would like to thank the referees for valuable comments and suggestions for improving this paper.

References

- BEALE, J. T., KATO, T., AND MAJDA, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. *Comm. Math. Phys.* 94, 1 (1984), 61–66.
- [2] BEN OMRANE, I., GALA, S., KIM, J.-M., AND RAGUSA, M. A. Logarithmically improved blow-up criterion for smooth solutions to the Leray-αmagnetohydrodynamic equations. Arch. Math. (Brno) 55, 1 (2019), 55–68.
- [3] CAFLISCH, R. E., KLAPPER, I., AND STEELE, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. *Comm. Math. Phys.* 184, 2 (1997), 443–455.

- [4] CHANDRASEKHAR, S. *Hydrodynamic and hydromagnetic stability*. The International Series of Monographs on Physics. Clarendon Press, Oxford, 1961.
- [5] GALA, S., AND CHEN, X.-C. A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero kinematic viscosity. Acta Math. Appl. Sin. Engl. Ser. 28, 2 (2012), 209–214.
- [6] GALA, S., AND RAGUSA, M. A. On the regularity criterion of weak solutions for the 3D MHD equations. Z. Angew. Math. Phys. 68, 6 (2017), Art. 140, 13.
- [7] HASEGAWA, A. Self-organization processes in continuous media. Adv. in Physics 34, 1 (1985), 1–42.
- [8] KATO, T., AND PONCE, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 7 (1988), 891–907.
- [9] LEI, Z., AND ZHOU, Y. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. *Discrete Contin. Dyn. Syst.* 25, 2 (2009), 575–583.
- [10] LIFSCHITZ, A. E. Magnetohydrodynamics and spectral theory, vol. 4 of Developments in Electromagnetic Theory and Applications. Kluwer Academic Publishers Group, Dordrecht, 1989.
- [11] OGAWA, T., AND TANIUCHI, Y. On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J. Differential Equations 190, 1 (2003), 39–63.
- [12] POLITANO, H., POUQUET, A., AND SULEM, P.-L. Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. *Phys. Plasmas* 2, 8 (1995), 2931–2939.
- [13] SERMANGE, M., AND TEMAM, R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 5 (1983), 635–664.
- [14] TRIEBEL, H. Theory of function spaces. II, vol. 84 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1992.
- [15] VISHIK, M. Incompressible flows of an ideal fluid with unbounded vorticity. Comm. Math. Phys. 213, 3 (2000), 697–731.
- [16] YUAN, B. Blow-up criterion of smooth solutions to the MHD equations in Besov spaces. J. Syst. Sci. Complex. 18, 2 (2005), 277–284.
- [17] YUAN, B.-Q. On the blow-up criterion of smooth solutions to the MHD system in BMO space. Acta Math. Appl. Sin. Engl. Ser. 22, 3 (2006), 413–418.
- [18] ZHANG, Z.-F., AND LIU, X.-F. On the blow-up criterion of smooth solutions to the 3D ideal MHD equations. Acta Math. Appl. Sin. Engl. Ser. 20, 4 (2004), 695–700.
- [19] ZHOU, Y., AND GALA, S. A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. *Nonlinear Anal.* 72, 9-10 (2010), 3643–3648.
- [20] ZHOU, Y., AND GALA, S. Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 61, 2 (2010), 193–199.

Received by the editors February 20, 2019 First published online September 21, 2019