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Fuzzy (h, β)-contractions in non-Archimedean fuzzy
metric spaces
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Abstract. In this work, we introduce the new concepts of fuzzy (h, β)-
contractive mapping via triangular (h, β)-admissible mappings. Later,
we prove some fixed point results for some mappings that provide fuzzy
(h, β)-contractibility and triangular (h, β)-admissibility in complete non-
Archimedean fuzzy metric spaces. Some examples are supplied in order
to support the applicability of our results. Our main results substantially
generalize and extend some known results in the existing literature.
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1. Introduction and Preliminaries

It is well known the fixed point theory has an important role in mathemat-
ical analysis. The concept of fuzzy metric space was introduced in different
ways by some authors [5, 14] and the fixed point theory in this kind of spaces
has been intensively studied [6, 10]. Gregori and Sapena [10] introduced the
notion of fuzzy contractive mapping and gave some fixed point theorems for
complete fuzzy metric spaces in the sense of George and Veeramani, and also
for Kramosil and Michalek’s fuzzy metric spaces which are complete in Gra-
biec’s sense. Later, Mihet [16] enlarged the class of fuzzy contractive mappings
of Gregori and Sapena, considered these mappings in fuzzy metric spaces in
the sense of Kramosil and Michalek and obtained a fixed point theorem for
fuzzy contractive mappings. For more details on fixed point theory for con-
traction type mappings in fuzzy metric spaces, we refer the interested reader
to [1, 15, 19, 21, 28, 29] and the references cited therein. On the other hand,
one of the most popular theorem in the fixed point theory is the Banach fixed
point theorem [2]. By using this theorem, most authors have proved several
fixed point theorems for various mappings [3, 4, 11, 18, 17, 20, 24, 25, 26]. Re-
cently, Dinarvand [7] has introduced the new concept of fuzzy β−ϕ-contractive
mapping via triangular β-admissible mappings.

In this work, we prove some fixed point results in non-Archimedean fuzzy
metric spaces. Motivated by Dinarvand, we introduce the new concepts of fuzzy
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(h, β)-contractive mapping via triangular (h, β)-admissible mappings. Later,
we derive several sufficient conditions which ensure the existence and unique-
ness of fixed points for these classes of mappings in the setup of complete
non-Archimedean fuzzy metric spaces. Some examples are supplied in order
to support the applicability of our results. We present some fixed point re-
sults in G-complete fuzzy metric spaces and some cyclic results. Our main
results substantially generalize and extend some known results in the existing
literature.

Definition 1.1. [22] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called
a continuous triangular norm (in short, continuous t−norm) if it satisfies the
following conditions:

(TN-1) ∗ is commutative and associative,

(TN-2) ∗ is continuous,

(TN-3) ∗(a, 1) = a for every a ∈ [0, 1],

(TN-4) ∗(a, b) ≤ ∗(c, d) whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

An arbitrary t−norm ∗ can be extended (by associativity) in a unique
way to an nary operator taking for (x1, x2, ..., xn) ∈ [0, 1]n, n ∈ N, the value
∗(x1, x2, ..., xn) is defined, in [9], by ∗0

İ=1
xi = 1, ∗n

İ=1
xi = ∗(∗n−1

İ=1
xi, xn) =

∗(x1, x2, ..., xn).

Definition 1.2. [8] A fuzzy metric space is an ordered triple (X,M, ∗) such
that X is a nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞), satisfying the following conditions, for all x, y, z ∈ X, s, t > 0 :

(FM-1) M(x, y, t) > 0,

(FM-2) M(x, y, t) = 1 iff x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s),

(FM-5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

If, in the above definition, the triangular inequality (FM-4) is replaced by
(NA) M(x, z,max{t, s}) ≥ M(x, y, t) ∗M(y, z, s) for all x, y, z ∈ X, s, t > 0,
or equivalently,
M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t)
then the triple (X,M, ∗) is called a non-Archimedean fuzzy metric space [12].

