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Cubic spline scheme on variable mesh for singularly
perturbed periodical boundary value problem

A. Puvaneswari1, A. Ramesh Babu2 and T. Valanarasu 34

Abstract. In this paper, a numerical method is suggested to solve
singularly perturbed periodical boundary value problem for linear second
order ordinary differential equation with a small parameter multiplying
the first and second derivatives. This method involves a cubic spline
scheme along with non-uniform meshes to the above said problem so as
to derive the scheme is second order accurate in the maximum norm.
The theoretical results are validated through numerical experiments.
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1. Introduction

Singularly Perturbed Differential Equations (SPDEs) arise in diverse areas
of applied mathematics, including linearized Navier-Stokes equation at high
Reynolds number, heat transport problem with large Peclet numbers, magneto-
hydrodynamics duct problems at Hartman number and drift diffusion equation
of semiconductor device modeling. In particular, singularly perturbed peri-
odical boundary value problem arises in geophysical fluid dynamics, oceanic
and atmospheric circulation [3, 10]. The numerical solution of such a prob-
lem exhibits significant difficulties, particularly when the diffusion coefficient
is small and it corresponds to a high Reynolds number, Peclet number etc.
This implies that sharp boundary and/or interior layers may degrade the accu-
racy of standard schemes. Therefore, the interest in developing and analyzing
efficient numerical methods for singularly perturbed problems has increased
enormously. Parameter-uniform numerical methods, with maximum norm er-
rors independent of the singular perturbation parameter, have been developed
over thirty years (see [5, 9, 10, 11] and the reference are therein). Therefore
these types of SPDEs have to be dealt with separately and diligently.

Motivated by the works of [1, 2, 3, 4, 6, 7, 8], a numerical method involv-
ing cubic spline scheme is suggested to solve the following class of singularly
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perturbed periodical boundary value problem:

Lu(x) ≡ −ε2u′′(x)− εa(x)u′(x) + b(x)u(x) = f(x), x ∈ Ω = (0, 1),(1.1)

BL u ≡ u(0)− u(1) = 0,(1.2)

BR u ≡ ε(u′(1)− u′(0)) = A,(1.3)

where ε (0 < ε � 1) is a singular perturbation parameter, α∗ ≥ a(x) ≥ α >
0, β∗ ≥ b(x) ≥ β > 0 and A is a given constant. We assume that a(x), b(x)
and f(x) are sufficiently smooth functions and besides a(0) = a(1), b(0) =
b(1), f(0) = f(1) such that the Boundary Value Problem (BVP) (1.1)-(1.3) has
a unique solution u ∈ C4(Ω̄), Ω̄ = [0, 1]. The solution u(x) exhibits boundary
layer at both end points x = 0 and x = 1.

Amiraliyev et al.,[1], constructed a difference scheme based on the method
of integral identities by employing exponential basis function and interpolating
quadrature rules with the weight and remainder terms in the integral form on
uniform mesh for the problem (1.1)-(1.3). They proved that the method is
pointwise first order convergent, uniformly in ε. Further, a hybrid difference
scheme on Shishkin mesh is developed by Zhongdi Cen [4], for the BVP (1.1)-
(1.3). He proved that the scheme is almost second-order convergent, uniformly
in ε. In this article, we constructed a non-uniform mesh in the boundary layer
regions and uniform mesh outside these regions. On this mesh, continuous
problem (1.1)-(1.3)(differential equation and periodical boundary conditions)
is discretized by employing the cubic spline scheme.

Throughout the paper, C (sometimes subscripted) is a generic constant
independent of the nodes, mesh sizes and the perturbation parameter ε. Let
y : D → R, D ⊂ R. The appropriate norm for studying the convergence of
numerical solution to the exact solution of a singular perturbation problem is
the supremum norm ‖ y ‖D= sup

x∈D
|y(x)|.

