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Fixed points of mappings over a locally convex
topological vector space and Ulam-Hyers stability of fixed

point problems

Kushal Roy12 and Mantu Saha3

Abstract. This paper deals with the Theory of fixed points of mappings
which are analogous to contraction mappings and Kannan mappings over
a locally convex topological vector space. Some common fixed point the-
orems for a pair of mappings involving their iterates are proved. The
purpose of this paper is to examine the validity of established results
on fixed points of contraction mappings and Kannan mappings over a
locally convex topological vector space. It is revealed that a suitable
local base in locally convex topological vector space plays an important
role in finding fixed points of above mappings over that space. Also an
application related to stability of fixed point equation for Kannan-type
contractive mappings is obtained here.
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1. Introduction

Theory of fixed points over a metric space finds applications in areas like
differential equations, integral equations, implicit function theorem etc. His-
torically, Schauder fixed point theorem [27], Brouwer fixed point theorem [5],
Tychonoff [30] and Morales [19] as early as Banach contraction principle [2],
everywhere fixed point theorems as found in literature depend heavily on conti-
nuity of the operators involved over underlying spaces. Early twentieth century
had witnessed researchers in fixed point theory dealing with operators that are
not necessarily continuous, and consequently we had seen a surge in develop-
ment of fixed point theory with enormous speed and volume, and researchers
have seen that Kannan operators [16], Ćirić operators [7] and similar operators
(see [3],[4],[6],[8],[9],[12],[13],[22],[23],[21],[25]) had occupied a stable position in
fixed point theory demanding further relaxation in operators and in underly-
ing spaces or in both. Thus one can find representative fixed point theorems
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in various topological structured metric spaces (see [1],[11],[17],[18]) in recent
times of the new millennium.

However, though researchers have been trying to involve TVS (Topological
Vector Space) as a ground space to develop fixed point theory, but efforts
are yet to gain the desired momentum. Our investigations in this paper rest
on this platform, that is we investigate non-linear mappings over a TVS X.
Very recently Tang et. al. [29] had proved fixed point theorem for (ψ, φ)-
contractive mapping in a locally convex TVS using Minkowski functional, while
our results do not involve such functionals. Therefore our paper provides a new
direction for researchers in proving fixed point theorems over linear topological
spaces without using Minkowski functional. Details follow in Sections 2 and
3. Moreover, an application related to Ulam-Hyers stability (see [14]) of fixed
point of mapping is given here.

2. Preliminaries

In the following, we give some basic definitions and properties corresponding
to a topological vector space (see [10],[20],[24] and [26]).

Definition 2.1. Let X be a vector space and C a subset of X. Then C is said
to be convex if for any two elements x, y ∈ C and for any scalar 0 ≤ α ≤ 1,
αx + (1 − α)y ∈ C, that is the line segment joining two points x, y, must lie
in the set C. Equivalently, αC + (1 − α)C ⊂ C for all scalars α satisfying
0 ≤ α ≤ 1.

Lemma 2.2. A subset C of a vector space X is convex iff for all positive
scalars s and t, (s+ t)C = sC + tC.

Definition 2.3. A subset S of a vector space X is said to be symmetric if
−S ⊂ S, equivalently S = −S.

Definition 2.4. A subset B of a vector space X is said to be balanced if
αB ⊂ B for all scalars α, whenever |α| ≤ 1.

Definition 2.5. A set A in a vector space X is said to be absorbing if for each
x ∈ X there exists an ε > 0 such that αx ∈ A, whenever |α| ≤ ε.

Lemma 2.6. A convex set C of a vector space X is balanced iff it is symmetric.

Definition 2.7. A balanced set B of a vector space X is absorbing iff for each
x ∈ X, there corresponds a scalar β 6= 0 such that βx ∈ B.

Definition 2.8. A vector space X over a field F (R or C) equipped with a
T1 topology τ is said to be a topological vector space (TVS) if the following
conditions are satisfied.

(i) The mapping from X × X to X defined by (x, y) → x + y, x, y ∈
X, is continuous, that is, for every neighborhood W of x + y we can find
neighborhoods V1 of x and V2 of y such that V1 + V2 ⊂W and also

(ii) The mapping from F×X → X defined by (α, x)→ αx, α ∈ F, x ∈ X, is
continuous, that is, for any neighborhood W of αx we can find a neighborhood
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of α say (α − δ, α + δ), δ > 0 and a neighborhood V of x such that γV ⊂ W
whenever γ ∈ (α− δ, α+ δ).

We now quote the following useful definitions and known results (see [9]).

Definition 2.9. (Local base) By local base of a TVS (X, τ) we mean a neigh-
borhood base B of θ ∈ X that is for every neighborhood V of θ there exists a
member B ∈ B such that θ ∈ B ⊂ V.