Definition 1.3. Let (X,M, ∗) be a fuzzy metric space. Then

(i) A sequence {xn} in X is said to converge to x in X, denoted by xn → x,
if and only if lim

n→∞
M(xn, x, t) = 1 for all t > 0, i.e. for each r ∈ (0, 1) and

t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1 − r for all n ≥ n0
[14, 23].
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(ii) A sequence {xn} is a M-Cauchy sequence if and only if for all ε ∈ (0, 1)
and t > 0, there exists n0 ∈ N such that M(xn, xm, t) ≥ 1 − ε for all
m > n ≥ n0 [23, 8]. A sequence {xn} is a G-Cauchy sequence if and only
if lim
n→∞

M(xn, xn+p, t) = 1 for any p > 0 and t > 0 [9, 10, 27].

(iii) The fuzzy metric space (X,M, ∗) is called M-complete (G-complete) if
every M-Cauchy (G-Cauchy) sequence is convergent.

Definition 1.4. [10] Let Ψ be the class of all mappings ψ : [0, 1] −→ [0, 1] such
that

(i) ψ is continuous and nondecreasing,

(ii) ψ(t) > t for all t ∈ (0, 1).

Lemma 1.5. [10] If ψ ∈ Ψ, then ψ(1) = 1.

Lemma 1.6. [10] If ψ ∈ Ψ, then lim
n→+∞

ψn(t) = 1 for all t ∈ (0, 1).

Definition 1.7. [7] Let (X,M, ∗) be a fuzzy metric space and f : X → X be
a given mapping. We say that f is a triangular β-admissible mapping if there
exists a function β : X ×X × (0,∞)→ (0,∞) such that

(Tβ1
) β(x, y, t) ≤ 1 implies β(fx, fy, t) ≤ 1 for all x, y ∈ X and for all

t > 0,
(Tβ2 ) β(x, z, t) ≤ 1 and β(z, y, t) ≤ 1 imply β(x, z, t) ≤ 1 for all x, y ∈ X

and for all t > 0.

Definition 1.8. [13] Let X be a nonempty set and f, T : X → X. The pair
(f, T ) is said to be weakly compatible if f and T commute at their coincidence
points (i.e.fTx = Tfx whenever fx = Tx). A point y ∈ X is called a point of
coincidence of f and T if there exists a point x ∈ X such that y = fx = Tx.

2. Main results

We denote by Φ the set of lower semicontinuous functions ϕ : [0, 1]→ [0, 1]
such that:

(i) ϕ(t) = 0 iff t = 0 and ϕ(1) = 1,
(ii) ϕ(t) > 0 for all t > 0 and ϕ(t) ≤ t for all t ∈ (0, 1).
Let X be a nonempty set and let f, h : X → X be arbitrary two mappings.

We denote by Coin(f, h) the set of all fixed points of coincidence f and h.

Definition 2.1. Let (X,M, ∗) be a non-Archimedean fuzzy metric space and
f, h : X → X be given mappings. We say that f is a triangular (h, β)-admissible
mapping if there exists a function β : X ×X × (0,∞)→ (0,∞) such that

(a ) β(hx, hy, t) ≤ 1 implies β(fx, fy, t) ≤ 1 for all x, y ∈ X and for all
t > 0,

(b ) β(x, z, t) ≤ 1 and β(z, y, t) ≤ 1 imply β(x, y, t) ≤ 1 for all x, y ∈ X and
for all t > 0.
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Example 2.2. Let f, h : [0,+∞)→ R be defined by

fx =

{
1 , x ∈ [0, 1]
1
2 , otherwise.

and hx =

{
1 , x ∈ [0, 1]
3 , otherwise.

