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Disjoint reiterative mn-distributional chaos1

Marko Kostić23

Abstract. In this paper, we introduce and analyze the notion of
disjoint (mn, i)-distributional chaos, where 1 ≤ i ≤ 12, as well as the
notions of disjoint mn-distributional chaos of type 2 and disjoint reiter-
ative mn-distributional chaos of types 1+ and 2Bd for general sequences
of multivalued linear operators in Fréchet spaces. We reconsider and
slightly improve our recent results regarding disjoint distributional chaos
in Fréchet spaces.
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1. Introduction and preliminaries

Linear chaos is an enormous and rapidly growing field of research, with a
great number of recent results that cannot be easily summarized. For more
details about the subject, we refer the reader to the monographs [1] by F.
Bayart, E. Matheron, [10] by K.-G. Grosse-Erdmann, A. Peris, and [14] by the
author of this paper.

Distributional chaos for interval maps was introduced by B. Schweizer and
J. Smı́tal in [20] (1994), while in the setting of linear continuous operators
distributional chaos was first considered in the analyses of quantum harmonic
oscillator, by J. Duan et al [9] (1999); cf. also [2], [4], [5], [19] and references
cited therein.

Disjoint hypercyclicity in linear topological dynamics was introduced inde-
pendently by L. Bernal–González [3] (2007) and J. Bès, A. Peris [6] (2007); see
also [12]-[14] and references cited therein. In our recent research paper [15], we
have analyzed a great number of different types of disjoint distributional cha-
os for general sequences of multivalued linear operators in Fréchet spaces (cf.
[8],[7] for the initial studies of hypercyclicity and chaos in multi-valued setting).
As mentioned in the abstract, the main aim of this paper is to continue and
slightly improve the results obtained in [15] for disjoint (mn, i)-distributional
chaos, where 1 ≤ i ≤ 12 and (mn) is an increasing sequence of positive reals
satisfying lim infn→∞

mn

n > 0. We also consider disjoint mn-distributional cha-
os of type 2 and disjoint reiterative mn-distributional chaos of types 1+ and
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2Bd. Albeit our main structural results are given for linear single-valued op-
erators, we have decided to introduce the above-mentioned notion for general
sequences of multivalued linear operators because a great number of theoretical
results regarding (reiterative) mn-distributionally irregular vectors and man-
ifolds holds in this framework. Concerning densely disjoint Li-Yorke chaotic
operators and abstract PDEs, we refer the reader to [16].

The organization and main ideas of this paper can be plainly described
as follows. After collecting some preliminaries, we consider disjoint (mn, i)-
distributional chaos (1 ≤ i ≤ 12), disjoint mn-distributional chaos of type 2
and disjoint reiterative mn-distributional chaos of types 1+ and 2Bd for se-
quences of multivalued linear operators in Fréchet spaces (Section 2). Disjoint
(reiteratively) mn-distributionally irregular vectors (of type 1+, 2 or 2Bd) and
associated irregular manifolds are investigated in Section 3. Concerning dense
(reiterative) distributional chaos of the above types, it is worth noting that the
construction of distributionally irregular vectors established in [4, Theorem 15]
provides the basis of our examinations; in Section 4, we state a great number
of results, proving only Theorem 4.1 and Proposition 4.6. In the final sec-
tion of the paper, we briefly explain how the introduced notion can be further
generalized, with unclear perspectives.

Hereafter we assume that X and Y are two non-trivial Fréchet spaces over
the same field of scalars K ∈ {R,C} as well as that the topologies of X and
Y are induced by the fundamental systems (pn)n∈N and (pYn )n∈N of increasing
seminorms, respectively (separability is not our standing assumption). The
translation invariant metric d : X ×X → [0,∞), defined by

d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X,(1.1)

satisfies the following properties: d(x+u, y+v) ≤ d(x, y)+d(u, v), x, y, u, v ∈
X, d(cx, cy) ≤ (|c|+1)d(x, y), c ∈ K, x, y ∈ X, and d(αx, βx) ≥ |α−β|

1+|α−β|d(0, x),

x ∈ X, α, β ∈ K. We define the translation invariant metric dY : Y × Y →
[0,∞) by replacing pn(·) with pYn (·) in (1.1). If (X, ‖ · ‖) or (Y, ‖ · ‖Y ) is a
Banach space, then we assume that the distance of two elements x, y ∈ X
(x, y ∈ Y ) is given by d(x, y) := ‖x − y‖ (dY (x, y) := ‖x − y‖Y ). With this
terminological change, our results clarified in Fréchet spaces continue to hold
in Banach spaces.

It will be assumed that N ∈ N and N ≥ 2. Then the fundamental system

of increasing seminorms (pY
N

n )n∈N, where pY
N

n (x1, · · ·, xN ) :=
∑N
j=1 p

Y
n (xj),

n ∈ N (xj ∈ Y for 1 ≤ j ≤ N), induces the topology on the Fréchet space Y N .
We endow the space Y N with the translation invariant metric

dY N (~x, ~y) :=

∞∑
n=1

1

2n
pn(~x− ~y)

1 + pn(~x− ~y)
, ~x, ~y ∈ Y N ,

while in the case that Y is a Banach space, the metric on Y N is given by
dY N (~x, ~y) := max1≤j≤N ‖xj − yj‖Y , ~x ∈ Y N , ~y ∈ Y N .
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Suppose that C ∈ L(X) is injective and pCn (x) := pn(C−1x), n ∈ N, x ∈
R(C). Then pCn (·) is a seminorm on R(C) and the system (pCn )n∈N induces a
Fréchet locally convex topology on R(C); we denote this space by [R(C)]. Set
Nn := {1, · · ·, n} (n ∈ N).

Let X, Y, Z and T be given non-empty sets. If ρ ⊆ X × Y and σ ⊆ Z × T
with Y ∩ Z 6= ∅, then we define ρ−1 ⊆ Y × X and σ ◦ ρ ⊆ X × T by ρ−1 :=
{(y, x) ∈ Y ×X : (x, y) ∈ ρ} and

σ ◦ ρ :=
{

(x, t) ∈ X × T : ∃y ∈ Y ∩ Z such that (x, y) ∈ ρ and (y, t) ∈ σ
}
,

respectively. Domain and range of ρ are introduced by D(ρ) := {x ∈ X : ∃y ∈
Y such that (x, y) ∈ ρ} and R(ρ) := {y ∈ Y : ∃x ∈ X such that (x, y) ∈ ρ},
respectively; ρ(x) := {y ∈ Y : (x, y) ∈ ρ} (x ∈ X). If ρ is a binary relation
on X and n ∈ N, then we define ρn inductively. Set D∞(ρ) :=

⋂
n∈ND(ρn),

ρ(X ′) := {y : y ∈ ρ(x) for some x ∈ X ′} (X ′ ⊆ X).
For any mapping A : X → P (Y ), we set Ǎ := {(x, y) : x ∈ D(A), y ∈ Ax}.

ThenA is a multivalued linear operator (MLO) iff the associated binary relation
Ǎ is a linear relation in X × Y, i.e., iff Ǎ is a linear subspace of X × Y. In our
work, we will identify A and its associated linear relation Ǎ, so that the notion
of D(A), which is a linear subspace of X, as well as the sets R(A) and D∞(A)
are understood. For more details about multivalued linear operators, we refer
the reader to the references cited in [15].

We will use the following notions of lower and upper densities for a subset
A ⊆ N :

Definition 1.1. ([13]) Let q ∈ [1,∞), and let (mn) be an increasing sequence
in [1,∞). Then:

(i) The lower (mn)-density of A, denoted by dmn
(A), is defined through:

dmn
(A) := lim inf

n→∞

|A ∩ [1,mn]|
n

;

(ii) The upper (mn)-density of A, denoted by dmn
(A), is defined through:

dmn(A) := lim sup
n→∞

|A ∩ [1,mn]|
n

;

(iii) The lower l; (mn)-Banach density of A, denoted shortly by Bdl;mn
(A), as

follows

Bdl;mn
(A) := lim inf

s→+∞
lim inf
n→∞

|A ∩ [n+ 1, n+ms]|
s

;

(iv) The (upper) l; (mn)-Banach density of A, denoted shortly by Bdl;mn
(A),

as follows

Bdl;mn
(A) := lim inf

s→+∞
lim sup
n→∞

|A ∩ [n+ 1, n+ms]|
s

;
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(v) The (upper) l : (mn)-Banach density of A, denoted shortly by Bdl:mn(A),
by

Bdl:mn
(A) := lim inf

s→+∞
sup
n∈N

|A ∩ [n+ 1, n+ms]|
s

.

