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Parallel projected subgradient method for solving split
system of fixed point set constraint equilibrium problems

in Hilbert spaces

Anteneh Getachew Gebrie12 and Rabian Wangkeeree34

Abstract. In this paper, we propose two strongly convergent algo-
rithms which combine the Mann iterative scheme, the diagonal subgradi-
ent method, the projection method and the proximal method for solving
split system of fixed point set constrained equilibrium problems in real
Hilbert spaces. The computation of the first algorithm requires prior
knowledge of operator norm. The problem of finding, or at least esti-
mating the norm of an operator, in general, is not an easy task in Hilbert
spaces. Based on the first algorithm, we propose another algorithm with a
way of selecting the step-sizes such that its implementation does not need
any prior information about the operator norm. The strong convergence
properties of the algorithms are established under mild assumptions on
equilibrium bifunctions.
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1. Introduction

Split Inverse Problem (SIP) is an archetypal model presented in [6, Sect. 2]
given by

(1.1)

 find x∗ ∈ X that solves IP1
such that
y∗ = Ax∗ ∈ Y and solves IP2

where A is a bounded linear operator from a space X to another space Y and
IP1 and IP2 are two inverse problems installed in X and Y , respectively. Real-
world inverse problems can be cast into this framework by making different
choices of the spaces X and Y (including the case X = Y ), and by choosing
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appropriate inverse problems for IP1 and IP2. Different choices for IP1 and
IP2 are proposed in many research works and literature, such as minimization
problems, equilibrum problems and inclusion problems, see for example [4, 15,
16, 22, 11]. The split feasibility problem is the first instance of an SIP where
the two problems IP1 and IP2 are of the Convex Feasibility Problems type.

Let H be a real Hilbert space and C be a nonempty closed convex subset of
H. For a bifunction f : C × C → R, the problem

(1.2) find z∗ ∈ C such that f(z∗, z) ≥ 0, ∀z ∈ C

is called the equilibrium problem (Fan inequality [12]) of f on C, denoted by
EP(f, C). The set of all solutions of the EP(f, C) is denoted by SEP(f, C), i.e.,
SEP(f, C) = {z∗ ∈ C : f(z∗, z) ≥ 0, ∀z ∈ C}. If f(x, y) = 〈Ax, y − x〉 for every
x, y ∈ C where A is a mapping from C into H, then the equilibrium problem
becomes the classical variational inequality problem studied in [5, 7, 9, 26, 30],
i.e., finding a point x∗ ∈ C such that 〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C.

For a given bifunction f : C × C → R and with its suitable assumption
Combettes and Hirstoaga [8] proved that the resolvent operator T fr : H → C
(for r > 0) given by

(1.3) T fr (u) = {w ∈ C : g(w, v) +
1

r
〈v − w,w − u〉 ≥ 0, ∀v ∈ C}

is single-valued and firmly nonexpansive. The resolvent operator is used to
approximate the solution of EP(f, C) by many authors (see for instance, [1, 8,
24, 25]). Proximal operator is also used as a method of solving the equilibrium
problem. It is well known that if h : C → R is convex and lower semicontinuous,
λ > 0, then the proximity operator of h, defined by proxλh : C → C given by

(1.4) proxλh(x) = arg min{λh(y) +
1

2
‖x− y‖2 : y ∈ C}

is single valued. The proximal-like method has also been called the extragra-
dient method. Extragradient method is a widely used method of solving the
equilibrium problem (1.2) (see, for instance, [13]). Santos and Scheimberg [27]
used projection method and subgradient method for solving the equilibrium
problem (1.2) in a finite-dimensional space. They proposed the following:{

x1 ∈ C, wn ∈ ∂εnf(xn, .)(xn), ηn = max{ρn, ‖wn‖},
αn = βn

ηn
, xn+1 = PC(xn − αnwn),

where {ρn}, {βn} and {εn} are nonnegative real sequences such that

ρn ≥ ρ > 0, βn ≥ 0, εn ≥ 0,
∞∑
n=1

βn

ρn
= +∞,

∞∑
n=1

βnεn
ρn

< +∞,
∞∑
n=1

β2
n < +∞.