Suppose that β : X ×X × [0,+∞)→ R+ is given by

β(x, y, t) =

{
1 , x, y ∈ [0, 1]
3 , otherwise.

f is a triangular (h, β)-admissible mapping. Indeed, if β(hx, hy, t) ≤ 1, then
hx, hy ∈ [0, 1]. So x, y ∈ [0, 1]. Thus β(fx, fy, t) ≤ 1. Now assume that
β(x, z, t) ≤ 1 and β(z, y, t) ≤ 1, so x, z ∈ [0, 1] and z, y ∈ [0, 1]. Then, x, y ∈
[0, 1] and so β(x, y, t) ≤ 1.

Lemma 2.3. Let (X,M, ∗) be a non-Archimedean fuzzy metric space and f be
a triangular (h, β)-admissible mapping. Assume that there exists x0 ∈ X such
that β(hx0, fx0, t) ≤ 1. Define a sequence {xn} and {yn} by yn = fxn = hxn+1

for all n ∈ N. Then

β(ym, yn, t) ≤ 1 for all m,n ∈ N with m < n.

Proof. Since there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1, it follows that
β(hx0, fx0, t) = β(hx0, hx1, t) ≤ 1. Now, by using (a) in Definition 2.1 we
obtain

β(hx1, hx2, t) = β(fx0, fx1, t) ≤ 1⇒ β(hx2, hx3, t) = β(fx1, fx2, t) ≤ 1.

By continuing the process as above, we get

β(yn, yn+1, t) = β(hxn+1, hxn+2, t) ≤ 1 for all n ∈ N ∪ {0}.

Let m,n ∈ N with m < n. Because β(ym, ym+1, t) ≤ 1 and β(ym+1, ym+2, t) ≤
1, it follows by using (b) in Definition 2.1 that β(ym, ym+2, t) ≤ 1. Again, since
β(ym, ym+2, t) ≤ 1 and β(ym+2, ym+3, t) ≤ 1 by applying (b) in Definition 2.1,
we have β(ym, ym+3, t) ≤ 1. By continuing this process inductively, we get
β(yn, ym, t) ≤ 1.

Definition 2.4. Let (X,M, ∗) be a non-Archimedean fuzzy metric space and
f be a triangular (h, β)-admissible mapping. We say that f is a fuzzy (h, β)-
contractive mapping if

(2.1) β(hx, hy, t) ≤ 1⇒ ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(hx, hy, t),M(hx, fx, t),M(hy, fy, t)},

ϕ ∈ Φ and ψ ∈ Ψ.
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Remark 2.5. If β(hx, hy, t) = 1 for all x, y ∈ X and any t > 0 and ϕ(t) = t and
N(x, y) = M(x, y, t), then Definition 2.4 reduces to the Definition 3.1 given by
Mihet (see [16]).

Theorem 2.6. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric
space and f be a fuzzy (h, β)-contractive mapping. Suppose that fX ⊂ hX,
hX is a closed subset of X and the following conditions hold:
(a) there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(hx, hy, t) ≤ 1 for all x, y ∈ Coin(f, h) and t > 0.
Then f and h have a unique point of coincidence in X. Moreover, if f and h
are weakly compatible, then f and h have a unique common fixed point.

Proof. Let x0 ∈ X such that β(hx0, fx0, t) ≤ 1. Define sequences {xn} and
{yn} by

(2.2) yn = fxn = hxn+1 for all n ∈ N.

If yn = yn+1 then yn+1 is a point of coincidence of f and h. Suppose that
yn 6= yn+1 for all n ∈ N. By virtue of Lemma 2.3, we get

β(ym, yn, t) ≤ 1 for all n ∈ N ∪ {0}.