Definition 2.10. A TVS X is said to be locally convex if X has a local base
whose members are all convex sets.

Lemma 2.11. A TVS X has a balanced local base.

Lemma 2.12. Every neighborhood of θ in a TVS X contains an absorbing
neighborhood of θ ∈ X.

Lemma 2.13. In a locally convex TVS X every neighborhood of θ contains a
absorbing, balanced and convex neighborhood of θ.

Lemma 2.14. Every TVS is regular.

Lemma 2.15. Let X be a TVS. Then the following hold.
(i) If A ⊂ X then A = ∩(A+ V ), where V ∈ N(θ), N(θ) is the collection of

all neighborhoods of θ ∈ X.
(ii) If A ⊂ X and B ⊂ X then A+B ⊂ A+B.
(iii) If Y is a subspace of X then Y is also a subspace of X.
(iv) If C is a convex set in X then C and Int(C) are also convex.
(v) If E ⊂ X is balanced then E is also balanced, moreover if θ ∈ Int(E)

then Int(E) is also balanced.
(vi) If A is an absorbing subset of X then A is also absorbing.

Lemma 2.16. The following conditions are equivalent in a TVS X.
(i) X is T0.
(ii) X is T2.
(iii) ∩V ∈N(θ) = {θ}, where N(θ) is the collection of all neighborhoods of

θ ∈ X.

Lemma 2.17. In a locally convex TVS X, the balanced, closed, convex neigh-
borhood of θ forms a neighborhood base of θ ∈ X.

Definition 2.18. Let X be a TVS. Fix a base B for X. A sequence {xn} in X
is said to be a Cauchy sequence if to every V ∈ B there corresponds a N ∈ N
such that xn − xm ∈ V whenever m > n ≥ N.

Definition 2.19. A sequence {xn} ⊂ X is said to be convergent to an element
x ∈ X if for any basic neighborhood V , there exists a positive integer N ∈ N
such that xn − x ∈ V whenever m ≥ N . We write xn → x as n → ∞ and we
say that x is the limit of {xn}.

Definition 2.20. A TVS X is said to be complete if every Cauchy sequence
in X is convergent to an element in X.
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Lemma 2.21. A TVS X is Hausdorff iff every sequence in X has at most one
limit.

Lemma 2.22. A complete subset of a Hausdorff TVS is closed.

Lemma 2.23. Let A ⊂ X be complete. Then every closed subset of A is
complete.

Definition 2.24. A TVS X is said to be an F−space if its topology τ is
induced by a complete invariant metric. A TVS X is a Frechet space if it is a
locally convex F−space.

Definition 2.25. Let X and Y be two TVSs. Also let T : X → Y be a
mapping. Then T is said to be continuous at x0 ∈ X if for every sequence {xn}
in X such that xn → x0 as n→∞ implies Txn → Tx0 as n→∞.

In the following we give the definition of U−contraction mapping and state
a fixed point theorem related to it.

Definition 2.26. [28] Let E be a separated locally convex topological vector
space and U be a neighborhood basis of the origin consisting of absolutely
convex open subsets of E. Also let S be a nonempty subset of E. A mapping
g : S → E is a U−contraction (U ∈ U) iff for each ε > 0 there is a δ = δ(ε, U) >
0 such that if x, y ∈ S and if

x− y ∈ (ε+ δ)U, then g(x)− g(y) ∈ εU.(2.1)

If g is a U−contraction for each U ∈ U , then g is a U−contraction.

Theorem 2.27. [28] Let S be a sequentially complete subset of E and g : S →
E be a U−contraction. If g satisfies the condition:

for each x ∈ S with g(x) /∈ S, there is a z ∈ (x, g(x))∩S such that g(z) ∈ S
then g has a unique fixed point in S. In the above condition, (x, y) = {z ∈ E :
z = µx+ (1− µ)y, 0 < µ < 1} for any x, y ∈ E.

3. Main results

In this section following the references [2], [3], [15] and [16] we have defined
contraction mapping, Kannan-type contractive mapping, T−contraction map-
ping and T−Kannan-type contractive mapping over a locally convex TVS and
we have been able to prove some fixed point theorems and common fixed point
theorems over it.

Definition 3.1. Let (X, τ) be a locally convex TVS. A mapping T : X → X is
said to be a contraction mapping if for any neighborhood U of θ ∈ X there exists
α ∈ (0, 1) such that for all x, y ∈ X, whenever x− y ∈ U , then Tx− Ty ∈ αU .

Definition 3.2. Let (X, τ) be a locally convex TVS. A mapping T : X → X is
said to be a Kannan-type contractive mapping if for every neighborhood U of
θ ∈ X there exists 0 < α < 1

2 such that for all x, y ∈ X, whenever x− Tx ∈ U ,
then (Tx− Ty)− α(y − Ty) ∈ αU .
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Definition 3.3. Let (X, τ) be a locally convex TVS and T : X → X be a
mapping. Then a mapping S : X → X is said to be a T−contraction if for
any neighborhood U of θ ∈ X there exists α ∈ (0, 1) such that for all x, y ∈ X,
whenever Tx− Ty ∈ U , then TSx− TSy ∈ αU .