Under suitable assumptions on the bifunction f , the sequence {xn} generated
by the algorithm strongly converges to x∗ ∈ SEP(f, C). The algorithm uses only
one projection and does not require any Lipschitz condition for the bifunction.
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Later on, many iterative algorithms were considered to find the point x̄ ∈
FixU

⋂
SEP(f, C) where U : C → C is a nonexpansive mapping; see [2, 3, 25,

28, 29]. A mapping U : C → C is said to be nonexpansive if ‖U(x) − U(y)‖ ≤
‖x − y‖, ∀x, y ∈ C. The set of fixed points of U is denoted by FixU and is
given by FixU = {x ∈ C : Ux = x}. Most of the existing algorithms for
this problem are based on the proximal point method applying to equilibrium
problem EP (C, f) combining with a Mann’s iteration to the problem of finding
a fixed point of U . In 2013, Anh and Muu [3] propose a strongly convergent
algorithm for finding a point in FixU

⋂
SEP(f, C).

In this paper, we propose iterative algorithm solving the combination of
equilibrium problems and fixed point problems in the framework of SIP, the
so called, split system of fixed point set constraint equilibrium problem (SSFP-
SCEP). Let Φ = {1, ..., N}, Ψ = {1, ...,M}, Φ′ = {1, ..., N ′}, Ψ′ = {1, ...,M ′},
and A : H1 → H2 be a nonzero bounded linear operator. Suppose C is a
nonempty closed convex subset of H1 and Ui′ : C → C are nonexpansive opera-
tors for i′ ∈ Φ′, andD is a nonempty closed convex subset ofH2 and Vj′ : D → D
are nonexpansive operators for j′ ∈ Ψ′. Given bifunctions fi : C × C → R for
i ∈ Φ, and gj : D×D → R for j ∈ Ψ, the SSFPSCEP is finding a point x∗ ∈ H1

with the property that

(1.5)

x∗ ∈ Ω1 =
( ⋂
i′∈Φ′

FixUi′
)⋂( ⋂

i∈Φ

SEP(fi, C)
)

such that

Ax∗ ∈ Ω2 =
( ⋂
j′∈Ψ′

FixVj′
)⋂( ⋂

j∈Ψ

SEP(gj , D)
)
.

Let Γ be the solution set of SSFPSCEP (1.5), i.e., Γ = {x∗ ∈ Ω1 : Ax∗ ∈ Ω2}.
For a subset Q of a real Hilbert space H, IdQ is a mapping from Q onto Q given
by IdQ(x) = x for all x ∈ Q. Thus, if Ui′ = IdC for all i′ ∈ Φ′ and Vj′ = IdD
for all j′ ∈ Ψ′, then problem (1.5) is reduced to split system equilibrium problem
(SSEP).

The ongoing researches are directed toward reducing the computational dif-
ficulty by imposing a weaker condition on each fi and establish relatively simple
algorithms for a wide class of problems. In 2012, He [18] introduced iterative
algorithm solving SSEP imposing the same conditions on fi and gj = g for
all i and j so that the bifunctions fi and g are treated the same way using
regularization technique (the resolvent operator) (1.3). However, regularization
technique (1.3) is not computationally easier, and if each bifunction is more
general monotone, for instance pseudomonotone, then problem (1.3) in general
is not strongly monotone. So, the unique solvability of problem (1.3) is not
guaranteed, even its solution set might not be. Hence, employing (1.3) for each
fi and gj = g in yields a computationally difficult algorithm. For this reason,
the authors in [19] proposed algorithms for solving SSEP using the extragradi-
ent method (proximal operator for fi) replacing problem (1.3) by the following
two strongly convex programs;

(1.6)

{
yin = arg min{λnfi(xn, y) + 1

2‖xn − y‖
2 : y ∈ C}, i ∈ Φ,

zin = arg min{λnfi(yin, y) + 1
2‖y

i
n − y‖2 : y ∈ C}, i ∈ Φ,
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where λn is a suitable parameter and each fi satisfy a certain Lipschitz-type
condition. The advantage of the extragradient method is that two optimization
programs are solved at each iteration which seems to be computed easily by the
Matlab Optimization Toolbox. However, this might still be costly and affects
the efficiency of the used method if the structure of feasible set and equilibrium
bifunction are complex. Moreover, Lipschitz-type condition depends on two
positive parameters c1 and c2 which are unknown in some cases, or difficult to
approximate.