2. Preliminaries

In this section, we present maximum principle, stability result and the
bounds for derivatives of the solution of the BVP (1.1)-(1.3). The approach to
derive derivative bounds is completely different from both [1] and [4] and it is
based on [8], thus

Let us consider the following BVP:

Lu = g(x, ε), BL u = 0, BR u = A.(2.1)

Definition 2.1. A function g(x, ε) is said to be of class (K, j) if the derivatives
of g with respect to x satisfy

|g(i)(x, ε)| ≤ Kε
[
1 + ε−i−1

(
exp

(−c0x
2ε

)
+ exp

(−c0(1− x)

2ε

))]
, 0 ≤ i ≤ j.(2.2)

Lemma 2.2. (Maximum Principle) [4] Let v be any smooth function sat-
isfying BL v = 0, BR v ≥ 0 and Lv(x) ≥ 0,∀x ∈ Ω. Then v(x) ≥ 0,∀x ∈ Ω̄.
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Lemma 2.3. (Stability Result) [4] If g is of class (K, 0), then for the solu-
tion u(x) of BVPs (2.1) satisfies

||u||Ω̄ ≤ β−1||f ||+ β̄|A|,

where β̄ = c−1
0 coth(c0/4), c0 = −α∗ +

√
α∗2 + 4β.

Lemma 2.4. Let u be the solution of (2.1) and g be of class (K, j). Then

|u(i)(p)| ≤ Cε−i, p = {0, 1}, 1 ≤ i ≤ j + 2.(2.3)

Proof. Equation (2.1) can be rewritten as

ε2u′′ + εau′ = bu− g ≡ h(2.4)

Let P (x) be an indefinite integral of a(x). Then the solution of (2.4) is given
by

u(x) =

∫ x

0

z(t)dt+ c1 + c2

∫ x

0

exp(−ε−1(P (t)− P (0)))dt,(2.5)

where z(x) =
∫ x

0
ε−2h(t) exp(−ε−1(P (x) − P (t)))dt and the constants c1 and

c2 are determined by the boundary conditions. Using the inequality

exp(−ε−1(P (x)− P (t))) ≤ exp(−ε−1c0(x− t)), t ≤ x(2.6)

and (2.2), we get

|z(x)| ≤ C
[
1 + exp

(−c0x
2ε

)
+ exp

(−c0(1− x)

2ε

)]
.

Therefore
∫ x

0
|z(t)|dt ≤ C. Also, from (2.5), we have

u(1) =

∫ 1

0

z(t)dt+ c1 + c2

∫ 1

0

exp(−ε−1(P (t)− P (0)))dt,

u(0) = c1, u′(0) = c2.

Then applying the boundary condition (1.2), we conclude that

c2 =
−
∫ 1

0
z(t)dt∫ 1

0
exp

(
− ε−1(P (t)− P (0))

)
dt
.

Using that a(x) is bounded on Ω, P (t) − P (0) ≤ Ct and
∫ 1

0
exp(−ε−1[P (t) −

P (0)])dt ≥ Cε, we find that |u′(0)| ≤ Cε−1 and from (1.3), we get |u′(1)| ≤
Cε−1.

The inequality is true for i = 1. For i > 1, we obtain the result by induction
and repeated differentiation process on the equation (2.1).

Lemma 2.5. Let u be the solution of (2.1) and g be of class (K, j). Then

|u(i)(x)| ≤ C
[
1 + ε−i

(
exp

(−c0x
ε

)
+ exp

(−c0(1− x)

ε

))]
, 0 ≤ i ≤ j + 1.
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Proof. We prove the theorem by mathematical induction. From the Stability
result, the inequality holds for i = 0. Differentiating (2.4) on both sides (i− 1)
times, and setting z(x) = u(i)(x), we get

ε2z′(x) + εa(x)z(x) = h(x),

where h(x) = εh1(x) + h2(x), h1(x) depends on a, u and h2(x) depends on
b, u, g and their derivatives up to and including (i − 1). Using (2.2) and the
inductive hypothesis, we have

h(x) ≤ Cε
[
1 + ε−i

(
exp

(−c0x
2ε

)
+ exp

(−c0(1− x)

2ε

))]
.(2.7)

Let P (x) be an indefinite integral of a(x). Then

z(x) = z(0) exp

(
−[P (x)− P (0)]

ε

)
+ ε−2

∫ x

0

h(t) exp

(
−[P (x)− P (t)]

ε

)
dt.

From (2.6), (2.7) and Lemma 2.4, we have

|z(x)| ≤Cε−i exp(
−c0x
ε

)

+ Cε−1

∫ x

0

(
exp(

−c0(x− t)
ε

)

+ ε−i{exp(
−c0(2x− t)

2ε
) + exp(

−c0(1 + x− 3t)

2ε
)}
)
dt,

and the desired result follows from the above inequality.