Denote by R the class consisting of all increasing sequences (mn) of positive
reals satisfying lim infn→∞

mn

n > 0, i.e., there exists a finite constant L > 0
such that n ≤ Lmn, n ∈ N. Unless stated otherwise, we will always assume
that (mn) ∈ R henceforth. The assumption mn ∈ N for all n ∈ N can be made.

Assume that σ > 0, ε > 0 and (xk)k∈N, (yk)k∈N are two given sequences in
Y. Consider the following condition:

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
= 0,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0.
(1.2)

We will use the following special case of [18, Definition 2.2]:

Definition 1.2. Suppose that, for every k ∈ N, Ak : D(ρk) ⊆ X → Y is
an MLO and X̃ is a closed subspace of X. If there exist an uncountable set
S ⊆

⋂∞
k=1D(Ak) ∩ X̃ and σ > 0 such that for each ε > 0 and for each pair

x, y ∈ S of distinct points we have that for each k ∈ N there exist elements
xk ∈ Akx and yk ∈ Aky such that (1.2) holds, then it is said that the sequence
(Ak)k∈N is (mn, X̃)-reiteratively distributionally chaotic.

The sequence (Ak)k∈N is said to be densely (mn, X̃)-distributionally chaotic
iff S can be chosen to be dense in X̃. An MLO A : D(A) ⊆ X → X is said
to be (densely) (mn, X̃)-distributionally chaotic iff the sequence (Ak ≡ Ak)k∈N
is. The set S is said to be (mn, σX̃)-scrambled set ((mn, σ)-scrambled set of

type s in the case that X̃ = X) of the sequence (Ak)k∈N (the MLO A); in the
case that X̃ = X, then we also say that the sequence (Ak)k∈N (the MLO A) is
mn-distributionally chaotic.

Let λ ∈ (0, 1] and mn ≡ n1/λ. Then the (dense) (mn, X̃)-distributional
chaos is also called (dense) (λ, X̃)-distributional chaos [X̃-distributional chaos,
provided that λ = 1], the (dense) mn-distributional chaos is also called (dense)
λ-distributional chaos [distributional chaos, provided that λ = 1] and the
(mn, σX̃)-scrambled set S is also called (λ, σX̃)-scrambled set [σX̃ -scrambled
set, provided that λ = 1].
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2. Disjoint reiteratively mn-distributionally chaotic
properties of type s for MLOs

Let σ > 0, let ε > 0, and let (xj,k)k∈N and (yj,k)k∈N be sequences in X
(1 ≤ j ≤ N). Consider the following conditions:

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.1)

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.2)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and(

∀j ∈ NN
)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(2.3)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and(

∃j ∈ NN
)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(2.4)

(
∃j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and(

∀j ∈ NN
)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(2.5)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and(

∃j ∈ NN
)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(2.6)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(2.7)

(
∃j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(2.8)



134 Marko Kostić

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.9)

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.10)

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.11)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0.
(2.12)

Now we are ready to introduce the following notion:

Definition 2.1. Let i ∈ N12 and (mn) ∈ R. Suppose that, for every j ∈ NN and
k ∈ N, Aj,k : D(Aj,k) ⊆ X → Y is an MLO and X̃ is a closed linear subspace

of X. Then we say that the sequence ((Aj,k)k∈N)1≤j≤N is disjoint (X̃,mn, i)-

distributionally chaotic, (d, X̃,mn, i)-distributionally chaotic for short, iff there

exist an uncountable set S ⊆
⋂N
j=1

⋂∞
k=1D(Aj,k) ∩ X̃ and σ > 0 such that for

each ε > 0 and for each pair x, y ∈ S of distinct points we have that for each
j ∈ NN and k ∈ N there exist elements xj,k ∈ Aj,kx and yj,k ∈ Aj,ky such that
(2.i) holds.

The sequence ((Aj,k)k∈N)1≤j≤N is said to be densely (d, X̃,mn, i)-distri-

butionally chaotic iff S can be chosen to be dense in X̃. A finite sequence
(Aj)1≤j≤N of MLOs on X is said to be (densely) (X̃,mn, i)-distributionally
chaotic iff the sequence ((Aj,k ≡ Akj )k∈N)1≤j≤N is. The set S is said to be

(d, σX̃ ,mn, i)-scrambled set ((d, σ,mn, i)-scrambled set in the case that X̃ = X)

of ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ); in the case that X̃ = X, then we also say
that the sequence ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ) is disjoint (mn, i)-distributi-
onally chaotic, (d,mn, i)-distributionally chaotic for short.

If mn ≡ n, then the notion introduced above has been analyzed for the
first time in [15]. Then we simply say that the sequence ((Aj,k)k∈N)1≤j≤N
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is disjoint (X̃, i)-distributionally chaotic, (d, X̃, i)-distributionally chaotic for
short. Similar terminological agreements will be accepted for all other terms
from Definition 2.1.

Since there exists a finite constant l > 0 such that dmn
(A) ≥ ld(A) for any

subset A ⊆ N, it is clear that for each i ∈ N12 and (mn) ∈ R, the supposition
that the sequence ((Aj,k)k∈N)1≤j≤N is disjoint (X̃,mn, i)-distributionally cha-

otic implies that ((Aj,k)k∈N)1≤j≤N is disjoint (X̃, i)-distributionally chaotic.

Hence, the notion of (d, X̃,mn, i)-distributional chaos is stronger than that of
(d, X̃, i)-distributional chaos, so that we actually further specify here the notion
introduced in [15].

Directly from definition, it readily follows that, if i ∈ {1, 2, 3, 7}, resp. i ∈
{4, 5, 6, 8}, and ((Aj,k)k∈N)1≤j≤N is (densely) (d, X̃,mn, i)-distributionally cha-
otic, then for each j ∈ NN , resp. there exists j ∈ NN , such that the component
(Aj,k)k∈N is (densely) (X̃,mn, i)-distributionally chaotic.

As already mentioned, besides the notion introduced in Definition 2.1, we
can analyze a great number of other types of disjoint mn-distributional cha-
os. From the space and time limitations, we will consider here only disjoint
analogues of the notion analyzed in [11, Section 4], with i = 1. Consider the
following conditions:

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.13)

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ σ

})
> 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(2.14)

Bdl:mn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ σ

})
> 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0.

(2.15)

Definition 2.2. Let (mn) ∈ R. Suppose that, for every j ∈ NN and k ∈ N,
Aj,k : D(Aj,k) ⊆ X → Y is an MLO and X̃ is a closed linear subspace of
X. Then we say that the sequence ((Aj,k)k∈N)1≤j≤N is reiteratively disjoint

(X̃,mn)-distributionally chaotic of type 1+ [2Bd], resp. disjoint (X̃,mn)-dis-
tributionally chaotic of type 2, reiteratively (d, X̃,mn)-distributionally chao-
tic of type 1+ [2Bd], (d, X̃,mn)-distributionally chaotic of type 2 for short,
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iff there exist an uncountable set S ⊆
⋂N
j=1

⋂∞
k=1D(Aj,k) ∩ X̃ and σ > 0

[an uncountable set S ⊆
⋂N
j=1

⋂∞
k=1D(Aj,k) ∩ X̃], resp. an uncountable set

S ⊆
⋂N
j=1

⋂∞
k=1D(Aj,k)∩X̃, such that for each ε > 0 and for each pair x, y ∈ S

of distinct points we have that for each j ∈ NN and k ∈ N there exist elements
xj,k ∈ Aj,kx and yj,k ∈ Aj,ky such that (2.13) holds [there exist elements
xj,k ∈ Aj,kx, yj,k ∈ Aj,ky and number σ > 0 such that (2.14) holds], resp.
there exist elements xj,k ∈ Aj,kx, yj,k ∈ Aj,ky and number σ > 0 such that
(2.15) holds.

The sequence ((Aj,k)k∈N)1≤j≤N is said to be densely reiteratively disjoint

(X̃,mn)-distributionally chaotic of type 1+ [2Bd], resp. densely disjoint
(X̃,mn)-distributionally chaotic of type 2, iff S can be chosen to be dense
in X̃. A finite sequence (Aj)1≤j≤N of MLOs on X is said to be (densely)

reiteratively disjoint (X̃,mn)-distributionally chaotic of type 1+ [2Bd], resp.
disjoint (X̃,mn)-distributionally chaotic of type 2, iff the sequence ((Aj,k ≡
Akj )k∈N)1≤j≤N is. In the case that X̃ = X, then we also say that the sequence
((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ) is disjoint reiteratively mn-distributionally cha-
otic of type 1+ [2Bd], resp. disjoint mn-distributionally chaotic of type 2.