We designed algorithms for solving (1.5) that require only one projection
rather than two strongly convex programs (1.6) for each i ∈ Φ. The algorithms
combine the well-known Mann iterative scheme for fixed point [23] and two
methods including the projection method and the diagonal subgradient method
on the foundation of projected subgradient algorithms proposed by Hieu [20],
which generate a sequence {xn} by

(1.7)


x1 ∈ C, εn ∈ (0,∞),

win ∈ ∂εnfi(xn, .)(xn), αin = βn

ηin
, ηin = max{ρn, ‖win‖}, i ∈ Φ,

yin = PC(xn − αinwin), i ∈ Φ,
xn+1 =

∑
i∈Φ

ξiny
i
n,

and {xn} strongly converges to a common element of the set of solution of the
system of equilibrium problems

⋂
i∈ΦEP (fi, C) for pseudomonotone bifunc-

tions fi. Another advantage of our algorithms is that, as a result of projected
subgradient method the convergence of our algorithms are proved under pseu-
domonotone assumptions of the bifunction and without Lipschitz-type condition
of each fi. Comparing with the algorithms in [19], our proposed algorithms solve
a wide class of problems and have a simple structure, and the metric projection,
in general, is simpler than solving strongly convex optimization subproblems
on the same feasible set and finding shrinking projections. Furthermore, the
results in [14, 21] are particular cases of our problem and hence our algorithms
are more general.

We formulated two iterative algorithms to find a solution for SSFPSCEPs
(1.5) and we proved the strong convergence for the algorithms. In the first
algorithm, N + 1 projections on the feasible set need to be computed per each
iteration and the prior knowledge of operator norm (or at least an estimate of the
operator norm) is needed. However, to employ the second algorithm, one does
not need any prior information about the norm of the bounded linear operator
A. Moreover, only one projection is performed on the feasible set while the
first N parallel projections over C are replaced by N parallel projections onto a
tangent plane to C in order to reduce the number of optimization subproblems
to be solved.

This paper is organized in the following way. In Section 2, we recall some
basic definitions and lemmas that are useful for our main result. In Section
3, we present two algorithms solving split system of fixed point set constraint
equilibrium problem (1.5) and we analyze the convergence result of our proposed
algorithms. Finally, we give some conclusions.
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2. Preliminaries

In order to state and prove our main results, we recall some notations, defi-
nitions, and some useful results which will be needed in the sequel. The symbols
” ⇀ ” and ”→ ” denote weak and strong convergence, respectively.

Let H be a real Hilbert space and C a nonempty closed convex subset of H.
The metric projection on C is a mapping PC : H → C defined by

PC(x) = arg min{‖y − x‖ : y ∈ C}, x ∈ H.

Properties: Let C be a nonempty closed convex subset of a real Hilbert space
H and let PC be a metric projection on C. Since C is nonempty, closed and
convex, PC(x) exists and is unique. From the definition of PC , it is easy to show
that PC has the following characteristic properties:

(i) For all y ∈ C, ‖PC(x)− x‖ ≤ ‖x− y‖.

(ii) For all x, y ∈ H, ‖PC(x)− PC(x)‖2 ≤ 〈PC(x)− PC(x), x− y〉.

(iii) For all x ∈ C, y ∈ H, ‖x− PC(y)‖2 + ‖PC(y)− y‖2 ≤ ‖x− y‖2.

(iv) z = PC(x) if and only if 〈x− z, y − z〉 ≤ 0,∀y ∈ C.

Lemma 2.1. [17] Suppose C is closed convex subset of a Hilbert space H and
U : C → C is a nonexpansive mapping. Then

(i) If U has a fixed point, then FixU is a closed convex subset of H.

(ii) IdC−U is demiclosed, i.e., whenever {xn} is a sequence in C weakly con-
verging to some x ∈ C and the sequence {(IdC−U)xn} strongly converges
to some y, it follows that (IdC − U)x = y.

Lemma 2.2. [31] If {an} and {bn} are two nonnegative real sequences such
that

an+1 ≤ an + bn, ∀n ≥ n0,

with
∑
bn <∞, then {an} converges.

Lemma 2.3. [10, Proposition 4.34] Suppose C is closed convex subset of a
Hilbert space H and Ui : C → C be nonexpansive mappings for i ∈ R =

{1, 2, ..., q} such that
q⋂
i=1

FixUi 6= ∅. Let U(x) :=
q∑
i=1

θiUi(x) with 0 < θi ≤ 1 for

every i ∈ R and
q∑
i=1

θi = 1. Then U is nonexpansive and FixU =
q⋂
i=1

FixUi.