Theorem 2.6. Let u satisfy (1.1), then u(x) = γ1v(x) + γ2w(x) + z(x),

|z(i)(x)| ≤ C
[
1 + ε−i+1

(
exp

(−c0x
ε

)
+ exp

(−c0(1− x)

ε

))]
,

where v(x) = exp(−c0ε−1x), w(x) = exp(−c0ε−1(1−x)), and |γ1| ≤ C1, |γ2| ≤
C2.

Proof. Set γ1 =
εu′(0)

c0
, γ2 =

εu′(1)

c0
. We have |γ1| ≤ C1 and |γ2| ≤ C2.

Further set z(x) = u(x)− γ1v(x)− γ2w(x). We see that

Lz = f − bu− γ1ε
(
c0 − a(x)

)
v′(x) + γ2ε

(
c0 + a(x)

)
w′(x) + bz = g.

Differentiating once, we get Lz′ = g′ + a′(εz′)− b′z. Using a similar argument
as in [8] and by Lemma 2.5 with u replaced by z′, we arrive at the desired
result.
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3. Construction of Mesh

Let us consider the BVP (1.1)-(1.3). Since there are boundary layers
at x = 0 and at x = 1, we decompose Ω̄ into three subdomains

[0, σ], [σ, 1− σ], [1− σ, 1],

where σ = ε log( 1
ε ) denotes the width of the boundary layer. Let n1, n2 and

n3 be the number of points in the subdomains [0, σ], [σ, 1 − σ] and [1 − σ, 1],
respectively, such that n1 +n2 +n3 = N and n1 = n3. Further, let the positive
constants h̃1 and K be known. Then we generate the mesh as follows:

In the subdomain [0, σ], the grid is non-uniform and is defined thus:

h̃j = h̃j−1 +K[
h̃j−1

ε
] min

(
h̃2
j−1, ε

)
, j = 2, ..., n1.

Now, let

q̃ =

n1∑
j=1

h̃j

q =
σ

q̃

hj = qh̃j , j = 1, ..., n1

In the subdomain [σ, 1− σ], the grid is uniform and is defined as follows:

hj =
1− 2σ

n2
, j = n1 + 1, ..., n1 + n2.

In the subdomain [1 − σ, 1] the grid is the mirror image of the grid on [0, σ],
and therfore will be given by

hj = hN+1−j , j = n1 + n2 + 1, ..., N

and hence we define x0 = 0, xj = xj−1 + hj , j = 1, ..., N .

4. Derivation of the Difference Scheme

In this section, we derive cubic spline difference scheme which will be used
to approximate the differential equations (1.1) and the periodical boundary
condition (1.3).

Let x0 = 0, xN = 1, xj = x0 +
j∑

k=1

hk, j = 1, ..., N , hj = xj − xj−1 be

the mesh. For the given values u(x0), u(x1), ..., u(xN ) of a function u(x) at the
nodal points x0, x1, ..., xN there exists an interpolating cubic spline function
Sj(x) with the following properties:

(i) Sj(x) coincides with a polynomial of degree three on each subintervals
[xj−1, xj ], j = 1, ..., N
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(ii) Sj(x) ∈ C2(Ω̄)
(iii) Sj(xj) = u(xj), j = 0, 1, ..., N.
Then the cubic spline function can be written as follows:

Sj(x) =
(xj − x)3

6hj
Mj−1 +

(x− xj−1)3

6hj
Mj + (u(xj−1)−

h2
j

6
Mj−1)(

xj − x
hj

)

+ (u(xj)−
h2
j

6
Mj)(

x− xj−1

hj
),

(4.1)

where x ∈ [xj−1, xj ] and Mj = S′′j (xj), j = 0, ..., N.
We will derive the difference scheme by employing the above spline function

with a view to gaining the approximate solution of u(x).
Differentiating (4.1) and denoting the nodal interpolants of u(x) by uj ’s,

we get

S′j(x) =− (xj − x)2

2hj
Mj−1 +

(x− xj−1)2

2hj
Mj + (

uj − uj−1

hj
)− (

Mj −Mj−1

6
)hj

(4.2)

Since Sj(x) ∈ C2(Ω̄), we have

S′j(xj) = S′j+1(xj).