Definition 3.4. Let (X, τ) be a locally convex TVS and T : X → X be
a mapping. Then a mapping S : X → X is said to be a T−Kannan-type
contractive mapping if there exists α ∈ (0, 12 ) such that for all x, y ∈ X and
any neighborhood U of θ ∈ X, whenever Tx− TSx ∈ U , then (TSx− TSy)−
α(Ty − TSy) ∈ αU .

Definition 3.5. Let (X, τ) be a locally convex TVS and T : X → X be a
mapping. Then T is said to be sequentially convergent if, for any sequence
{yn} in X, convergence of {Tyn} in X implies that {yn} is convergent in X.

Definition 3.6. Let (X, τ) be a locally convex TVS and T : X → X be a
mapping. Then T is said to be subsequentially convergent if, for any sequence
{yn} in X, convergence of {Tyn} in X implies that {yn} has a convergent
subsequence in X.

Definition 3.7. Let (X, τ) be a locally convex TVS and {Tn} be a sequence
of self maps on X. Then {Tn} converges uniformly to a self map T on X if
for each neighborhood U of θ ∈ X there exists N ∈ N such that for all x ∈ X,
whenever n > N , then Tnx− Tx ∈ U .

Lemma 3.8. Let (X, τ) be a locally convex TVS and {xn} be a sequence in X.
If for any neighborhood V of θ ∈ X there exists some t > 0 such that for any
n ∈ N, xn − xn+1 ∈ αntV for some α ∈ (0, 1), then {xn} is Cauchy in X.

Proof. Let U be an arbitrary neighborhood of θ ∈ X. Then there exists some
k > 0 such that xn−xn+1 ∈ αnkU for any n ∈ N. Therefore, for p ≥ 1 and for
any n ∈ N, we get

xn − xn+p = (xn − xn+1) + (xn+1 − xn+2) + . . .+ (xn+p−1 − xn+p)
∈ (αn + αn+1 + . . .+ αn+p−1)kU

= αn
1− αp

1− α
kU ⊂ αn

1− α
kU = αn

k

1− α
U.(3.1)

Since α ∈ (0, 1), there exists N ∈ N such that αN < 1−α
k . So whenever n ≥ N ,

we get xn − xn+p ∈ αn k
1−αU ⊂ α

N k
1−αU ⊂ U.

Since U is arbitrary it follows that {xn} is a Cauchy sequence in X.

Theorem 3.9. Let (X, τ) be a complete locally convex topological vector space.
Then a contraction mapping T possesses a unique fixed point in X.

Proof. Any contraction mapping is a U−contraction mapping and by Theorem
2.27 the proof follows immediately.
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Theorem 3.10. Let (X, τ) be a complete locally convex topological vector space
and f be a continuous mapping from X into itself. Let g : X → X be a
mapping such that it commutes with f and satisfies g(X) ⊂ f(X). If for any
neighborhood U of θ in X there exists 0 < α < 1 such that gx − gy ∈ αU
whenever fx − fy ∈ U ∀x, y ∈ X then f and g have a unique common fixed
point in X.

Proof. Let x0 ∈ X be fixed. Then there exists x1 ∈ X such that fx1 = gx0.
Since x1 ∈ X, there exists x2 ∈ X such that fx2 = gx1. Proceeding in this way
we get fxn = gxn−1 ∀n ∈ N. Let yn = fxn = gxn−1 ∀n ∈ N.

Let U be a neighbourhood of θ. Without loss of generality we can take
U as convex, balanced and absorbing. So there exists a λ > 0 such that
y1−y2 = fx1−fx2 ∈ βU whenever |β| ≥ λ. Thus we get y1−y2 = fx1−fx2 ∈
λU , which implies y2 − y3 = gx1 − gx2 = fx2 − fx3 ∈ αλU , consequently
y3−y4 = gx2−gx3 ∈ α2λU . Proceeding in this way we get, yn−yn+1 ∈ αn−1λU
∀n ∈ N.

Therefore by Lemma 3.8, {yn} is Cauchy in X and since X is complete,
there exists z ∈ X such that yn → z as n → ∞. Since f is continuous, we see
that g is also continuous on X. So, fyn → fz and gyn → gz as n→∞. Now,
fyn = fgxn−1 = gfxn−1 = gyn−1 and hence fz = gz.