Lemma 2.4. (Opial’s condition) For any sequence {xn} in the Hilbert space H
with xn ⇀ x, the inequality

lim inf
n→+∞

‖xn − x‖ < lim inf
n→+∞

‖xn − y‖

holds for each y ∈ H with y 6= x.
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Definition 2.5. Let H be a Hilbert space and f : C × C → R be a bifunction
where f(x, .) is a convex function for each x in C. Then for ε ≥ 0 the ε-
subdifferential (ε-diagonal subdifferential) of f at x, denoted by ∂εf(x, .)(x) or
∂εf(x, x), is given by

∂εf(x, .)(x) = {w ∈ H : f(x, y)− f(x, x) + ε ≥ 〈w, y − x〉, ∀y ∈ C}.

If ∂εf(x, .)(x) 6= ∅, f(x, .) is said to be ε-subdifferentiable (subdifferentiable) on
C at x.

Let C be a subset of a real Hilbert space H and f : C×C → R be a bifunction.
Then, f is said to be

(i) strongly monotone on C, if there is M > 0 (M-strongly monotone on C) iff

f(x, y) + f(y, x) ≤ −M‖y − x‖2, ∀x, y ∈ C.

(ii) monotone on C iff f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C.

(iii) pseudomonotone on C with respect to x ∈ C iff f(x, y) ≥ 0 implies
f(y, x) ≤ 0, ∀y ∈ C.

(iv) Lipschitz-type continous on C if there exist positive constants c1, c2 such
that

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ C.

We say that f is pseudomonotone on C with respect to S ⊂ C if it is pseu-
domonotone on C with respect to every x ∈ S, i.e., if x ∈ S and y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ 0.

When S = C, f is called pseudomonotone on C. Clearly, (i)⇒ (ii)⇒ (iii). It
is clear that monotone bifunction is pseudomonotone.

Let SEP (f≤, C) represent the solution of the problem

(2.1) find x∗ ∈ C such that f(y, x∗) ≤ 0, ∀y ∈ C,

where f : C×C → R is a bifunction on a closed convex subset of a Hilbert space
H. When f is a pseudomonotone bifunction on C, it holds that SEP (f, C) ⊂
SEP (f≤, C). Moreover, this inclusion is also valid for monotone bifunctions.

Let C be a closed, convex subset of a real Hilbert space H. Then the
bifunction f : C × C → R is said to satisfy Condition I on C if the following
six conditions are satisfied:

(B1) f(x, x) = 0 for all x ∈ C;

(B2) SEP (f, C) ⊂ SEP (f≤, C);
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(B3) f satisfies the strict paramonotonicity property; i.e.,

x ∈ SEP (f, C), y ∈ C, f(y, x) = 0⇒ y ∈ SEP (f, C);

(B4) f(., y) is weakly sequencially upper semicontinuous on C with every fixed
y ∈ C, i.e., lim sup

n→∞
f(xn, y) ≤ f(x, y) for each sequence {xn} in C con-

verging weakly to x;

(B5) if {xn} is a bounded sequence in C, then the sequence {wn} with wn ∈
∂εnf(xn, .)(xn) is bounded;

(B6) f(x, .) is convex, lower semicontinous and subdifferentiable on C, for all
x ∈ C.

The assumption (B2) is pseudomonotonicity of f on C with respect to the
solution set SEP(f, C). The following example shows that assumption (B2) of
Condition I is weaker than the pseudomonotonicity assumption of f on C.

Example 2.6. Let f : [−1, 1]× [−1, 1]→ R, given by

f(x, y) = 2y|x|(y − x) + xy|y − x|.

The bifunction f is not pseudomonotone on C = [−1, 1]. But, SEP (f, C) = {0}
and f(y, x∗) = f(y, 0) = 0 for all y ∈ [−1, 1]. Hence, (B2) holds. In fact, we
have f(−0.5, 0.5) = f(0.5,−0.5) = 0.25 > 0.

Let D be a closed, convex subset of a real Hilbert space H and g : D×D → R
be a bifunction. Then we say that g satisfies Condition II on D if the following
four assumptions are satisfied:

(A1) g(u, u) = 0, for all u ∈ D;

(A2) g is monotone on D, i.e., g(u, v) + g(v, u) ≤ 0, for all u, v ∈ D;

(A3) for each u, v, w ∈ D

lim sup
α↓0

g(αw + (1− α)u, v) ≤ g(u, v);

(A4) g(u, .) is convex and lower semicontinuous on D for each u ∈ D.

We introduce the following results from equilibrium programming in Hilbert
Spaces which are useful in the discussion of solving equlibrum problem.