This gives

hj
6
Mj−1 +

hj + hj+1

3
Mj +

hj+1

6
Mj+1 =

uj+1 − uj
hj+1

− uj − uj−1

hj
,(4.3)

where

Mj =
1

ε2
(−fj − εaju′j + bjuj).(4.4)

The second order approximations for the first order derivative of u(x) are ob-
tained by employing Taylor series expansion for u around xj in order to get
the following approximations for uj+1 and uj−1

uj+1 ' uj + hj+1u
′
j +

h2
j+1

2
u′′j(4.5)

uj−1 ' uj − hju′j +
h2
j

2
u′′j .(4.6)

From equations (4.5) and (4.6), we get

u′j '
1

hjhj+1(hj + hj+1)
(−h2

j+1uj−1 + (h2
j+1 − h2

j )uj + h2
juj+1)(4.7)

u′′j '
2

hjhj+1(hj + hj+1)
(hj+1uj−1 − (hj + hj+1)uj + hjuj+1).(4.8)
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Also, we have

u′j+1 ' u′j + hj+1u
′′
j(4.9)

and

u′j−1 ' u′j − hju′′j .(4.10)

Substituting (4.7) and (4.8) into (4.9), we get

u′j+1 '
1

hjhj+1(hj + hj+1)
[h2

j+1uj−1 − (hj + hj+1)2uj + (h2
j + 2hjhj+1)uj+1]

(4.11)

and again from (4.10), we have

u′j−1 '
1

hjhj+1(hj + hj+1)
[−(h2

j+1 + 2hjhj+1)uj−1 + (hj + hj+1)2uj − h2
juj+1].

(4.12)

From the above detailed computations, we arrive at the following linear system
of equations:

LNuj = Qfj , j = 1, ..., N − 1,(4.13)

where

LNuj = r−j uj−1 + rcjuj + r+
j uj+1,

Qfj = q−j fj−1 + qcjfj + q+
j fj+1.

r−j =
(hj+1 + 2hj)

6(hj + hj+1)
εaj−1 +

hj+1

3hj
εaj −

h2
j+1

6hj(hj + hj+1)
εaj+1 +

hj

6
bj−1 −

ε2

hj
,

rcj = − (hj + hj+1)

6hj+1
εaj−1 −

(h2
j+1 − h2

j )

3hjhj+1
εaj +

(hj + hj+1)

6hj
εaj+1

+
(hj + hj+1)

3
bj +

ε2

hj
+

ε2

hj+1
,

r+j =
h2
j

6hj+1(hj + hj+1)
εaj−1 −

hj

3hj+1
εaj −

(2hj+1 + hj)

6(hj + hj+1)
εaj+1 +

hj+1

6
bj+1 −

ε2

hj+1
,

q−j =
hj

6
, qcj =

(hj + hj+1)

3
, q+j =

hj+1

6
.

(4.14)

Now, we approximate the periodical boundary condition (1.3) in the following
manner. From (4.1), we can find one sided limits of the first order derivative
as

S′j(xj−) =
hj
6
Mj−1 +

hj
3
Mj +

uj − uj−1

hj
(4.15)
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and

S′j(xj+) = −hj+1

3
Mj −

hj+1

6
Mj+1 +

uj+1 − uj
hj+1

.(4.16)

Substituting Mj to (4.15) and (4.16), we get an approximation of the one sided
first order derivatives at the boundary condition (1.3). It is noted that the
mesh widths of the subintervals [0, σ] and [1− σ, 1] are the same and therefore
let it be hN . Hence, discretization of the periodical boundary condition (1.3)
reduces to

[
ε

12
aN−1 −

ε

6
aN ]uN−2 + [

2ε

3
aN +

hN
6
bN−1 −

ε2

hN
]uN−1

+[− ε

12
aN−1 −

ε

2
aN +

hN
3
bN +

ε2

hN
]uN

+[
ε

2
a0 +

ε

12
a1 +

hN
3
b0 +

ε2

hN
]u0 + [−2ε

3
a0 +

hN
6
b1 −

ε2

hN
]u1 + [

ε

6
a0 −

ε

12
a1]u2

= Aε+
hN
6
fN−1 +

hN
3
fN +

hN
3
f0 +

hN
6
f1.

(4.17)

From equation (4.13), we have

u2 =
−r−1 u0 − rc1u1 + hN

6 f0 + 2hN

3 f1 + hN

6 f2

r+
1

and

uN−2 =
−rcN−1uN−1 − r+

N−1uN + hN

6 fN−2 + 2hN

3 fN−1 + hN

6 fN

r−N−1

.