Let V be any neighbourhood of θ. Without loss of generality we can assume
that V is convex, balanced and absorbing. So there exists µ > 0 such that gz−
g2z ∈ γV whenever |γ| ≥ µ. Thus whenever |γ| ≥ µ we get gz − g2z ∈ γV=Vγ
(say), implies fz − g(fz) ∈ Vγ , which in turn implies that fz − f(gz) ∈ Vγ .
Hence gz−g2z ∈ αVγ . Continuing in this way we get gz−g2z ∈ αnγV ∀n ∈ N.
So we get gz − g2z ∈ V . Since V is arbitrary, we have g2z = gz.
Now, f(gz) = g(fz) = g2z = g(gz) = gz so f and g have a common fixed point
gz = a (say) in X. Uniqueness of a is also obvious.

Theorem 3.11. Let (X, τ) be a complete locally convex topological vector space
and T : X → X be a map such that T is injective, continuous and subsequen-
tially convergent in X. If S is a continuous T−contraction map with the con-
stant 0 < α < 1, then S has a unique fixed point in X. Also if T is sequentially
convergent then for each x0 ∈ X, the sequence of iterates {Snx0} converges to
this fixed point of S.

Proof. Let x0 ∈ X and we construct the sequence {xn} in X by xn = Sxn−1 =
Snx0 for all n ∈ N.
Let U be a neighborhood of θ ∈ X. Without loss of generality we can assume
that U is convex, balanced and absorbing. So there exists k > 0 such that
Tx0−Tx1 ∈ γU whenever |γ| ≥ k. Since Tx0−Tx1 ∈ kU , TSx0−TSx1 ∈ αkU ,
that is, Tx1 − Tx2 ∈ αkU . So we have TSx1 − TSx2 ∈ α2kU . Proceeding
in a similar fashion, we get Txn−1 − Txn ∈ αn−1kU for all n ∈ N. Then by
Lemma 3.8 we see that {Txn} is a Cauchy sequence in X. Since (X, τ) is
complete, {Txn} is convergent and let it be convergent to a ∈ X. Since T
is subsequentially convergent in X, then there exists a subsequence {xnk

} of
{xn} which converges to some b ∈ X(say). Now T is continuous in X, so
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Txnk
→ Tb as n→∞. Thus Tb = a. Also S is continuous in X so Sxnk

→ Sb,
i.e., xnk+1 → TSb and so TSb = a. Therefore TSb = Tb and since T is injective,
then Sb = b. So b is a fixed point of S. Uniqueness of b is also clear.

Theorem 3.12. Let (X, τ) be a complete locally convex topological vector space.
Also let {Tn} be a sequence of mappings on X such that for any neighborhood U
of θ ∈ X there exists 0 < α < 1 such that for all n ∈ N, Tnx−Tny ∈ αU when-
ever x − y ∈ U , ∀x, y ∈ X. Suppose that for each x ∈ X the sequence {Tnx}
converges to Tx, where T is a self map on X. Then T is also a contraction
mapping on X with the same constant α.

Proof. Let V be an arbitrary neighborhood of θ ∈ X. Then there exists a
neighborhood W of θ ∈ X such that W +W ⊂ V.
Let U be a neighborhood of θ in X and x− y ∈ U , where x, y ∈ X. By Lemma
2.17 there exists a closed, convex, balanced and absorbing neighborhood P of
θ ∈ X such that x − y ∈ P ⊂ U. Since x − y ∈ P , Tnx − Tny ∈ αP for all
n ∈ N. Now,

Tx− Ty = Tx− Tnx+ Tnx− Tny + Tny − Ty
= (Tx− Tnx) + (Tnx− Tny) + (Tny − Ty).(3.2)

Since Tnx→ Tx and Tny → Ty as n→∞, then there exists N1, N2 ∈ N such
that Tnx−Tx ∈W whenever n ≥ N1 and also Tny−Ty ∈W whenever n ≥ N2.
If we set N = max{N1, N2} then from (1) we have Tx−Ty ∈W +W +αP ⊂
V + αP . Since V is a neighborhood of θ in X, then

(3.3) Tx− Ty ∈ ∩θ∈V (V + αP ) = αP = αP = αP ⊂ αU.

Since U is an arbitrary neighborhood of θ ∈ X, therefore T is also a contraction
map with the same constant α.

Theorem 3.13. Let (X, τ) be a complete locally convex topological vector space
and let T : X → X be a Kannan-type contractive mapping with the constant α.
Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and let U be a neighborhood of θ ∈ X. Let us define a
sequence {xn} in X by xn = Txn−1 = Tnx0 for all n ∈ N. We may assume
that U is convex, balanced and absorbing. Now x0 − Tx0 = x0 − x1 ∈ X.
So there exists a scalar λ > 0 such that x0 − x1 ∈ ηU whenever |η| ≥ λ. As
x0−x1 ∈ λU then (Tx0−Tx1)−α(x1−Tx1) ∈ αλU , that is, x1−x2 ∈ α

1−αλU.
Proceeding in a similar fashion we get xn − xn+1 ∈ ( α

1−α )nλU for all n ∈ N.
Then by Lemma 3.8 we see that {xn} is Cauchy in X. Since X is complete,
there exists z ∈ X such that xn → z as n→∞.