Therefore by (2.1) and using (2.2), we get

(2.3) ϕ(M(yn, yn+1, t)) = ϕ(M(fxn, fxn+1, t)) ≥ ψ(ϕ(N(xn, xn+1)))

and since property of ϕ, we get

(2.4) M(yn, yn+1, t) ≥ ϕ(M(fxn, fxn+1, t)) ≥ ψ(ϕ(N(xn, xn+1))),

where

N(xn, xn+1) = min{M(hxn, hxn+1, t),M(hxn, fxn, t),M(hxn+1, fxn+1, t)}
= min{M(yn−1, yn, t),M(yn−1, yn, t),M(yn, yn+1, t)}.(2.5)

Thus from (2.4) and (2.5), we obtain

(2.6) M(yn, yn+1, t) ≥ ψ(min{M(yn−1, yn, t),M(yn, yn+1, t)).

If M(yn−1, yn, t) > M(yn, yn+1, t) for some n ∈ N and property of ψ, we get

M(yn, yn+1, t) ≥ ψ(M(yn, yn+1, t)) > M(yn, yn+1, t)

which is a contradiction. So,

M(yn, yn+1, t) ≥ ψ(M(yn−1, yn, t)).

Hence, repeating this inequality n times we obtain,

M(yn, yn+1, t) ≥ ψn(M(y0, y1, t))
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Letting n→∞ , from Lemma 1.6, we get

(2.7) lim
n→∞

M(yn, yn+1, t) = 1.

Now, we want to show that {yn} is a Cauchy sequence. Suppose to the contrary,
that {yn} is not a Cauchy sequence. Then there are ε ∈ (0, 1) and t0 > 0 such
that for all k ∈ N there exist n(k),m(k) ∈ N with n(k) > m(k) > k and

M(yn(k), ym(k), t0) ≤ 1− ε .

Assume that m(k) is the least integer exceeding n(k) satisfying the above in-
equality. Then

M(ym(k)−1, yn(k), t0) > 1− ε

and so, for all k ∈ N, we get

1− ε ≥ M(yn(k), ym(k), t0)

≥ M(ym(k)−1, ym(k), t0) ∗M(ym(k)−1, yn(k), t0)

≥ M(ym(k)−1, ym(k), t0) ∗ (1− ε ).

By taking k →∞ in the above inequality and using (2.7), we obtain

(2.8) lim
k→∞

M(yn(k), ym(k), t0) = 1− ε.

From (FM-4), we have

M(ym(k), yn(k), t0)

≥ M(ym(k), ym(k)−1, t0) ∗M(ym(k)−1, yn(k)−1, t0) ∗M(yn(k)−1, yn(k), t0)

and we get

(2.9) lim
k→∞

M(yn(k)−1, ym(k)−1, t0) = 1− ε .

In view of Lemma 2.3, we have β(yn(k), ym(k), t) ≤ 1. By applying (2.1), we
obtain
(2.10)
ϕ(M(yn(k), ym(k), t0)) = ϕ(M(fxn(k), fxm(k), t0)) ≥ ψ(ϕ(N(xn(k), xm(k)))),

where

N(xn(k), xm(k)) = min{M(hxn(k), hxm(k), t0),M(hxn(k), fxn(k), t0),

M(hxm(k), fxm(k), t0))}
= min{M(yn(k)−1, ym(k)−1, t0),M(yn(k)−1, yn(k), t0),

M(ym(k)−1, ym(k), t0))}

Now, from the properties of ϕ, ψ and from (2.7), (2.8), (2.9) and the above
inequality, as k →∞ in (2.10), we have

ϕ(1− ε) ≥ ψ(ϕ(1− ε)) > ϕ(1− ε)
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which is a contradiction. So, this implies that ε = 0. Thus {yn} is a Cauchy
sequence in X. From the completeness of (X,M, ∗) there exists z ∈ X such
that

(2.11) lim
n→∞

yn = z.

From (2.2) and (2.11), we have

(2.12) fxn → z and hxn+1 → z.

Since hX is closed, by (2.12), z ∈ hX. Therefore, there exists u ∈ X such that
hu = z. As yn → z and from Definition 2.1 with condition (b), we get

β(yn, z, t) ≤ 1 for all n ∈ N and for all t > 0.