We obtain the following difference scheme by eliminating u0, u2, uN−2 from
equation (4.17),

BN
R uN = QfN ,

where

BN
R uN =r−NuN−1 + rcNuN + r+Nu1,

QfN =Aε+
hN

6
fN−1 +

hN

3
fN +

hN

3
f0 +

hN

6
f1

− (
k1
B1

)[
hN

6
fN−2 +

2hN

3
fN−1 +

hN

6
fN ]

− (
k2
B2

)[
hN

6
f0 +

2hN

3
f1 +

hN

6
f2],
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r−N = (
k1

B1
)[
ε

3
aN−2 −

ε

3
aN −

2hN
3
bN−1 −

2ε2

hN
] + [

2ε

3
aN +

hN
6
bN−1 −

ε2

hN
],

rcN = (
k1

B1
)[
−ε
12
aN−2 +

ε

3
aN−1 +

ε

4
aN −

hN
6
bN +

ε2

hN
]

+ [
−ε
12
aN−1 −

ε

2
aN +

hN
3
bN +

ε2

hN
],

+ [
ε

2
a0 +

ε

12
a1 +

hN
3
b0 +

ε2

hN
]

+ (
k2

B2
)[
−ε
4
a0 −

ε

3
a1 +

ε

12
a2 −

hN
6
b0 +

ε2

hN
],

r+
N = (

k2

B2
)[
ε

3
a0 −

ε

3
a2 −

2hN
3
b1 −

2ε2

hN
] + [−2ε

3
a0 +

hN
6
b1 −

ε2

hN
],

k1 = [
ε

12
aN−1 −

ε

6
aN ],

k2 = [
ε

6
a0 −

ε

12
a1],

B1 = [
ε

4
aN−2 +

ε

3
aN−1 −

ε

12
aN +

hN
6
bN−2 −

ε2

hN
],

B2 = [
ε

12
a0 −

ε

3
a1 −

ε

4
a2 +

hN
6
b2 −

ε2

hN
]

(4.18)

and

B0
Lu0 = u0 − uN = 0.

Thus, we obtain the difference scheme as

LNuj = Qfj , j = 1, ..., N − 1

B0
Lu0 = 0, BN

R uN = QfN .

Remark 4.1. Since the boundary condition (1.3) contains the first derivative at
both end points x = 0 and x = 1, the discretization of (1.3) by spline difference
scheme will not yield a three point difference scheme. Therefore, we made a
scheme to be a three point difference scheme by using the difference scheme
(4.13).

5. Error Estimate

We will make use of comparison functions and discrete maximum principle
in order to derive the error estimate of the solution. Now we state the following
lemmas as in [8, 2] which are indispensable segments in the proof of the final
result.
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Lemma 5.1. (Discrete Maximum Principle) Let {uj} be a set of values at the
grid points xj, satisfying B0

Lu0 = 0, BN
R uN ≥ 0 and LNuj ≥ 0, j = 1, ..., N − 1,

then uj ≥ 0, j = 0, 1, ..., N

Lemma 5.2. If F1(h, ε) ≥ 0 and F2(h, ε) ≥ 0 are such that

LN (F1(h, ε)φj + F2(h, ε)ψj) ≥ LN (±ej) = ±τj(u), j = 1, ..., N − 1

BN
R (F1(h, ε)φN + F2(h, ε)ψN ) ≥ LN (±eN ) = ±τN (u),

then the discrete maximum principle implies that

|ej | ≤ F1(h, ε)|φj |+ F2(h, ε)|ψj |,

where ej = |u(xj)− uj | for each j and φ and ψ are two comparison functions.

We use the following two comparison functions

φ(x) = C exp

[
−2C1x

ε

]
and ψ(x) = C exp

[
−2C2(1− x)

ε

]
Remark 5.3. The following inequalities hold for Λj ∈ {φj , ψj}

LNΛj ≥M, when Ch2
c ≤ ε

and

LNΛj ≥Mhc, when Ch2
c ≥ ε

where hc = maxj hj (= a constant).