Let V be a neighborhood of θ ∈ X. Then there exists a balanced, convex and
absorbing neighborhood W of θ ∈ X such that W ⊂ 1−α

2 V. Now since xn → z
as n → ∞, there exists N ∈ N such that xn − z ∈ W and xn − xn+1 ∈ W for
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all n ≥ N. So for all n ≥ N ,

(z − Tz)− α(z − Tz) = z − xn+1 + xn+1 − Tz − α(z − Tz)
= (z − xn+1) + [(Txn − Tz)− α(z − Tz)]
∈ W + αW ⊂W +W ⊂ (1− α)V.(3.4)

Then (1− α)(z − Tz) ∈ (1− α)V whenever n ≥ N , that is, z − Tz ∈ V. Since
V is arbitrary neighborhood of θ ∈ X, then we have Tz = z. Clearly the fixed
point of T is unique.

Theorem 3.14. Let (X, τ) be a complete locally convex topological vector space
and f a continuous self map on X. Let g : X → X be a mapping such that it
commutes with f and satisfies g(X) ⊂ f(X). If for every neighborhood U of
θ ∈ X there exists an α ∈ (0, 12 ) such that for all x, y ∈ X, fx−gx ∈ U implies
gx − gy − α(fy − gy) ∈ αU , then f and g have a unique common fixed point
in X.

Proof. Let x0 ∈ X. Then there exists x1 ∈ X such that fx1 = gx0. Since
x1 ∈ X, there exists x2 ∈ X such that fx2 = gx1. Continuing in this way, we
get fxn = gxn−1 ∀n ∈ N. Let us take {yn} ⊂ X defined by yn = fxn = gxn−1
for all n ∈ N.
Let U be a neighborhood of θ in X. Assume that U is convex, absorbing and
balanced. So there exists a t > 0 such that y1−y2 = fx1− gx1 ∈ ζU whenever
|ζ| ≥ t. Therefore, (gx1− gx2)−α(fx2− gx2) ∈ αtU , that is, y2− y3 ∈ α

1−α tU .

Proceeding in this manner we get yn − yn+1 ∈ α
1−α

n−1tU for all n ∈ N. So by
applying Lemma 3.8 we see that {yn} is Cauchy sequence in X. Since X is
complete, there exists z ∈ X such that yn → z as n→∞. Since f is continuous
we have fyn → fz as n → ∞. Now fyn = fgxn−1 = gfxn−1 = gyn−1 for all
n ≥ 2. Therefore, gyn → fz as n→∞.

Let V be a neighborhood of θ ∈ X. Let W = 1−α
2α V . Then there exists

N1 ∈ N such that fyn − gyn = fyn − fyn+1 ∈W and fz − gyn ∈W whenever
n ≥ N1. If n ≥ N1 then (gyn − gz)− α(fz − gz) ∈ αW , implying that (gyn −
gz) − α(fz − gyn + gyn − gz) ∈ αW . Thus (1 − α)(gyn − gz) ∈ 2αW , that
is, gyn − gz ∈ 2α

1−αW = V whenever n ≥ N1. Since V is arbitrary, therefore

gyn → gz as n → ∞. Thus we get fz = gz. Since fz − gz = θ ∈ 1
αP for any

neighborhood P of θ ∈ X, we have (gz − g2z) − α(fgz − g2z) ∈ α 1
αP = P ,

which in turn implies that gz − g2z ∈ P . Hence g2z = gz and so f(gz) =
g(fz) = g2z = gz. Therefore gz = a (say) is a common fixed point of f and g
in X. Uniqueness of a is evident.

Theorem 3.15. Let (X, τ) be a complete locally convex topological vector space.
Also let T, S : X → X be two mappings satisfying (i) (Tx−Sy)−α(y−Sy) ∈ αU
whenever x−Tx ∈ U and (ii) (Sx−Ty)−α(y−Ty) ∈ αU whenever x−Sx ∈ U ,
for any x, y ∈ X and for any neighborhood U of θ ∈ X, where 0 < α < 1

2 . Then
T, S have a unique common fixed point in X.
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Proof. Let x0 ∈ X be fixed. The sequence {xn} in X is defined by

xn =

{
Txn−1, when n is odd

Sxn−1, when n is even

Now let U be any neighborhood of θ ∈ X. We can assume that U is balanced,
absorbing and convex. Now x0 − x1 = x0 − Tx0 ∈ X, so there exists some
l > 0 such that x0 − x1 ∈ βU whenever |β| ≥ l. Thus we get x0 − Tx0 ∈ lU
implying that (Tx0−Sx1)−α(x1−Sx1) ∈ αlU (using condition (i)). That is,
x1−Sx1 = x1− x2 ∈ α