The use of any strongly equivalent metric d′Y (·, ·) with dY (·, ·) in the above
definitions leads to the same notion of disjoint (reiterative) mn-distributional
chaos.

If mn ≡ n1/λ for some λ ∈ (0, 1], then the above notions are also called
(dense, reiterative) disjoint X̃λ-distributional chaos of type s, (d, X̃, λ, i)-dis-
tributional chaos for short, (dense, reiterative) disjoint (X̃, λ)-scrambled set of
type s, etc.

Let (mn) ∈ R be arbitrary. If a linear continuous operator T ∈ L(X)
satisfies the requirements of Godefroy-Schapiro Criterion (see e.g. [10]), then
T is (mn)-distributionally chaotic [11] so that it is very simple to construct two
disjoint subsets A and B of N such that N = A∪B and dmn

(A) = dmn
(B) = 0.

Therefore, arguing as in [15], we can show that the multivalued linear operators
X × X, · · ·, X × X, totally counted N times, are densely (d,mn, 1)-distribu-
tionally chaotic. In particular, the previous example shows that dense (full,
moreover, with meaning clear) (d,mn, 1)-distributional chaos occurs in finite-
dimensional spaces for the sequences of MLOs, and the same thing holds for the
sequences of linear continuous operators; for any integer i ∈ N8 we have that
the (d, X̃,mn, i)-distributional chaos of operators T1 ∈ L(X), · · ·, TN ∈ L(X)
implies that there exists an index j ∈ NN such that Tj is (X̃,mn)-distributi-

onally chaotic. On the other hand, if i ∈ {9, 10, 11, 12} then the (d, X̃,mn, i)-
distributional chaos of operators T1 ∈ L(X), · · ·, TN ∈ L(X) implies that there
exists an index j ∈ NN such that Tj is Li-Yorke chaotic ([15]).

The following proposition with mn ≡ n has been clarified in [15]. It is un-
questionably the most intriguing statement concerning relations between vari-
ous types of (d, X̃,mn, i)-distributional chaos introduced above:

Proposition 2.3. Let (mn) ∈ R. For any sequence A ≡ ((Aj,k)k∈N)1≤j≤N of
MLOs, the following holds:
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1. (d, X̃,mn, 1)-distributional chaos of A implies (d, X̃,mn, i)-distributional
chaos of A for all i ∈ N12;

2. (d, X̃,mn, 2)-distributional chaos implies (d, X̃,mn, i)-distributional cha-
os for all i ∈ {3, 4, 5, 6, 10, 11, 12};

3. (d, X̃,mn, 3)-distributional chaos of A implies (d, X̃,mn, i)-distributional
chaos of A for all i ∈ {4, 5, 10, 12};

4. (d, X̃,mn, 4)-distributional chaos of A implies (d, X̃,mn, 12)-distributio-
nal chaos of A;

5. (d, X̃,mn, 5)-distributional chaos of A implies (d, X̃,mn, 10)-distributio-
nal chaos of A;

6. (d, X̃,mn, 6)-distributional chaos of A implies (d, X̃,mn, i)-distributional
chaos of A for all i ∈ {4, 11, 12};

7. (d, X̃,mn, 7)-distributional chaos of A implies (d, X̃,mn, i)-distributional
chaos of A for all i ∈ {3, 4, 5, 8, 9, 10, 12};

8. (d, X̃,mn, 8)-distributional chaos of A implies (d, X̃,mn, i)-distributional
chaos of A for all i ∈ {5, 9, 10};

9. (d, X̃,mn, 9)-distributional chaos of A implies (d, X̃,mn, 10)-distributio-
nal chaos of A;

10. (d, X̃,mn, 10)-distributional chaos of A does not imply anything, in gen-
eral;

11. (d, X̃,mn, 11)-distributional chaos of A implies (d, X̃,mn, 12)-distributi-
onal chaos of A;

12. (d, X̃,mn, 12)-distributional chaos of A does not imply anything, in gen-
eral.

Hence, (d, X̃,mn, 1)-distributional chaos implies all others; the notion of
(d, X̃,mn, 9)-distributional chaos is incredibly important, as well ([15]):

Proposition 2.4. Suppose (mn) ∈ R and that, for every j ∈ NN and k ∈ N,
Aj,k : D(Ak) ⊆ X → Y is an MLO, and also that X̃ is a closed linear subspace
of X. Define, for every k ∈ N, the MLO Ak : D(Ak) ⊆ X → Y N by D(Ak) :=⋂

1≤j≤N D(Aj,k) and Akx := {(x1,k, · · ·, xN,k) : xj,k ∈ Aj,kx for all j ∈ NN}.
Then the sequence ((Aj,k)k∈N)1≤j≤N is disjoint (X̃,mn, 9)-distributionally cha-

otic iff the sequence (Ak)k∈N is (X̃,mn)-distributionally chaotic.

We need the following lemma.

Lemma 2.5. Let (mn) ∈ R, B ⊆ N and dmn
(Bc) = 0. Then there exist

pairwise disjoint subsets B1, · · ·, BN of B such that B = B1 ∪ · · · ∪BN and:

(i) dmn
(Bcj ) = 0 for all j ∈ NN .
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(ii) dmn
(Bcj ) > 0 for all j ∈ NN .

Proof. To prove (i), observe that there exists a strictly increasing sequence
(nk) in N such that the segment [1,mnk

] contains at least mnk
− (nkk

−2)
elements of the set B. Moreover, we can choose the sequence (nk) such that
nk+1 is enormously greater than mnk

for all k ∈ N, more precisely, such that
(nk+1(k + 1)−2) + mnk

≤ nk/k for all k ∈ N. Set n0 := 0, m0 := 0 and
Bj := B ∩

⋃
k∈N0

(mnkN+j−1
,mnkN+j

] (j ∈ NN ). Then it is easy to see that the

segment [1,mnkN+j
] contains at leastmnkN+j

−(nkN+j(kN+j)−2)−mnkN+j−1
≥

mnkN+j
− (nkN+j(kN + j)−1) for all k ∈ N, which implies dmn

(Bcj ) = 0 (j ∈
NN ). The proof of (ii) is much simpler. We list the elements of set B one by
one in the sets B1, · · ·BN , respectively. Then it is clear that for each n ∈ N
the segment [1, n] contains at most n/N elements of the set Bj (j ∈ NN ).
If n ≤ Lmn for all n ∈ N, then it can be easily seen from our construction
that dmn

(Bcj ) ≥ (N − 1)/NL for all j ∈ NN (observe that the supposition
dmn

(Bc) = 0 is even superfluos for (ii)).

Keeping in mind Lemma 2.5 and the argumentation from [15], we can simply
show that for each sequence (mn) ∈ R the notions of (d,mn, i1)-distributional
chaos and (d,mn, i2)-distributional chaos differ for the sequences of linear con-
tinuous operators on finite-dimensional spaces, provided that i1, i2 ∈ N12 and
i1 6= i2. If a pair i1, i2 ∈ N12 of different indexes and a sequence (mn) ∈ R are
given, then it is not trivial to construct an example of linear continuous oper-
ators T1 ∈ L(X), · · ·, TN ∈ L(X) showing that the notions of (d,mn, i1)-distri-
butional chaos and (d,mn, i2)-distributional chaos do not coincide. Concerning
this question, we would like to note that our analyses from [11, Theorem 2.8]
and [15, Example 3.24] enable one to simply deduce the following theorem:

Theorem 2.6. Suppose that X := c0(N) or X := lp(N) for some p ∈ [1,∞).
Then there exist two continuous linear operators T1 and T2 on X which are
λ-distributionally chaotic for any number λ ∈ (0, 1], satisfying that the tuple
(T1, T2) is (d, span{e1}, λ, i)-distributionally chaotic for any i ∈ {3, 4, 5, 10, 12},
the tuple (T1, T2) is not (d,X, λ, i)-distributionally chaotic for any i ∈ {1, 7, 8, 9},

lim
N→∞

1

N

N∑
j=1

∥∥T ji x∥∥ = +∞ for all x ∈ X \ {0}, 1 ≤ i ≤ 2,(2.16)

as well as limj→∞ T ji x = 0 for some x ∈ X iff x = 0 (1 ≤ i ≤ 2).