Now, applying inequality (2.1), we get

ϕ(M(fxn, fu, t))

≥ ψ(ϕ(N(xn, u)))

= ψ(ϕ(min{M(hxn, hu, t),M(hxn, fxn, t),M(hu, fu, t)})).(2.13)

Taking n → ∞ in (2.13) and using the properties of ϕ, ψ and the above
inequality we have

ϕ(M(z, fu, t)) ≥ ψ(ϕ(min{1, 1,M(z, fu, t)})) > ϕ(M(z, fu, t))

which implies M(z, fu, t) = 1, that is fu = z. Thus, we deduce

(2.14) z = hu = fu,

and so z is a point of coincidence for f and h. The uniqueness of the point
of coincidence is a consequence of inequality (2.1) and condition (c), and so we
omit the details.

By (2.14) and using the weak compatibility of f and h, we obtain

fz = fhu = hfu = hz

and so fz = hz. Uniqueness of the point of coincidence implies z = fz = hz.
Consequently, z is a unique common fixed point of f and h.

Corollary 2.7. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric
space and f be a triangular (h, β)-admissible mapping. Suppose that fX ⊂ hX,
hX is a closed subset of X such that

β(hx, hy, t)ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(hx, hy, t),M(hx, fx, t),M(hy, fy, t)}
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ϕ ∈ Φ, ψ ∈ Ψ and the following conditions hold:
(a) there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1)) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(hx, hy, t) ≤ 1 for all x, y ∈ Coin(f, h) and t > 0.
Then f and h have a unique point of coincidence in X. Moreover, if f and h
are weakly compatible, then f and h have a unique common fixed point.

If we choose h = IX in Theorem 2.6, we have the following corollary.

Corollary 2.8. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric
space and let f be a triangular β-admissible mapping such that

β(x, y, t) ≤ 1⇒ ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(x, y, t),M(x, fx, t),M(y, fy, t)}

ϕ ∈ Φ and ψ ∈ Ψ and the following conditions hold:
(a) there exists x0 ∈ X such that β(x0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1)) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(x, y, t) ≤ 1, whenever x = fx, y = fy and for t > 0.
Then f has a unique fixed point.

If we take ϕ(t) = t in Corollary 2.8, we have the following corollary.

Corollary 2.9. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric
space and let f be a triangular β-admissible mapping such that

β(x, y, t) ≤ 1⇒M(fx, fy, t) ≥ ψ(N(x, y))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(x, y, t),M(x, fx, t),M(y, fy, t)}

ψ ∈ Ψ and the following conditions hold:
(a) there exists x0 ∈ X such that β(x0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1)) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(x, y, t) ≤ 1, whenever x = fx, y = fy and for t > 0.
Then f has a unique fixed point.

Example 2.10. Let X = [0,+∞), a ∗ b = min{a, b} and M(x, y, t) = min{x,y}
max{x,y}

for all t > 0. Clearly, (X,M, ∗) is a complete non-Archimedean fuzzy metric
space. Let f, h : X → X considered in Example 2.2. Suppose that β : X×X×
[0,+∞)→ R+ is given by

β(x, y, t) =

{
e−(x+y) , x, y ∈ [0, 1]

3 , otherwise.
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f is a triangular (h, β)-admissible mapping. Indeed, if β(hx, hy, t) ≤ 1, then
e−h(x+y) ≤ 1. Then hx, hy ∈ [0, 1] and so x, y ∈ [0, 1]. Thus β(fx, fy, t) =
e−f(x+y) ≤ 1. Now assume that β(x, z, t) ≤ 1 and β(z, y, t) ≤ 1, so x, z ∈ [0, 1]
and z, y ∈ [0, 1]. Then, x, y ∈ [0, 1] and so β(x, y, t) ≤ 1. Also, it is easy to see
that f is a fuzzy (h, β)-contractive mapping.
Let, x, y ∈ [0, 1] and x < y. Then β(hx, hy, t) ≤ 1 and

1 ≥ ϕ(1) = ϕ(M(fx, fy, t))

≥ ψ(ϕ(min{M(hx, hy, t),M(hx, fx, t),M(hy, fy, t)}))
= ψ(1) = 1.