1−α lU , which implies that (Sx1− Tx2)−α(x2− Tx2) ∈
α α

1−α lU (using condition (ii)). Thus x2 − x3 ∈ ( α
1−α )2lU , and proceeding in a

similar way we have xn − xn+1 ∈ ( α
1−α )nlU for all n ∈ N. So by Lemma 3.8

{xn} is a Cauchy sequence in X, since X is complete, there exists z ∈ X to
which {xn} converges. So {Tx2n}n≥0 converges to z and also {Sx2n−1}n∈N
converges to z.

Let V be any neighborhood of θ in X. It can be assumed that V is convex,
balanced and absorbing. Then there exists N ∈ N such that x2n − x2n+1 ∈
1−α
2α V and Tx2n − z ∈ 1−α

2α V whenever n ≥ N. Therefore, we get (Tx2n −
Sz)− α(z − Sz) ∈ α 1−α

2α whenever n ≥ N (from condition (i)). Thus (Tx2n −
Sz) − α(z − Tx2n + Tx2n − Sz) ∈ 1−α

2 V , that is, (1 − α)(Tx2n − Sz) ∈
α(z − Tx2n) + 1−α

2 V ⊂ α 1−α
2α V + 1−α

2 V = (1 − α)V . From this we see that
Tx2n − Sz ∈ V whenever n ≥ N. So Tx2n → Sz as n → ∞. Since X is
Hausdorff, then Sz = z. In a similar fashion using condition (ii) we have Tz = z.
So z is a common fixed point of T and S. Uniqueness of z is also clear.

Theorem 3.16. Let (X, τ) be a complete locally convex topological vector space.
Let {Tn} be a sequence of Kannan-type contractive mappings on X with the
same constant α ∈ (0, 12 ), which is uniformly convergent to T. Then T is also
a Kannan-type contractive mapping with the constant α. Also if {un} is the
sequence of fixed points of {Tn} in X then it converges to the fixed point of T .

Proof. Let V be any neighborhood of θ ∈ X. Also let K be a neighborhood of
θ in X such that x−Tx ∈ K for some x ∈ X. Now by Lemma 2.17 there exists
a closed, balanced, absorbing and convex neighborhood G of θ ∈ X such that
x−Tx ∈ G ⊂ K. Now Tn converges uniformly to T . So for each j ∈ N we have
Tx− Tnx ∈ 1

jG ∀x ∈ X, whenever n ≥ Nj , where {Nj} is a strictly increasing

sequence in N. Then if n ≥ Nj x− Tnx = (x− Tx) + (Tx− Tnx) ∈ G+ 1
jG =

(1 + 1
j )G for all j ∈ N. In particular, for all j ≥ 1, x − TNj

x ∈ (1 + 1
j )G.

Therefore for each j ∈ N (TNjx − TNjy) − α(y − TNjy) ∈ α(1 + 1
j )G for all

y ∈ X. Now,

(Tx− Ty)− α(y − Ty)

= (Tx− TNj
x+ TNj

x− TNj
y + TNj

y − Ty)

−α(y − TNj
y + TNj

y − Ty)(3.5)

= (TNj
x− TNj

y)− α(y − TNj
y) + (Tx− TNj

x) + (1− α)(TNj
y − Ty).
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Now there exists N ∈ N such that for every a ∈ X TNja − Ta ∈ 1
2−αV if

j ≥ N. Therefore (Tx − Ty) − α(y − Ty) ∈ α(1 + 1
j )G + V for all j ≥ N

implying that (Tx − Ty) − α(y − Ty) ∈ αG + V . Since V is arbitrary it
follows that (Tx − Ty) − α(y − Ty) ∈ αG ⊂ αK. Therefore T is a Kannan-
type contractive mapping and hence it has a unique fixed point u ∈ X. Now,
un−u = Tnun−Tu = Tnun−Tun+Tun−Tu. But u−Tu = θ ∈ 1

1+2αW for any
neighborhood W of θ ∈ X. So for all n ∈ N (Tu−Tun)−α(un−Tun) ∈ α

1+2αW
implying that (Tu−Tun)−α(Tnun−Tun) ∈ α

1+2αW , which again implies that
Tu − Tun ∈ α(Tnun − Tun) + α

1+2αW . Now Tn → T uniformly as n → ∞ so

there exists N0 ∈ N such that Tnun−Tun ∈ 1
1+2αW whenever n ≥ N0. Hence,

if n ≥ N0 then un − u ∈ W . Therefore {un} converges to the fixed point u of
T.