Now, we estimate the truncation error of the scheme (4.13). At first, let us
consider the case in which Ch2

c ≤ ε. We have

τj(u) = T0,juj + T1,ju
′
j + T2,ju

′′
j + T3,ju

′′′
j + remainder terms, j = 1, ..., N − 1

where

T0,j = (r−j + rcj + r+
j )− (q−j bj−1 + qcjbj + q+

j bj+1),

T1,j = (hj+1r
+
j − hjr

−
j ) + {q−j (εaj−1 + hjbj−1) + qcjεaj + q+

j (εaj+1 − hj+1bj+1)},

T2,j =

(
h2
j

2
r−j +

h2
j+1

2
r+
j

)
+ ε2(q−j + qcj + q+

j )

−
[
q−j

(
hjεaj−1 +

h2
j

2
bj−1

)
+ q+

j

(
−hj+1εaj+1 +

h2
j+1

2
bj+1

)]
and

T3,j =

(
h3
j+1

6
r+
j −

h3
j

6
r−j

)
+ ε2(q−j hj − q

+
j hj+1)

+ q−j

(
h2
j

2
εaj−1 +

h3
j

6
bj−1

)
+ q+

j

(
h2
j+1

2
εaj+1 −

h3
j+1

6
bj+1

)
.
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Using (4.14), we find that T0,j = 0, T1,j = 0, T2,j = 0 and |T3,j | ≤ Cεh3
c . Also,

by using u0 = uN , f0 = fN , the truncation error at the boundary point is given
by

τN (u) = T0,NuN + T1,Nu
′
N + T2,Nu

′′
N + T3,Nu

′′′
N + remainder terms,

where

T0,N =(r−N + rcN + r+N )−
(hN

6
bN−1 +

hN

3
bN +

hN

3
bN +

hN

6
b1
)

+
k1
B1

(hN

6
bN−2

+
2hN

3
bN−1 +

hN

6
bN
)

+
k2
B2

(hN

6
bN +

2hN

3
b1 +

hN

6
b2
)
,

T1,N =(−hNr
−
N + hNr

+
N ) +

(hN

6
εaN−1 +

h2
N

6
bN−1 +

2hN

3
εaN +

hN

6
εa1 −

h2
N

6
b1
)

+
( k1
B1

)(
− hN

6
εaN−2 −

h2
N

3
bN−2 −

2hN

3
εaN−1 −

hN

6
εaN −

2h2
N

3
bN−1

)
+
( k2
B2

)(
− hN

6
εa0 +

2h2
N

3
b1 −

2hN

3
εa1 −

hN

6
εa2 +

h2
N

3
b2
)
,

T2,N =
h2
N

2
(r−N + r+N )−

(
−hNε

2 +
h2
N

6
εaN−1 +

h3
N

12
bN−1 −

h2
N

6
εa1 +

h3
N

12
b1

)
+

(
k1
B1

)(
−hNε

2 +
h2
N

3
εaN−2 +

h3
N

3
bN−2 +

2h2
N

3
εaN−1 +

h3
N

3
bN−1

)
+

(
k2
B2

)(
−hNε

2 − 2h2
N

3
εa1 +

h3
N

3
b1 −

h2
N

3
εa2 +

h3
N

3
b2

)
,

T3,N =
h3
N

6
(r+N − r

−
N )− hN

6

(
−h

2
N

2
εaN−1 −

h3
N

6
bN−1 −

h2
N

2
εa1 +

h3
N

6
b1

)
+(

k1
B1

)(
hN

6

(
2hNε

2 − 2h2
NεaN−2 −

4h3
N

3
bN−2

)
+

2hN

3

(
hNε

2 − h2
N

2
εaN−1 −

h3
N

6
bN−1

))
+(

k2
B2

)(
hN

6

(
−2hNε

2 − 2h2
Nεa2 +

4h3
N

3
b2

)
+

2hN

3

(
−hNε

2 − h2
N

2
εa1 +

h3
N

6
b1

))
.

Using (4.18), we find that T0,N = 0, T1,N = 0, T2,N = 0 and |T3,N | ≤ Cεh3
c .