Based on our considerations carried out in [11, Theorem 2.11] and [15,
Example 3.24], we can also deduce the following result:

Theorem 2.7. Suppose that X := c0(N) or X := lp(N) for some p ∈ [1,∞).
Then for each number λ ∈ (0, 1] there exist continuous linear operators T1, T2
on X satisfying (2.16), limj→∞ T ji x = 0 for some x ∈ X iff x = 0 (1 ≤ i ≤ 2),
which are both λ-distributionally chaotic, not λ′-distributionally chaotic for any
λ′ ∈ (0, λ) and which satisfies that the tuple (T1, T2) is (d, span{e1}, λ, i)-dis-
tributionally chaotic for i ∈ {3, 4, 5, 10, 12} and not (d,X, 1, i)-distributionally
chaotic for i ∈ {1, 7, 8, 9}.
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Proof. We will include the most relevant details for the sake of completeness.
Let λ ∈ (0, 1] and λ′ ∈ (0, λ). Without loss of generality, we may assume that
X = l2. Set

an :=
1

2

[
b(n+ 1)4/λ ln(n+ 1)c − bn4/λ lnnc

]
, n ∈ N

and

bn := an−1 +
1

2

(
3n2 − 3n+ 1

)
, n ∈ N.

Then we know that the weighted forward shift T1 ≡ Fω : l2 → l2, defined
by Fω(x1, x2, · · ·) 7→ (0, ω1x1, ω2x2, · · ·), where the sequence of weights ω =
(ωk)k∈N consists of sufficiently large blocks of 2’s of lengths b1, b2, · · ·, and
sufficiently large blocks of (1/2)’s of lengths a1, a2, · · · is λ-distibutionally
chaotic and not λ′-distributionally chaotic. We define T2 ≡ Fω′ : l2 → l2,
defined by Fω′(x1, x2, · · ·) 7→ (0, ω′1x1, ω

′
2x2, · · ·), where ω′n := 1/ωn for all

n ∈ N. Since ‖T j2 e1‖ = 1/‖T j1 e1‖ for all j ∈ N, the argumentation contained in
the proof of [11, Theorem 2.11] shows that T2 is likewise λ-distributionally cha-
otic with e1 being the corresponding λ-distributionally irregular vector. This
simply implies that the tuple (T1, T2) is (d, span{e1}, λ, i)-distributionally cha-
otic for i ∈ {3, 4, 5, 10, 12}. To see that the tuple (T1, T2) is not (d,X, 1, i)-
distibutionally chaotic for i ∈ {1, 7, 8, 9}, we can argue as in [15, Example
3.24], because for each j ∈ N we have that ‖T j1 e1‖ + ‖T j2 e1‖ ≥ 2. We already
know that (2.16) holds for i = 1 and now we will prove that (2.16) holds
for i = 2, with x = e1. Let Fω′′(x1, x2, · · ·) 7→ (0, ω′′1x1, ω

′′
2x2, · · ·) be the

weighted forward shift, where the sequence of weights ω′′ = (ω′′k )k∈N consists of
sufficiently large blocks of 2’s of lengths a1, a2, · · ·, and sufficiently large blocks
of (1/2)’s of lengths b1, b2, · · ·. Then for each integer j ≥ a1 + 1, we have that
‖T j2 e1‖ = 2−a1‖F jω′′e1‖ so that there exists n0 ∈ N such that

lim
N→∞

1

N

N∑
j=1

∥∥T ji x∥∥ ≥ 1

2(N − a1)

N−a1∑
j=1

∥∥F jω′′x∥∥, N ≥ n0.

But, repeating literally the corresponding arguments from the proof of [11,
Theorem 2.11] and taking into account that

lim
n→∞

2an−bn−1 − 1

nmin(an, bn)
= +∞,

we may deduce that N−1
∑N
j=1

∥∥F jω′′x∥∥ → +∞ as N → +∞. Therefore, it
remains to be proved that the operator T2 is not λ′-distributionally chaotic,
which immediately follows if we prove that d1/λ′

(
{j ∈ N : ‖T je1‖ < 2k}

)
=

+∞. A direct computation shows that this holds if the upper 1/λ′-density of
the set ⋃

n≥n1

[
bn4/λ lnnc+ n3, b(n+ 1)4/λ ln(n+ 1)c

]
is +∞ for each positive integer n1. This follows from corresponding definition of
the upper 1/λ′-density with the sequence (cn ≡ b(n+1)4/λ ln(n+1)c), since the
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interval [1, cn] has at least cn− cn4 elements for a certain constant c ∈ (0, 1/5)
and all n ∈ N.

Given an MLO A in X and a sequence (mn) ∈ R, we can introduce and
analyze the sets

Smn
(A) :=

{
λ > 0 : λA is mn − distributionally chaotic

}
and

DDCA,mn,i,~r :=
{
~λ =

(
λ1, λ2, · · ·, λN

)
∈ KN :

the tuple
(
λ1Ar1 , λ2Ar2 , · · ·, λNArN

)
is (d,mn, i)-distributionally chaotic

}
.

The analysis of these sets is outside scope of this paper.

3. Disjoint (reiteratively) mn-distributionally
irregular vectors

Depending on the use of quantifiers ∩, ∪, ∀ and ∃, we recognize four different
types of disjoint mn-distributionally unbounded vectors and four different types
of disjoint mn-distributionally near to 0 vectors:

Definition 3.1. Let (mn) ∈ R. Suppose that, for every j ∈ NN and k ∈ N,
Aj,k : D(Aj,k) ⊆ X → Y is an MLO and x ∈

⋂N
j=1

⋂∞
k=1D(Aj,k), x 6= 0. Then

we say that:

(i) x is (d,mn)-distributionally near to 0 of type 1 for ((Aj,k)k∈N)1≤j≤N iff
there exists A ⊆ N such that dmn

(Ac) = 0 as well as for each j ∈ NN and
k ∈ N there exists xj,k ∈ Aj,kx such that limk∈A,k→∞ xj,k = 0, j ∈ NN ;

(ii) x is (d,mn)-distributionally near to 0 of type 2 for ((Aj,k)k∈N)1≤j≤N iff
for each ε > 0, j ∈ NN and k ∈ N there exists xj,k ∈ Aj,kx such that the
set
⋂
j∈NN

{k ∈ N : dY (xj,k, yj,k) ≥ ε} has the lower mn-density 0;

(iii) x is (d,mn)-distributionally near to 0 of type 3 for ((Aj,k)k∈N)1≤j≤N iff for
every j ∈ NN there exists a set Aj ⊆ N such that dmn

(Acj) = 0 as well as
for each k ∈ Aj there exists xj,k ∈ Aj,kx such that limk∈Aj ,k→∞ xj,k = 0;

(iv) x is (d,mn)-distributionally near to 0 of type 4 for ((Aj,k)k∈N)1≤j≤N iff
there exist an integer j ∈ NN and a set Aj ⊆ N such that dmn

(Acj) = 0 as
well as for each k ∈ Aj there exists xj,k ∈ Aj,kx such that
limk∈Aj ,k→∞ xj,k = 0.

Definition 3.2. Let (mn) ∈ R. Suppose that, for every j ∈ NN and k ∈ N,
Aj,k : D(Aj,k) ⊆ X → Y is an MLO, x ∈

⋂N
j=1

⋂∞
k=1D(Aj,k), x 6= 0, i ∈ N4

and m ∈ N. Then we say that:
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(i) x is (d,mn)-distributionally m-unbounded of type 1 for ((Aj,k)k∈N)1≤j≤N
iff there exists B ⊆ N such that dmn

(Bc) = 0 as well as for each j ∈ NN
and k ∈ B there exists x′j,k ∈ Aj,kx such that limk∈B,k→∞ pYm(x′j,k) =∞,
j ∈ NN ;

(ii) x is (d,mn)-distributionally m-unbounded of type 2 for ((Aj,k)k∈N)1≤j≤N
iff there exists B ⊆ N such that dmn

(Bc) = 0 as well as for each j ∈ NN
and k ∈ B there exists x′j,k ∈ Aj,kx such that

lim
k∈B,k→∞

∑
j∈NN

pYm(x′j,k) =∞;

(iii) x is (d,mn)-distributionally m-unbounded of type 3 for ((Aj,k)k∈N)1≤j≤N
iff for every j ∈ NN there exists Bj ⊆ N such that dmn

(Bcj ) = 0 as well
as for each k ∈ Bj there exists x′j,k ∈ Aj,kx such that

lim
k∈Bj ,k→∞

pYm(x′j,k) =∞;

(iv) x is (d,mn)-distributionally m-unbounded of type 4 for ((Aj,k)k∈N)1≤j≤N
iff there exist an integer j ∈ NN and a set Bj ⊆ N such that dmn

(Bcj ) = 0
as well as for each k ∈ Bj there exists x′j,k ∈ Aj,kx such that

lim
k∈Bj ,k→∞

pYm(x′j,k) =∞.