Theorem 3.17. Let (X, τ) be a complete locally convex topological vector space.
Let {Tn} be a sequence of self mappings in X such that Ti and Tj commute
for every i, j ∈ N. Suppose that there exists a sequence of non-negative integers
{mn} such that for every neighborhood U of θ ∈ X, (Tmi

i x − Tmj

j y) − α(y −
T
mj

j y) ∈ αU for all x, y ∈ X and for every i, j(i 6= j) whenever x− Tmi
i x ∈ U ,

where 0 < α < 1
2 . Then the sequence of mappings {Tn} has a unique common

fixed point in X.

Proof. Let us denote Fi = Tmi
i for all i ∈ N. Then by the given condition we

get for every i, j (i 6= j) , for all x, y ∈ X and any neighborhood U of θ ∈ X,
whenever x− Fix ∈ U , then (Fix− F − jy)− α(y − Fjy) ∈ αU .

Now let x0 ∈ X be fixed. Let us construct a sequence {xn} in X by
xn = Fn(xn−1) for all n ≥ 1. Now let U be a convex, balanced and absorbing
neighborhood of θ ∈ X. So for x0 − x1 ∈ X there exists a t > 0 such that
x0 − x1 ∈ λU for all scalars λ satisfying |λ| ≥ t. Now, in particular, x0 −
F1x0 ∈ tU , implying that (F1x0 − F2x1)− α(x1 − F2x1) ∈ αtU , which in turn
implies that x1 − x2 = x1 − F2x1 ∈ α

1−α tU . Proceeding in this way we get
xn − xn+1 ∈ α

1−α
ntU for all n ≥ 1. By applying Lemma 3.8 we get {xn} is

Cauchy in X, and since X is complete, it is convergent in X and converges to
some z ∈ X. Now for any n ∈ N we have z−Fnz = (z−xm+1)+(Fm+1xm−Fnz)
for all m ≥ 1.

Let V be any neighborhood of θ ∈ X. Assume that V is convex, balanced
and absorbing. Let n ∈ N be fixed. Then there exists N ∈ N such that N > n
and for all m ≥ N we get xm − xm+1 ∈ 1−α

1+αV and xm − z ∈ 1−α
1+αV . Then,

xm − Fm+1xm ∈ 1−α
1+αV whenever m ≥ N implying that (Fm+1xm − Fnz) −

α(z − Fnz) ∈ α 1−α
1+αV whenever m ≥ N. Therefore for all m ≥ N we have,

(z − Fnz)− α(z − Fnz) ∈ α 1−α
1+αV + 1−α

1+αV , that is, z − Fnz ∈ V. Since V is an
arbitrary neighborhood of θ ∈ X, we have Fnz = z. So, for all n ≥ 1 Fnz = z.
Now let z0 ∈ X be such that Fnz0 = z0 ∀ n ∈ N. Then, z − F1z ∈ 1

αK for any
neighborhood K of θ, implying that (F1z−F2z0)−α(z0−F2z0) ∈ α 1

αK, which
implies that z−z0 ∈ K. Since K is any neighborhood of θ it follows that z = z0.
Now we see that for any fixed i ∈ N, Tiz = Ti(Fnz) = Ti(T

mn
n z) = Tmn

n (Tiz) =
Fn(Tiz) [as Ti and Tn commute] for all n ≥ 1, implying that Tiz = z. Therefore
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for all i ∈ N we get Tiz = z. Hence z is a unique common fixed point of the
sequence of mappings {Tn}.

Theorem 3.18. Let (X, τ) be a complete locally convex topological vector space
and T : X → X be an one-one, continuous and subsequentially convergent
mapping. If S is a T -Kannan-type contractive mapping then S has a unique
fixed point in X. Also if T is sequentially convergent then for each x0 ∈ X, the
sequence of iterates {Snx0} converges to this fixed point.

Proof. Let x0 ∈ X and let us construct the sequence {xn} in X by xn =
Sxn−1 = Snx0 for all n ∈ N.
Let U be a neighborhood of θ ∈ X. Without loss of generality we can assume
that U is convex, balanced and absorbing. So there exists h > 0 such that
Tx0 − Tx1 ∈ γU whenever |γ| ≥ h. In particular Tx0 − Tx1 ∈ hU , so we get
(TSx0 − TSx1)− α(Tx1 − TSx1) ∈ αhU , implying that Tx1 − Tx2 ∈ α

1−αhU .
Proceeding in this way, we get Txn − Txn+1 ∈ ( α

1−α )nhU for all n ∈ N.
Then by Lemma 3.8 we see that {Txn} is Cauchy sequence in X and since
X is complete, there exists a ∈ X such that limTxn = a. Now since T
is subsequentially convergent then there exists a subsequence {xnk

} of {xn}
such that it is convergent and converges to b ∈ X. Since T is continuous, so
limTxnk