Now, from Theorem 2.6 and the inequality (2.3), we have

v′′′j = −
(c0
ε

)2

u′(0) exp

(
−c0
ε
xj

)
, w′′′j =

(c0
ε

)2

u′(1) exp

(
−c0
ε

(1− xj)
)
,

and

|z′′′(x)| ≤ C
[
1 + ε−2

(
exp

(
−c0xj

ε

)
+ exp

(
−c0(1− xj)

ε

))]
.
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Therefore, for Ch2
c ≤ ε, we have the following estimates.

|τj(v)| ≤ Ch3
c

ε2
exp

(
−c0
ε
xj

)
, |τj(w)| ≤ Ch3

c

ε2
exp

(
−c0
ε

(1− xj)
)

and

|τj(z)| ≤ Cεh3
c

[
1 + ε−2

(
exp

(
−c0
ε
xj

)
+ exp

(
−c0
ε

(1− xj)
))]

, Ch2
c ≤ ε.

Since

τj(u) = τj(v) + τj(w) + τj(z), j = 1, 2, ..., N,

we have

|τj(u)| ≤ Ch
3
c

ε2

[
1 + exp

(
−c0xj

ε

)
+ exp

(
−c0xj

ε

)]
, Ch2

c ≤ ε.

On the other hand, when Ch2
c ≥ ε , we use the following expression for trun-

cation error

τj(u) =

(
h3
j+1

6
r+j −

h3
j

6
r−j

)
u′′′(ζ1) + ε2(hjq

−
j − q

+
j hj+1)u′′′(ζ2)

+ q−j

(
h2
j

2
εaj−1 +

h3
j

6
bj−1

)
u′′′(ζ3) + q+j

(
h2
j+1

2
εaj+1 −

h3
j+1

6
bj+1

)
u′′′(ζ4),

where xj−1 < ζi < xj+1, i = 1(1)4. After some algebraic simplifications, we
find the sharper estimates∣∣∣∣h3

j+1

6
r+
j −

h3
j

6
r−j

∣∣∣∣ ≤ Cεh3
c ,

∣∣∣∣ε2(q−j hj − q
+
j hj+1)

∣∣∣∣ ≤ Cεh3
c ,

∣∣∣∣q−j
(
h2
j

2
εaj−1 +

h3
j

6
bj−1

)∣∣∣∣ ≤ Cεh3
c ,

∣∣∣∣q+
j

(
h2
j+1

2
εaj+1 −

h3
j+1

6
bj+1

)∣∣∣∣ ≤ Cεh3
c .

Also, at the boundary point, the truncation error is given by

τN (u) =
h3
N

6
(r+N − r

−
N )u′′′(ζN )−

hN

6

(
−h

2
N

2
εaN−1 −

h3
N

6
bN−1 −

h2
N

2
εa1 +

h3
N

6
b1

)
u′′′(ζN )+(

k1
B1

)(
hN

6

(
2hNε

2 − 2h2
NεaN−2 −

4h3
N

3
bN−2

)
+

2hN

3

(
hNε

2 − h2
N

2
εaN−1 −

h3
N

6
bN−1

))
u′′′(ζN )+(

k2
B2

)(
hN

6

(
−2hNε

2 − 2h2
Nεa2 +

4h3
N

3
b2

)
+

2hN

3

(
−hNε

2 − h2
N

2
εa1 +

h3
N

6
b1

))
u′′′(ζN ),
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where xN−1 < ζN < xN . Now∣∣∣∣h3
N

6
(r+N − r

−
N )

∣∣∣∣ ≤ Cεh3
c ,∣∣∣∣hN

6

(
−h

2
N

2
εaN−1 −

h3
N

6
bN−1 −

h2
N

2
εa1 +

h3
N

6
b1

)∣∣∣∣ ≤ Cεh3
c ,∣∣∣∣( k1B1

)(
hN

6

(
2hNε

2 − 2h2
NεaN−2 −

4h3
N

3
bN−2

)
+

2hN

3

(
hNε

2 − h2
N

2
εaN−1 −

h3
N

6
bN−1

))∣∣∣∣ ≤ Cεh3
c ,∣∣∣∣( k2B2

)(
hN

6

(
−2hNε

2 − 2h2
Nεa2 +

4h3
N

3
b2

)
+

2hN

3

(
−hNε

2 − h2
N

2
εa1 +

h3
N

6
b1

))∣∣∣∣ ≤ Cεh3
c .

Using the above estimates and the above expression for τj(u), we obtain the
same estimates for τj(v), τj(w) and τj(z) as similar to the case of Ch2

c ≤ ε.
Finally we choose

F1 = h2
c exp

(
−2c0xj

ε

)
and

F2 = h2
c exp

(
−2c0(1− xj)

ε

)
.