It is said that x is (d,mn)-distributionally unbounded of type i for
((Aj,k)k∈N)1≤j≤N iff there exists q ∈ N such that x is (d,mn)-distributionally
q-unbounded of type i for ((Aj,k)k∈N)1≤j≤N .

For each type od (X̃,mn)-disjoint distributional chaos, we can introduce the
notion of corresponding (d,mn, X̃)-distributionally irregular vectors, as follows:

Definition 3.3. Let (mn) ∈ R. Suppose that, for every j ∈ NN and k ∈ N,
Aj,k : D(Aj,k) ⊆ X → Y is an MLO and x ∈ X̃ ∩

⋂N
j=1

⋂∞
k=1D(Aj,k), x 6= 0.

Then we say that:

(i) x is a (d, X̃,mn, 1)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 1 for ((Aj,k)k∈N)1≤j≤N ,
x is (d,mn)-distributionally unbounded of type 1 for ((Aj,k)k∈N)1≤j≤N
and the requirements of the last condition hold with x′j,k = xj,k, i.e., the
sequences in definitions of d-distributionally nearness to 0 of type 1 and d-
distributionally unboundedness of type 1 must be the same (for the sake of
brevity, in all remaining parts of this definition and Definition 3.4 below,
we will assume a priori this condition);

(ii) x is a (d, X̃,mn, 2)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 3 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 1 for ((Aj,k)k∈N)1≤j≤N ;



142 Marko Kostić

(iii) x is a (d, X̃,mn, 3)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 3 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 3 for ((Aj,k)k∈N)1≤j≤N ;

(iv) x is a (d, X̃,mn, 4)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 4 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 3 for ((Aj,k)k∈N)1≤j≤N ;

(v) x is a (d, X̃,mn, 5)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 3 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 4 for ((Aj,k)k∈N)1≤j≤N ;

(vi) x is a (d, X̃,mn, 6)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 4 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 1 for ((Aj,k)k∈N)1≤j≤N ;

(vii) x is a (d, X̃,mn, 7)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 1 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 2 for ((Aj,k)k∈N)1≤j≤N ;

(viii) x is a (d, X̃,mn, 8)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 1 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 4 for ((Aj,k)k∈N)1≤j≤N ;

(ix) x is a (d, X̃,mn, 9)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 1 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 2 for ((Aj,k)k∈N)1≤j≤N ;

(x) x is a (d, X̃,mn, 10)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 3 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 2 for ((Aj,k)k∈N)1≤j≤N ;

(xi) x is a (d, X̃,mn, 11)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 2 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 1 for ((Aj,k)k∈N)1≤j≤N ;

(xii) x is a (d, X̃,mn, 12)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N
iff x is (d,mn)-distributionally near to 0 of type 2 for ((Aj,k)k∈N)1≤j≤N and
x is (d,mn)-distributionally unbounded of type 3 for ((Aj,k)k∈N)1≤j≤N .

In the case that X̃ = X, then we also say that x is a (d,mn, i)-distribu-
tionally irregular vector for ((Aj,k)k∈N)1≤j≤N (i ∈ N12). We similarly define
the notion of a (d,mn, i)-distributionally near to 0 ((d,mn, i)-distributionally
m-unbounded, (d,mn, i)-distributionally unbounded, (d, X̃,mn, i)-distributio-
nally irregular, (d,mn, i)-distributionally irregular) vector for tuple (Aj)1≤j≤N
of MLOs.

Concerning distributionally mn-unbounded vectors, big differences exist be-
tween Banach spaces and Fréchet spaces, as already observed in [15] for the
case that mn ≡ n.

Let {0} 6= X ′ ⊆ X̃ be a linear manifold, and let i ∈ N12. Then we say that:



Disjoint reiterative mn-distributional chaos 143

d1. X ′ is a (d, X̃,mn, i)-distributionally irregular manifold for
((Aj,k)k∈N)1≤j≤N ((d,mn, i)-distributionally irregular manifold in the case

that X̃ = X) iff any element x ∈ (X ′ ∩
⋂N
j=1

⋂∞
k=1D(Aj,k)) \ {0} is a

(d, X̃,mn, i)-distributionally irregular vector for ((Aj,k)k∈N)1≤j≤N ; the

notion of a ((d,mn, i)-, (d, X̃,mn, i)-)distributionally irregular manifold
for (Aj)1≤j≤N is defined similarly.

d2. X ′ is a uniformly (d, X̃,mn, i)-distributionally irregular manifold for
((Aj,k)k∈N)1≤j≤N (uniformly (d,mn, i)-distributionally irregular mani-

fold in the case that X̃ = X) iff there exists m ∈ N such that any vector

x ∈ (X ′ ∩
⋂N
j=1

⋂∞
k=1D(Aj,k)) \ {0} is both (d,mn, i)-distributionally m-

unbounded (with the meaning clear) and (d,mn, i)-distributionally near
to 0 for ((Aj,k)k∈N)1≤j≤N . In this case, X ′ is (2−m

X̃
,mn)-scrambled set

for ((Aj,k)k∈N)1≤j≤N .

We have the following:

d3. Suppose that 0 6= x ∈ X̃∩
⋂N
j=1

⋂∞
k=1D(Aj,k) is a (d, X̃,mn, i)-distributi-

onally irregular vector for ((Aj,k)k∈N)1≤j≤N . ThenX ′ ≡ span{x} is a uni-

formly (d, X̃,mn, i)-distributionally irregular manifold for
((Aj,k)k∈N)1≤j≤N .

If X ′ is dense in X̃, then the notions of dense ((d,mn, i)-, (d, X̃,mn, i)-)distri-
butionally irregular manifolds, dense uniformly ((d,mn, i)-, (d, X̃,mn, i)-)dis-
tributionally irregular manifolds, etc., are defined analogously. It will be said
that (A1,k)k∈N, (A2,k)k∈N, · · ·, (AN,k)k∈N are (d, X̃,mn, i)-distributionally cha-

otic iff the tuple ((Aj,k)k∈N)1≤j≤N is (d, X̃,mn, i)-distributionally chaotic; a
similar terminological agreement will be accepted for operators.

The conclusions obtained in [15, Remark 3.12] can be formulated for
(d, X̃,mn, i)-distributionally irregular vectors and associated manifolds. Con-
cerning disjoint mn-distributional chaos of type 2 and disjoint reiterative mn-
distributional chaos of types 1+ and 2Bd, we introduce the following notion:

Definition 3.4. Let (mn) ∈ R. Suppose that, for every j ∈ NN and k ∈ N,
Aj,k : D(Aj,k) ⊆ X → Y is an MLO and x ∈ X̃ ∩

⋂N
j=1

⋂∞
k=1D(Aj,k), x 6= 0.

Then we say that:

(ii) x is a reiteratively (d, X̃,mn)-distributionally irregular vector of type 1+
for ((Aj,k)k∈N)1≤j≤N iff x is (d,mn)-distributionally near to zero of type
1, with corresponding elements xj,k ∈ Aj,kx satisfying additionally that
there exists σ > 0 with

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, 0

)
< σ

})
= 0;

(ii) x is a reiteratively (d, X̃,mn)-distributionally irregular vector of type 2Bd

for ((Aj,k)k∈N)1≤j≤N iff x is (d,mn)-distributionally near to zero of type
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1, with corresponding elements xj,k ∈ Aj,kx satisfying additionally that
there exists σ > 0 with

Bdl:mn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, 0

)
≥ σ

})
> 0;

(iii) x is a (d, X̃,mn)-distributionally irregular vector of type 2 for
((Aj,k)k∈N)1≤j≤N iff x is (d,mn)-distributionally near to zero of type
1, with corresponding elements xj,k ∈ Aj,kx satisfying additionally that
there exists σ > 0 with

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, 0

)
≥ σ

})
> 0.

Let {0} 6= X ′ ⊆ X̃ be a linear manifold, and let i ∈ N12. Then we
say that X ′ is a reiteratively (d, X̃,mn)-distributionally irregular manifold of
type 1+ [2Bd], resp. (d, X̃,mn)-distributionally irregular manifold of type 2
for ((Aj,k)k∈N)1≤j≤N (reiterative (d,mn)-distributionally irregular manifold of
type 1+ [2Bd], resp. (d,mn)-distributionally irregular manifold of type 2 in

the case that X̃ = X) iff any element x ∈ (X ′ ∩
⋂N
j=1

⋂∞
k=1D(Aj,k)) \ {0} is

a reiteratively (d, X̃,mn)-distributionally irregular vector of type 1+ [2Bd] for
((Aj,k)k∈N)1≤j≤N ; the above notion is introduced for (Aj)1≤j≤N similarly.