Otherwise, β(hx, hy, t) = 3 and

1 ≥ ϕ(1) = ϕ(M(fx, fy, t))

≥ ψ(ϕ(min{M(hx, hy, t),M(hx, fx, t),M(hy, fy, t)}))

= ψ(
1

6
) >

1

6
.

Further, there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1. Indeed for x0 = 0,
we have β(h0, f0, t) = 1 ≤ 1. Finally, {xn} is a sequence in X such that
β(xn, xn+1, t) ≤ 1 for all n ∈ N and xn → x as n → ∞. By the definition of
the function β, it follows that xn ∈ [0, 1] for all n ∈ N, so x ∈ [0, 1]. Therefore
β(xn, x, t) ≤ 1. Thus, all the required hypotheses of Theorem 2.6 are satisfied
and hence f and h have a unique common fixed point.

3. Cylic Results

In this section, we give some fixed point results involving cyclic mappings
which can be regarded as consequences of the theorems presented in the pre-
vious section.

Theorem 3.1. Let A and B be two closed subsets of complete non-Archimedean
fuzzy metric space (X,M, ∗) such that A ∩B 6= 0 and f, h : A ∪B → A ∪B be
mappings such that fA ⊂ hB, fB ⊂ hA and f is a triangular (h, β)-admissible
mapping. Assume that h(A ∪B) is a closed subset of X such that

(3.1) ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x ∈ A, y ∈ B, t > 0 and the following conditions hold:
(a) there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1.
Then,
(i) If h is one to one then there exists z ∈ A ∩B such that fz = hz.

(ii) If f and h are weakly compatible, then f and h have a unique common
fixed point z ∈ A ∩B.
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Proof. Define β : X ×X × (0,∞)→ R+

β(x, y, t) =

{
1 x ∈ hA, y ∈ hB or x ∈ hB, y ∈ hA
0 otherwise.

Let β(hx, hy, t) ≤ 1. Then hx ∈ hA and hy ∈ hB. Since h is one to one, we
have x ∈ A and y ∈ B. So, fx ∈ hB and fy ∈ hA. Hence, β(fx, fy, t) ≤ 1.
Therefore, f is a triangular (h, β)-admissible mapping.

Since A ∩B 6= ∅, there exists x0 ∈ A ∩B. This implies that hx0 ∈ hA and
fx0 ∈ hB. So, β(hx0, fx0, t) ≤ 1.

Let {xn} be a sequence in X such that β(xn, xn+1)) ≤ 1 for all n and xn → x
as n→∞. Then xn ∈ hA and xn+1 ∈ hB. This implies that x ∈ hA∩ hB. So,
we get β(xn, x, t) ≤ 1. Then the conditions (a) and (b) of Theorem 2.6 hold.
So there exist u, z ∈ A ∪ B such that u = fz = hz. On the other hand, since
h is one to one, there exist z1 ∈ A, z2 ∈ B such that hz1 = hz2 = u implies
z1 = z2 = z. Therefore, u = hz for z ∈ A∩B. If f and h are weakly compatible,
following the proof of Theorem 2.6, we have u = fu = hu. The uniqueness of
the common fixed point follows from (3.1).

4. Some Results in Fuzzy Metric Spaces

Theorem 4.1. Let (X,M, ∗) be a G-complete fuzzy metric space and f be
a fuzzy (h, β)-contractive mapping. Suppose that fX ⊂ hX, hX is a closed
subset of X and the following conditions hold:
(a) there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(hx, hy, t) ≤ 1 for all x, y ∈ Coin(f, h) and t > 0.
Then f and h have a unique point of coincidence in X. Moreover, if f and h
are weakly compatible, then f and h have a unique common fixed point.