Since Lemma 5.2 is true for both the cases Ch2
c ≤ ε and Ch2

c ≥ ε, we have
proved the following key result.

Theorem 5.4. If u(xj) is the solution of the BVP (1.1)-(1.3) and uj , j =
0, 1, ..., N is the numerical solution obtained by the cubic spline scheme, then
we have

max
j
|u(xj)− uj | ≤ Ch2

c

[
exp

(
−C3xj
ε

)
+ exp

(
−C4(1− xj)

ε

)]
.

6. Numerical Experiments

In this section, we present two numerical examples to illustrate the method
discussed in this paper.

Example 6.1. [4]:

−ε2u′′(x)− ε(1 + x)u′(x) + 3u(x) = f(x), x ∈ (0, 1),

u(0) = u(1), ε(u′(1)− u′(0)) = 1− 2ε,
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where f(x) is chosen such that the exact solution is given by

u(x) =
e−

x
ε + e−

(1−x)
ε

2(1− e− 1
ε )

+ x(1− x) + 1

Example 6.2.

− ε2u′′(x)− 2ε(2 + sin(2πx))u′(x) + (1 + cos(2πx))u(x) = f(x), x ∈ (0, 1),

u(0) = u(1), ε(u′(1)− u′(0)) = 3,

where f(x) is chosen such that the exact solution is given by

u(x) =
e−

3x
2ε + e−

3(1−x)
2ε

(1− e− 3
2ε )

+ cos(2πx)

Let uN be a numerical approximation for the exact solution u on the mesh
ΩN and N is the number of mesh points. For a finite set of values ε ∈ Rε =
{2−1, 2−2, ..., 2−28}, we compute the maximum pointwise errors by

EN
ε = max

xi∈Ω̄N
ε

|(uN − u)(xi)| and EN = max
ε
EN

ε

From these quantities the orders of convergence are computed from

pN = log2(
EN

E2N
).

The computed errors EN and the computed orders of convergence pN for the
above BVPs are given in the Tables 1 and 2.

Table 1: Computed errors EN and the computed order of convergence pN of
Example 6.1.

Number of mesh points N
32 64 128 256 512 1024

Cubic Spline Scheme
EN 5.9529e-2 1.8856e-2 4.4922e-3 9.8010e-4 2.1620e-4 4.9573e-5
pN 1.6586 2.0695 2.1964 2.1806 2.1247 —

Hybrid Difference Scheme in [4]
EN 1.9940e-2 7.4252e-3 2.6127e-3 8.7741e-4 2.8332e-4 8.8617e-5
pN 1.4252 1.5069 1.5742 1.6308 1.6768 —

7. Conclusion

Thus we suggested a second order numerical method involving cubic spline
scheme on non-uniform mesh to solve singularly perturbed convection diffusion
problem with periodical boundary conditions, whose solutions exhibit boundary
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Table 2: Computed errors EN and the computed order of convergence pN of
the Example 6.2.

Number of mesh points N
32 64 128 256 512 1024

Cubic Spline Scheme
EN 4.2764e-1 8.5767e-2 2.2695e-2 5.7925e-3 1.4471e-3 3.5707e-4
pN 2.3179 1.9180 1.9701 2.0010 2.0189 —

Hybrid Difference Scheme in [4]
EN 8.1577e-1 3.2377e-1 1.1526e-1 3.6256e-2 1.1170e-2 3.4209e-3
pN 1.3332 1.4901 1.6686 1.6986 1.7072 —
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(a) Exact and numerical solution of
Example 1 for ε = 2−6 with N = 256.
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(b) Exact and numerical solution of
Example 2 for ε = 2−6 with N = 256.

layers at both end points x = 0 and x = 1. In this method, both differential
equations and periodical boundary conditions are discretized by cubic spline
scheme. The method is of second order accurate by conducting two numerical
examples and the error of the scheme is measured using the discrete maximum
norm. From Tables 1 and 2, we also compared our method to hybrid difference
scheme in [4], it shows a good results and exhibits the advantage of cubic spline
scheme. In the construction of mesh, we have chosen h̃1 = 0.00001 and K = 1
for both examples. We note that the increase in the value of K will lead to
more concentration of points near the boundary regions and for a fixed K, the
increase in the value of h̃1 leads to the same result.
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