We have the following: Suppose that 0 6= x ∈ X̃ ∩
⋂N
j=1

⋂∞
k=1D(Aj,k)

is a reiteratively (d, X̃,mn)-distributionally irregular vector of type 1+ [2Bd],
resp. (d, X̃,mn)-distributionally irregular vector of type 2 for ((Aj,k)k∈N)1≤j≤N
(and, therefore, reiterative (d, σX̃ ,mn)-scrambled set of type 1+ [2Bd], resp.
(d, σX̃ ,mn)-scrambled set of type 2 for ((Aj,k)k∈N)1≤j≤N ). ThenX ′ ≡ span{x}
is a reiteratively (d, X̃,mn)-distributionally irregular manifold of type 1+ [2Bd],
resp. (d, X̃,mn)-distributionally irregular manifold of type 2 for
((Aj,k)k∈N)1≤j≤N .

Let ((Aj,k)k∈N)1≤j≤N be given in advance. Then we define ((Aj,k)k∈N)1≤j≤N
by Aj,k := (Aj,k)|X̃ (k ∈ N, 1 ≤ j ≤ N). The following simple result, which
can also be formulated for disjoint mn-distributional chaos of type 2 and dis-
joint reiterative mn-distributional chaos of types 1+ and 2Bd, almost directly
follows from introduced definitions:

Proposition 3.5. Let (mn) ∈ R, i ∈ N12, let X̃ be a closed linear subspace of
X, and let {0} 6= X ′ be a linear subspace of X̃.

(i) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃,mn, i)-distributionally chaotic
iff the sequence ((Aj,k)k∈N)1≤j≤N is (d,mn, i)-distributionally chaotic.

(ii) A vector x is a (d, X̃,mn, i)-distributionally irregular vector for
((Aj,k)k∈N)1≤j≤N iff x is a (d,mn, i)-distributionally irregular vector for
((Aj,k)k∈N)1≤j≤N .
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(iii) A manifold X ′ is a (uniformly) (d, X̃,mn, i)-distributionally irregular
manifold for ((Aj,k)k∈N)1≤j≤N iff X ′ is a (uniformly) (d,mn, i)-distri-
butionally irregular manifold for the sequence ((Aj,k)k∈N)1≤j≤N .

4. Main results

We start by stating the following theorem closely connected with [4, Propo-
sition 7, Proposition 9]:

Theorem 4.1. Suppose that (mn) ∈ R, ((Tj,k)k∈N)1≤j≤N is a tuple of opera-
tors in L(X,Y ). If the following two conditions are satisfied:

(I0,∩) : there exists a dense linear subspace X0 of X satisfying that for each x ∈
X0 there exists a set Ax ⊆ N such that dmn

(Acx) = 0 and limk∈Ax Tj,kx =
0, 1 ≤ j ≤ N ;

(I∞,∩) : there exist a zero sequence (yl) in X, a number ε > 0, a strictly increasing
sequence (Nl) in N and an integer m ∈ N such that, for every l ∈ N, we
have

card
({

1 ≤ k ≤ mNl
: (∀j ∈ NN ) pYm

(
Tj,kyl

)
≥ ε
})
≥ mNl

− Nl
l
,

(for every l ∈ N, card
(
{1 ≤ k ≤ mNl

: (∀j ∈ NN ) ‖Tj,kyl‖Y ≥ ε}
)
≥

mNl
− Nl

l , in the case that Y is a Banach space),

then there exists a (d,mn, 1)-distributionally irregular vector for
((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N is (d,mn, 1)-distributi-
onally chaotic.

Proof. The proof of this theorem follows by combining the arguments contained
in the proofs of [4, Propositions 7 and 9], [15, Theorem 4.1] and [11, Proposi-
tion 3.6]. Concerning the above-mentioned propositions from [4], the following
should be noted. First of all, for each natural number l ∈ N we set

Ml :=

{
x ∈ X : (∃n ∈ N) (∀j ∈ NN )

∣∣{k ∈ N : pYm(Tj,kx) < l} ∩ [1,mn]
∣∣ ≤ n

l

}
.

Then, clearly, Ml is an open set for all l ∈ N. Let l ∈ N, x ∈ X, m1 ∈ N and δ >
0. Then there exist u ∈ {y1, y2, · · ·} and n ∈ N such that pm1

(u) < δε/l2 := c
and |{k ∈ [1,mn]∩N : (∀j ∈ NN ) pYm(Tj,ku) ≥ ε}| ≤ n

l . Define us := x+δsu/l2c
for s = 0, 1, · · ·, l − 1. If we replace the sets A and Bs throughout the proof of
[4, Proposition 7] with the sets

A :=
{

1 ≤ j ≤ mn : (∀j ∈ NN ) pYm(Tj,ku) > ε
}
,

Bs :=
{

1 ≤ j ≤ mn : (∃j ∈ NN ) pYm(Tjus) ≤ k
}
, s = 0, 1, · · ·, 2k(1 +mn)− 1,
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where

us := x+
δsu

2k(1 +mn)C
, s = 0, 1, · · ·, 2k(1 +mn)− 1

for a sufficiently large integer n, we can show that the set Ml is dense. Hence,
M :=

⋂
l∈NMl is a residual set and each element ofM is a (d,mn, 1)-distribu-

tionally m-unbounded vector for the sequence ((Tj,k)k∈N)1≤j≤N . Concerning
[4, Proposition 9], it is only worth noting that

X0 ⊆Ml,m

:=

{
x ∈ X : (∃n ∈ N) (∀j ∈ NN )

∣∣∣{j ∈ N : pYm(Tjx) ≥ 1/l
}
∩ [1,mn]

∣∣∣ ≤ n

l

}
for all l, m ∈ N as well as that the set Ml,m is an open and dense subset of X
for all l, m ∈ N, so that the set

⋂
l,m∈NMl,m is residual.

For the sequences of single-valued linear operators, we suppose that the
condition (P) holds, where:

(P) Tj,k : D(Tj,k) ⊆ X → X is a linear mapping, C ∈ L(X) is an injective
mapping, as well as R(C) ⊆ D∞(Tj,k), Tj,kC ∈ L(X) (k ∈ N, j ∈ NN ).

Then, for every k ∈ N and j ∈ NN , the mapping Tj,k : R(C) → X is an
element of the space L([R(C)], X). By Theorem 4.1, we immediately obtain
the following

Corollary 4.2. Suppose that the condition (P) holds, as well as that the fol-
lowing two conditions hold:

(L0,∩) : there exists a dense linear subspace X0 of X satisfying that for each
x ∈ X0 there exists a set Ax ⊆ N such that dmn

(Acx) = 0 and
limk∈Ax

Tj,kCx = 0 (j ∈ NN ).

(L∞,∩) : there exist a sequence (zl) in X, a number ε > 0, a strictly increasing
sequence (Nl) in N and an integer m ∈ N such that, for every l ∈ N,
we have

card
({

1 ≤ k ≤ mNl
: (∀j ∈ NN ) pYm

(
Tj,kCyl

)
≥ ε
})
≥ mNl

− Nl
l
,

(for every l ∈ N, card
(
{1 ≤ k ≤ mNl

: (∀j ∈ NN ) ‖Tj,kCyl‖Y ≥
ε}
)
≥ mNl

− Nl

l , in the case that Y is a Banach space),

Then there exists a (d,mn, 1)-distributionally irregular vector for
((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N is (d,mn, 1)-distributio-
nally chaotic. Moreover, the corresponding (d, σ)-scrambled set S for
((Tj,k)k∈N)1≤j≤N can be chosen to be a linear submanifold of R(C).