Proof. Let x0 ∈ X such that β(hx0, fx0, t) ≤ 1. Define a sequences {xn} and
{yn} by

(4.1) yn = fxn = hxn+1 for all n ∈ N.

If yn = yn+1 then yn+1 is a point of coincidence of f and h. Suppose that
yn 6= yn+1 for all n ∈ N. By virtue of Lemma 2.3, we get

β(ym, yn, t) ≤ 1 for all n ∈ N ∪ {0}.

Therefore by (2.1) and using (4.1), we get

(4.2) ϕ(M(yn, yn+1, t)) = ϕ(M(fxn, fxn+1, t)) ≥ ψ(ϕ(N(xn, xn+1)))

and since property of ϕ, we get

(4.3) M(yn, yn+1, t) ≥ ϕ(M(fxn, fxn+1, t)) ≥ ψ(ϕ(N(xn, xn+1)))
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where

N(xn, xn+1) = min{M(hxn, hxn+1, t),M(hxn, fxn, t),M(hxn+1, fxn+1, t)}
= min{M(yn−1, yn, t),M(yn−1, yn, t),M(yn, yn+1, t)}(4.4)

Thus from (4.3) and (4.4), we obtain

M(yn, yn+1, t) ≥ ψ(min{M(yn−1, yn, t),M(yn, yn+1, t)).

If M(yn−1, yn, t) > M(yn, yn+1, t) for some n ∈ N and property of ψ, we get

M(yn, yn+1, t) ≥ ψ(M(yn, yn+1, t)) > M(yn, yn+1, t)

which is a contradiction. So,

M(yn, yn+1, t) ≥ ψ(M(yn−1, yn, t)).

Hence, repeating this inequality n times we obtain,

M(yn, yn+1, t) ≥ ψn(M(y0, y1, t)).

Letting n→∞ , from Lemma 1.6 we get,

lim
n→∞

M(yn, yn+1, t) = 1.

Thus, for any p > 0,we have

M(yn, yn+p, t)

≥ ∗(M(yn, yn+1,
t

p
),M(yn+1, yn+2,

t

p
), . . . ,M(yn+p−1, yn+p,

t

p
)

≥ ∗(ψn(ϕ(M(y0, y1,
t

p
))), ψn+1(ϕ(M(y0, y1,

t

p
))), . . .

, ψn+p−1(ϕ(M(y0, y1,
t

p
))))

= ∗p−1ı=0ψ
n+i(M(y0, y1,

t

p
)).

By Lemma 1.6, for every i ∈ {0, 1, ..., p− 1}, we obtain that

lim
n→∞

ψn+i(M(x0, x1,
t

p
)) = 1.

According to the continuitiy of t-norm ∗, it can easily be verified that
M(xn, xn+p, t) → 1 as n → ∞. Thus {yn} is a Cauchy sequence in X. From
the completeness of (X,M, ∗) there exists z ∈ X such that

(4.5) lim
n→∞

yn = z.

From (4.1) and (4.5), we have

(4.6) fxn → z and hxn+1 → z.
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Since hX is closed, by (4.6), z ∈ hX. Therefore, there exists u ∈ X such that
hu = z. As yn → z and from Lemma 2.3 with condition (b), we get

β(yn, z, t) ≤ 1 for all for all n ∈ N and for all t > 0.

Now, applying inequality (2.1), we get

ϕ(M(fxn, fu, t)) ≥ ψ(ϕ(N(xn, u)))

= ψ(ϕ(min{M(hxn, hu, t),M(hxn, fxn, t),M(hu, fu, t)}.(4.7)

Taking n→∞ in (4.7) and using the properties of ϕ, ψ and the above inequality
we have

ϕ(M(z, fu, t)) ≥ ψ(ϕ(min{1, 1,M(z, fu, t)})) > ϕ(M(z, fu, t))

which implies M(z, fu, t) = 1, that is fu = z. Thus, we deduce

(4.8) z = hu = fu

and so z is a point of coincidence for f and h. The uniqueness of the point
of coincidence is a consequence of the conditions (a) and (c), and so we omit
the details.