= Tb, implying that Tb = a.
Now let V be a neighborhood of θ ∈ X. Since {Txn} is convergent then

there exists N ∈ N such that Txnk
−Txnk+1 ∈ 1−α

1+αV and Txnk+1−Tb ∈ 1−α
1+αV

whenever k ≥ N, which implies that

(Tb− TSb)− α(Tb− TSb) = Tb− TSxnk
+ TSxnk

− TSb− α(Tb− TSb)
= (Tb− Txnk+1)

+[TSxnk
− TSb− α(Tb− TSb)]

∈ 1− α
1 + α

V + α
1− α
1 + α

V = (1− α)V.(3.6)

The above equality implies that Tb − TSb ∈ V . Since V is any neighborhood
of θ ∈ X then we get TSb = Tb. Since T is injective then we have Sb = b and
therefore b is a fixed point of S in X. Uniqueness of b is also obvious.

We now cite the following examples in support of our theorems.
Let us consider the sequence of subsets {Km}m≥1 of Rn, where Km = B[θ,m],
m ∈ N. Let us take the space C∞c (Km) of infinitely differentiable functions on
Rn with compact support contained in Km. Then C∞c (Km) is a Frechet space,
where the topology τm is built by the family of seminorms given by, for each

r ∈ N, ||f ||(m)
r = supx∈Km

|Drf(x)| for all f ∈ C∞c (Km). Then from the family
of topological spaces {(C∞c (Km), τm) : m ∈ N} we have the natural LF−space
structure on C∞c (Rn). We know that C∞c (Rn) with this structure is a complete
locally convex TVS but not a Frechet space.

Example 3.19. Let us consider the LF−space X = C∞c (Rn) and a mapping
T : X → X is defined by Tf = 1

3f ∀f ∈ X. Then clearly it is a contraction
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map on X and the function g ∈ X such that g(x) = 0 for all x ∈ Rn is the
unique fixed point of T in X.

Example 3.20. Let X = C∞c (Rn) be the LF−space and g, f : X → X be two
mappings defined by gx = 1

4x and fx = 1
2x for all x ∈ X. Then clearly f is

continuous, g commutes with f , g(X) ⊂ f(X) and also satisfies the contractive
condition for pair of mappings due to Theorem 3.10. We see that the zero
function is the unique common fixed point of f and g in X.

Example 3.21. Let us take the LF−space X = C∞c (Rn) and T : X → X by
Tx = − 1

2x for all x ∈ X. Then it is a Kannan-type contractive mapping in X
for the constant α = 1

3 and we have f ∈ C∞c (Rn), defined by ft = 0 ∀t ∈ Rn,
is the unique fixed point of T in X.

Example 3.22. Let X = C∞c (Rn) be the LF−space and g, f : X → X be
two mappings defined by gx = − 1

10x and fx = 1
5x for all x ∈ X. Then f is

continuous, g commutes with f , g(X) ⊂ f(X) and clearly f and g satisfy the
contractive condition for pair of mappings given in Theorem 3.14. Here the
null function is the unique common fixed point of f and g in X.

4. An application to Ulam-Hyers stability

Let (X, τ) be a locally convex topological vector space and T : X → X be
a given mapping. Let us consider the fixed point equation

(4.1) Tx = x

and for some neighborhood U of θ ∈ X

(4.2) v − Tv ∈ U.

Any point v ∈ X which satisfies the above equation (4.2) is called an U−solution
of the mapping T. We say that the fixed point problem (4.1) is Ulam-Hyers
stable in a locally convex topological vector space if there exists a c > 0 such
that for each absolutely convex neighborhood U of θ ∈ X and an U−solution
v ∈ X, there exists a solution u of the fixed point equation (4.1) such that

(4.3) v − u ∈ c U.

Theorem 4.1. Let (X, τ) be a complete locally convex topological vector space
and let T : X → X be a Kannan-type contractive mapping with the constant α.
Then the fixed point equation (4.1) of T is Ulam-Hyers stable.

Proof. From Theorem 3.13 we see that T has a unique fixed point in X, that
is the fixed point equation (4.1) of T has a unique solution say u. Let U be an
arbitrary absolutely convex neighborhood of θ ∈ X and v be an U−solution
that is v − Tv ∈ U.

Since T is Kannan-type contractive mapping with the constant α and u−
Tu = u− u = θ ∈ U therefore

(4.4) (Tu− Tv)− α(v − Tv) ∈ αU.
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Now

v − u = v − Tu = (v − Tv) + (Tv − Tu)

= (v − Tv)− (Tu− Tv)

= (1− α)(v − Tv)− [(Tu− Tv)− α(v − Tv)]

∈ (1− 2α)U.(4.5)

Here c = 1 − 2α > 0 and consequently the fixed point problem of T is Ulam-
Hyers stable.
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