As in the case mn ≡ n, Theorem 4.1 (Corollary 4.2) admits a reformulation
for any other type of (d,mn, i)-distributional chaos introduced above and we
only need to replace the condition (I0,∩) ((L0,∩)) with one of the following
conditions:
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(I0,∪) : = I0,∩;

(I0,∀) : for every j ∈ NN there exist a dense linear subspace X0 of X and a
set Aj ⊆ N such that dmn

(Acj) = 0 and limk∈Aj ,k→∞ Tj,kx = 0;

(I0,∃) : there exist an integer j ∈ NN , a dense linear subspace X0 of X and
a set Aj ⊆ N such that dmn

(Acj) = 0 and limk∈Aj ,k→∞ Tj,kx = 0;

(L0,∪) : = L0,∩;

(L0,∪): the same as (I0,∪) with Tj,k = Tj,kC,

(L0,∀): the same as (I0,∀) with Tj,k = Tj,kC,

(L0,∃) : the same as (I0,∃) with Tj,k = Tj,kC,

and the condition (I∞,∩) ((L∞,∩)) with one of the following conditions:

(I∞,∪) : there exist a zero sequence (yl) in X, a number ε > 0, a strictly
increasing sequence (Nl) in N and an integer m ∈ N such that, for
every l ∈ N, we have

card
({

1 ≤ k ≤ mNl
: max
1≤j≤N

dY
(
Tj,kyl, 0

)
> ε
})
≥ mNl

− Nl
l
,

(for every l ∈ N, card
(
{1 ≤ k ≤ mNl

: max1≤j≤N ‖Tj,kyl‖Y > ε}
)
≥

mNl
− Nl

l , in the case that Y is a Banach space);

(I∞,∀) : for every j ∈ NN , there exist a zero sequence (yl) in X, a number
ε > 0, a strictly increasing sequence (Nl) in N and an integer m ∈ N
such that, for every l ∈ N, we have

card
({

1 ≤ k ≤ mNl
: dY

(
Tj,kyl, 0

)
> ε
})
≥ mNl

− Nl
l
,(4.1)

(for every l ∈ N,

card
(
{1 ≤ k ≤ mNl

: ‖Tj,kyl‖Y > ε}
)
≥ mNl

− Nl
l
,(4.2)

in the case that Y is a Banach space);

(I∞,∃) : there exist an integer j ∈ NN , a zero sequence (yl) in X, a number
ε > 0, a strictly increasing sequence (Nl) in N and an integer m ∈ N
such that, for every l ∈ N, we have that (4.1) holds ((4.2) holds, in
the case that Y is a Banach space);

(L∞,∪): the same as (I∞,∪) with Tj,k = Tj,kC.

(L∞,∀): the same as (I∞,∀) with Tj,k = Tj,kC.

(L∞,∃) : the same as (I∞,∃) with Tj,k = Tj,kC.
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The argumentation used in the proof of [11, Theorem 4.1] and the proof of
implication (iv)⇒ (iii) in [4, Theorem 15], along with the process of ‘renorming’
described in the proof of second part of [7, Theorem 3.7], can be used to see
that the following sufficient criterion for dense (d,mn, 1)-distributional chaos
of linear continuous operators holds:

Theorem 4.3. Suppose that X is separable, X0 is a dense linear subspace of
X, (Tj,k)k∈N is a sequence in L(X,Y ) (j ∈ NN ) and the following holds:

(a) limk→∞ Tj,kx = 0, x ∈ X0, j ∈ NN ,

(b) there exists a (d,mn, 1)-distributionally unbounded vector x for
((Tj,k)k∈N)1≤j≤N .

Then there exists a dense uniformly (d,mn, 1)-distributionally irregular man-
ifold for the sequence ((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N is
densely (d,mn, 1)-distributionally chaotic.

Applying Theorem 4.3, we may deduce the following important corollary:

Corollary 4.4. Suppose that the condition (P) holds, X is separable, X0 is a
dense linear subspace of X and the following holds:

(a) limk→∞ Tj,kCx = 0, x ∈ X0, j ∈ NN ,

(b) there exist x ∈ X, m ∈ N and a set B ⊆ N such that dmn
(Bc) = 0, and

limk→∞,k∈B pm(Tj,kCx) = ∞, j ∈ NN , resp. limk→∞,k∈B ‖Tj,kCx‖ =
∞, j ∈ NN , if X is a Banach space.

Then there exists a uniformly (d,mn, 1)-distributionally irregular manifold W
for ((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N are (d,mn, 1)-distri-
butionally chaotic. Furthermore, if R(C) is dense in X, then W can be chosen
to be dense in X and ((Tj,k)k∈N)1≤j≤N are densely (d,mn, 1)-distributionally
chaotic.

It is worth noting that Theorem 4.3 and Corollary 4.4 can be straightfor-
wardly reformulated for (d,mn, 9)-distributional chaos by using Proposition 2.4
and [11, Theorem 4.1], as well as for some other types of (d,mn, i)-distributional
chaos.

We continue by providing the following illustrative example:

Example 4.5. Let X := L2(R), c > b/2 > 0, Ω := {λ ∈ C : <λ < c −
b/2} and Acu := u′′ + 2bxu′ + cu is the bounded perturbation of the one-
dimensional Ornstein-Uhlenbeck operator acting with domain D(Ac) := {u ∈
L2(R) ∩ W 2,2

loc (R) : Acu ∈ L2(R)}. Assume that ((Pj,k(z))k∈N)1≤j≤N is a
tuple consisting of sequence of non-zero complex polynomials such that there
exists an open connected subset Ω′ of Ω such that limk→∞ Pj,k(λ) = 0, λ ∈ Ω′,
j ∈ NN and also that there exists a number λ ∈ Ω such that |Pj,k(λ)| > 1 for
all k ∈ N and j ∈ NN . Using our analysis from [11, Example 4.6] and Corollary
4.4, we get that the sequence ((Pj,k(Ac))k∈N)1≤j≤N is densely (d,mn, 1)-distri-
butionally chaotic for each sequence (mn) ∈ R.
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Concerning examples and results presented in [15], we can simply verify
that the operators z1A

n1 , · · ·, zNAnN from [15, Example 4.5], the operators
Φ1(D), · · ·, ΦN (D) from [15, Example 4.6] and the operators T1, · · ·, TN from
[15, Theorem 4.11, Example 4.12, Example 5.2] are densely (d,mn, 1)-distribu-
tionally chaotic for each sequence (mn) ∈ R. It is also worth noting that [15,
Proposition 4.9] can be used to provide a great number of illustrative examples
of sequences of unbounded backward shift operators on Banach sequence spaces
that are densely (d,mn, 1)-distributionally chaotic for each sequence (mn) ∈ R.

Concerning disjoint distributional chaos for weighted translations on locally
compact groups considered in [15, Subsection 5.2], it is only worth noting that
[15, Theorem 5.6, Theorem 5.7] can be straightforwardly reformulated for dis-
joint (d,mn, 1)-distributional chaos by assuming that the sequence B in their
formulations satisfies the condition dmn

(Bc) = 0. n
Suppose now that X is a Fréchet sequence space in which (en)n∈N is a basis

(see e.g. [10, Section 4.1]) and the unilateral weighted backward shift T, given
by

T
〈
xn
〉
n∈N :=

〈
xn+1

〉
n∈N,

〈
xn
〉
n∈N ∈ X,

is a continuous linear operator on X. For the sake of completeness, we will pro-
vide the main details of proof of following slight generalization of [15, Proposi-
tion 5.4]:

Proposition 4.6. Suppose that S is an infinite set of natural numbers such that
the series

∑
n∈S en converges in X, and there exist natural numbers r1, · · ·, rN

such that the set

Q :=
{
k ∈ N :

(
∀j ∈ NN

)
rjk ∈ S + 1

}
satisifes dmn

(Qc) = 0. Then the operators T r1 , · · ·, T rN are densely (d,mn, 1)-
distributionally chaotic.

Proof. By Theorem 4.3, it suffices to show that there exist x ∈ X, m ∈ N
and a set B ⊆ N such that dmn

(Bc) = 0 and limk→∞,k∈B ‖T rjkx‖ = ∞,
j ∈ NN . For this, we employ Theorem 4.1: Put yl :=

∑
n∈S,n≥l en, l ∈ N. Then

liml→∞ yl = 0 and there exists a number ε > 0 such that d(〈xn〉n∈N, 0) < ε
implies |x1| < 1. Hence, it suffices to construct a strictly increasing sequence
(Nl) in N such that, for every l ∈ N, we have

card
({

1 ≤ k ≤ mNl
: (∀j ∈ NN ) d

(
T rjkyl, 0

)
> ε
})
≥ mNl

− Nl
l
.

But, this simply follows from our choice of number ε, the equality dmn
(Qc) = 0

and the fact that for a number l ∈ N given in advance we have (T rj )kyl =
T rjkyl = e1 + · · · for every j ∈ NN and k ∈ N such that rjk−1 ∈ S∩ [l,∞).