By (4.8) and using the weak compatibility of f and h, we obtain

fz = fhu = hfu = hz

and so fz = hz. Uniqueness of the point of coincidence implies z = fz = hz.
Consequently, z is a unique common fixed point of f and h.

Corollary 4.2. Let (X,M, ∗) be a G-complete fuzzy metric space and f be
a triangular (h, β)-admissible mapping. Suppose that fX ⊂ hX, is a closed
subset of X such that

β(hx, hy, t)ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(hx, hy, t),M(hx, fx, t),M(hy, fy, t)}

ϕ ∈ Φ and ψ ∈ Ψ and the following conditions hold:
(a) there exists x0 ∈ X such that β(hx0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1)) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(hx, hy, t) ≤ 1 for all x, y ∈ Coin(f, h) and t > 0.
Then f and h have a unique point of coincidence in X. Moreover, if f and h
are weakly compatible, then f and h have a unique common fixed point.

If we choose h = IX in Theorem 4.1, we have the following corollary.
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Corollary 4.3. Let (X,M, ∗) be a G-complete fuzzy metric space and let f be
a triangular β-admissible mapping such that

β(x, y, t) ≤ 1⇒ ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(x, y, t),M(x, fx, t),M(y, fy, t)}

ϕ ∈ Φ and ψ ∈ Ψ and the following conditions hold:
(a) there exists x0 ∈ X such that β(x0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1)) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) β(x, y, t) ≤ 1, whenever x = fx, y = fy and for t > 0.
Then f has a unique fixed point.

If we take ϕ(t) = t in Corollary 4.3, we have the following corollary.

Corollary 4.4. Let (X,M, ∗) be a G-complete fuzzy metric space and let f be
a triangular β-admissible mapping such that

β(x, y, t) ≤ 1⇒M(fx, fy, t) ≥ ψ(N(x, y))

for all x, y ∈ X and t > 0, where

N(x, y) = min{M(x, y, t),M(x, fx, t),M(y, fy, t)}

ψ ∈ Ψ and the following conditions hold:
(a) there exists x0 ∈ X such that β(x0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1)) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1,
(c) if β(x, y, t) ≤ 1, whenever x = fx, y = fy and for t > 0.
Then f has a unique fixed point.

If we choose h = IX in Theorem 4.1, following similar arguments as those
given in the proof of Theorem 3.1, we have the following theorem.

Theorem 4.5. Let A and B be two closed subsets of G-complete fuzzy metric
space (X,M, ∗) such that A ∩ B 6= ∅ and f : A ∪ B → A ∪ B be a mapping s
such that fA ⊂ B, fB ⊂ A. Assume that A ∪ B is a closed subset of X such
that

ϕ(M(fx, fy, t)) ≥ ψ(ϕ(N(x, y)))

for all x ∈ A, y ∈ B and t > 0 and the following conditions hold:
(a) there exists x0 ∈ X such that β(x0, fx0, t) ≤ 1,
(b) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N and
xn → x as n→∞, then β(xn, x, t) ≤ 1.
Then, f has a unique fixed point z ∈ A ∩B.

Remark 4.6. If β(hx, hy, t) = 1 for all x, y ∈ X and any t > 0 and ϕ(t) = t
and N(x, y) = M(x, y, t), then Theorem 4.1 reduces to Theorem 3.1 given by
Shen et al. (see [25]).
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[14] Kramosil, I., and Michálek, J. Fuzzy metrics and statistical metric spaces.
Kybernetika (Prague) 11, 5 (1975), 336–344.

[15] Miheţ, D. On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets
and Systems 158, 8 (2007), 915–921.
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