We can similarly reformulate [15, Proposition 5.5] by assuming that the set
Qg satisfies the condition dmn

(Qc
g) = 0.
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Regarding disjoint mn-distributional chaos of type 2 and disjoint reiterative
mn-distributional chaos of types 1+ and 2Bd, it is worth noting that the proofs
of our structural results from [11, Section 4] in connection with these types
of dense (reiterative) mn-distributional chaos and the arguments already used
can be employed for proving the following results:

Theorem 4.7. Suppose that X is separable, X0 is a dense linear subspace of
X, (Tj,k)k∈N is a sequence in L(X,Y ) (j ∈ NN ) and the following holds:

(a) limk→∞ Tj,kx = 0, x ∈ X0, j ∈ NN ,

(b) there exist m ∈ N, c > 0, x ∈ X and set B ⊆ N such that Bdl;mn
(Bc) = 0

and limk∈B p
Y
m(Tj,kx) = +∞ for all j ∈ NN .

Then there exists a dense (d,mn)-distributionally irregular manifold of type
1+ for the sequence ((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N is
densely (d,mn)-distributionally chaotic of type 1+.

Theorem 4.8. Suppose that X is separable, X0 is a dense linear subspace of
X, (Tj,k)k∈N is a sequence in L(X,Y ) (j ∈ NN ) and the following holds:

(a) limk→∞ Tj,kx = 0, x ∈ X0, j ∈ NN ,

(b) there exist m ∈ N, c > 0, x ∈ X and set B ⊆ N such that dmn
(B) = c

and limk∈B p
Y
m(Tj,kx) = +∞ for all j ∈ NN .

Then there exists a dense (d,mn)-distributionally irregular manifold of type 2
for the sequence ((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N is densely
(d,mn)-distributionally chaotic of type 2.

Theorem 4.9. Suppose that X is separable, X0 is a dense linear subspace of
X, (Tj,k)k∈N is a sequence in L(X,Y ) (j ∈ NN ) and the following holds:

(a) limk→∞ Tj,kx = 0, x ∈ X0, j ∈ NN ,

(b) there exist m ∈ N, c > 0, x ∈ X and set B ⊆ N such that Bdl:mn
(B) = c

and limk∈B p
Y
m(Tj,kx) = +∞ for all j ∈ NN .

Then there exists a dense (d,mn)-distributionally irregular manifold of type
2Bd for the sequence ((Tj,k)k∈N)1≤j≤N , and particularly, ((Tj,k)k∈N)1≤j≤N is
densely (d,mn)-distributionally chaotic of type 2Bd.

5. Conclusions and final remarks

We close the paper by providing a small heuristical study concerning disjoint
reiteratively mn-distributionally chaotic properties of type s for general binary
relations over metric spaces.

Assume that (X, τ) is a topological space and (Y, dY ) is a metric space,
(mn) is an increasing sequence in [1,∞) satisfying lim infn→∞

mn

n > 0, that
σ > 0, ε > 0 and that (xj,k)k∈N, (yj,k)k∈N are two given sequences in Y
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(1 ≤ j ≤ N). For any type of (d,mn, i)-distributional chaos considered by
now, where 1 ≤ i ≤ 12, we can analyze a great number of new types of disjoint
(reiterative) distributional chaos of type s for general binary relations (in what
follows, eight new types concretly). We will briefly explain our idea for i = 1
and i = 12. Consider the following conditions:

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.1)

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.2)

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.3)

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.4)

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ σ

})
> 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.5)

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ σ

})
> 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.6)
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Bdl;mn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
> σ

})
> 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;

(5.7)

Bdl;mn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
> σ

})
> 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0.

(5.8)

Definition 5.1. Suppose that, for every j ∈ NN and k ∈ N, ρj,k : D(ρj,k) ⊆
X → Y is a binary relation and X̃ is a non-empty subset of X. If there exist
an uncountable set S ⊆

⋂N
j=1

⋂∞
k=1D(ρj,k) ∩ X̃ and σ > 0 such that for each

ε > 0 and for each pair x, y ∈ S of distinct points we have that for each
j ∈ NN and k ∈ N there exist elements xj,k ∈ ρj,kx and yj,k ∈ ρj,ky such that
(5.1) [(5.2),(5.3),(5.4)] holds, resp. (5.5) [(5.6),(5.7),(5.8)] holds, then we say
that the tuple of sequences ((ρj,k)k∈N)1≤j≤N is (d,mn, X̃, 1)-reiteratively dis-

tributionally chaotic of type 1, resp. (d,mn, X̃, 1)-reiteratively distributionally
chaotic of type 2.

In the case that i = 12, we consider the following conditions:(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.9)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.10)

(
∀j ∈ NN

)
Bdl;mn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.11)

(
∀j ∈ NN

)
Bdl;mn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.12)
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∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ σ

})
> 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.13)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
≥ σ

})
> 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.14)

(
∀j ∈ NN

)
Bdl;mn

({
k ∈ N : dY

(
xj,k, yj,k

)
> σ

})
> 0, and

dmn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.15)

(
∀j ∈ NN

)
Bdl;mn

({
k ∈ N : dY

(
xj,k, yj,k

)
> σ

})
> 0, and

Bdl;mn

( ⋃
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ε
})

= 0;
(5.16)

Definition 5.2. Suppose that, for every j ∈ NN and k ∈ N, ρj,k : D(ρj,k) ⊆
X → Y is a binary relation and X̃ is a non-empty subset of X. If there exist
an uncountable set S ⊆

⋂N
j=1

⋂∞
k=1D(ρj,k) ∩ X̃ and σ > 0 such that for each

ε > 0 and for each pair x, y ∈ S of distinct points we have that for each j ∈ NN
and k ∈ N there exist elements xj,k ∈ ρj,kx and yj,k ∈ ρj,ky such that (5.9)
[(5.10),(5.11),(5.12)] holds, resp. (5.13) [(5.14),(5.15),(5.16)] holds, then we
say that the tuple of sequences ((ρj,k)k∈N)1≤j≤N is (d,mn, X̃, 12)-reiteratively

distributionally chaotic of type 1, resp. (d,mn, X̃, 12)-reiteratively distributio-
nally chaotic of type 2.

Concerning disjoint reiterative distributional chaos of types 2 1
2 and 3, we

would like to note that for any type of reiterative [X̃,mn, i]-distributional chaos,
where 9 ≤ i ≤ 20, we can consider two kinds of disjoint reiterative [X̃,mn, i]-
distributional chaos of types 2 1

2 and 3; see [18] for the notion. We will explain
this only for i = 9. Consider the following conditions:
there exist c > 0 and r > 0 such that

dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})

< c < dmn

( ⋂
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
(5.17)
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for 0 < σ < r;
there exist c > 0 and r > 0 such that(

∀j ∈ NN
)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
< c < dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
(5.18)

for 0 < σ < r;
there exist positive real numbers a, b, c > 0 such that (5.17) holds for σ ∈ [a, b];
there exist positive real numbers a, b, c > 0 such that (5.18) holds for σ ∈ [a, b].

We can further extend the notions introduced in Definition 5.1 and Defini-
tion 5.2 by allowing the parameter σ > 0 to depend on pairs x, y ∈ S. We will
use this approach in the following

Definition 5.3. Let i ∈ N2. Suppose that, for every j ∈ NN and k ∈ N,
ρj,k : D(ρj,k) ⊆ X → Y is a binary relation and X̃ is a non-empty subset of

X. If there exists an uncountable set S ⊆
⋂N
j=1

⋂∞
k=1D(ρj,k) ∩ X̃ such that

for each pair x, y ∈ S of distinct points we have that for each j ∈ NN and
k ∈ N there exist elements xj,k ∈ ρj,kx and yj,k ∈ ρj,ky as well as positive real
numbers c > 0 and r > 0, resp. there exist positive real numbers a, b, c > 0
such that (5.17) [(5.18)] holds, resp. (5.17) [(5.18)] holds, then we say that the
tuple of sequences ((ρj,k)k∈N)1≤j≤N is [X̃,mn, 9]-reiteratively distributionally

chaotic of type i; 21
2 , resp. [X̃,mn, 9]-reiteratively distributionally chaotic of

type i; 3.

We can introduce many other types of reiterative disjoint distributional
chaos of type s by considering different types of (Banach) lower and upper mn-
densities for definitions, but all aspects of the introduced notions cannot be
easily perceived. This is only an initial study of disjoint reiterative mn-distri-
butional chaos and we can propose a great deal of open problems and questions
about this theme, especially disjoint analogues of questions from [11].

We close the paper with the observation that we have recently analyzed
disjoint distributionally chaotic properties of abstract PDEs in [17]. The results
established in this paper can be slightly generalized for disjoint mn-distribu-
tional chaos; for more details about this topic, the reader may consult the
forthcoming monograph [14].
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