Lemma 2.7. [8] Let g satisfy Condition CO on D. Then, for each r > 0 and
u ∈ H2, there exists w ∈ D such that

g(w, v) +
1

r
〈v − w,w − u〉 ≥ 0, ∀v ∈ D.
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Lemma 2.8. [8] Let g satisfy Condition CO on D. Then, for each r > 0 and
u ∈ H2, define a mapping (called resolvant of g), given by

T gr (u) =
{
w ∈ D : g(w, v) +

1

r
〈v − w,w − u〉 ≥ 0, ∀v ∈ D

}
.

Then the following hold:

(i) T gr is single-valued;

(ii) T gr is firmly nonexpansive, i.e., for all u, v ∈ H,

‖T gr (u)− T gr (v)‖2 ≤ 〈T gr (u)− T gr (v), u− v〉;

(iii) Fix(T gr ) = SEP (g,D), where Fix(T gr ) is the fixed point set of T gr ;

(iv) SEP(g,D) is closed and convex.

Lemma 2.9. [8] For r, s > 0 and u, v ∈ H. Under the assumptions of Lemma
2.8,

‖T gr (u)− T gs (v)‖ ≤ ‖u− v‖+
|s− r|
s
‖T gs (v)− v‖.

3. Main result

In this section, we propose two algorithms for solving SSFPSCEP (1.5) with
assumptions that each fi satisfies Condition I on C for all i ∈ Φ, each gj
satisfies Condition II on D for all j ∈ Ψ, and Γ is nonempty.

By (B1), (B4) and (B2) of Condition I, the set SEP (fi, C) is closed and
convex. Thus, the set Ω1 is closed and convex. Moreover, from Lemma 2.8
(iv), SEP (gj , D) is closed and convex. Hence, Ω2 is closed and convex in H2.
Therefore, by linear property of the operator A, the solution set Γ is a closed
and convex subset of H1. Hence, PΓ is well defined.

3.1. Algorithm requiring prior knowledge of operator norm

In order to design the algorithm, we consider parameter sequences satisfying
the following conditions.

Condition 1

(C1) ρn ≥ ρ > 0, βn ≥ 0, εn ≥ 0, 0 < σ1 ≤ δn ≤ σ2 < 1.

(C2) rn ≥ r > 0, 0 < γ1 ≤ µn ≤ γ2 <
1
σ2 for some σ ∈ [‖A‖,+∞).

(C3) 0 < ξ ≤ ξin ≤ 1, (i ∈ Φ) such that
∑
i∈Φ

ξin = 1 for each n ≥ 1.

(C4) 0 < θ ≤ θj′n ≤ 1, (j′ ∈ Ψ′) such that
∑
j′∈Ψ′

θj
′

n = 1 for each n ≥ 1.
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(C5)
∞∑
n=1

βn

ρn
= +∞,

∞∑
n=1

βnεn
ρn

< +∞,
∞∑
n=1

β2
n < +∞.

In the formulation of the following algorithm, we need a real number σ such
that either σ = ‖A‖ or at least σ > ‖A‖. Hence, it requires prior knowledge or
estimated value of operator norm ‖A‖. The algorithm involves the evaluation
of N + 1 projections on the feasible set C where the first N projections are
computed in parallel.

Algorithm 3.1
Initialization: Choose x1 ∈ C and the parameter sequences {ρn}, {βn}, {εn},
{rn}, {δn}, {ξin} (i ∈ Φ), {θj′n } (j′ ∈ Ψ′) and {µn} which satisfy Condition 1.

Step 1. For each i ∈ Φ, take win ∈ H1 such that win ∈ ∂εnfi(xn, .)(xn).

Step 2. For each i ∈ Φ, calculate αin = βn

ηin
, ηin = max{ρn, ‖win‖} and

yin = PC(xn − αinwin).

Step 3. Evaluate yn =
∑
i∈Φ

ξiny
i
n.

Step 4. For each i′ ∈ Ψ′ find ti
′

n = δnxn + (1− δn)Ui′(yn).

Step 5. Find among ti
′

n , i′ ∈ Ψ′, the farthest element from xn, i.e.,

tn = arg max{‖v − xn‖ : v ∈ {ti
′

n : i′ ∈ Φ′}}.

Step 6. For each j ∈ Ψ find ujn = T
gj
rn (Atn), j ∈ Ψ.

Step 7. Find among ujn, j ∈ Ψ, the farthest element from Atn, i.e.,

un = arg max{‖v −Atn‖ : v ∈ {ujn : j ∈ Ψ}}.

Step 8. Evaluate xn+1 = PC

(
tn + µnA

∗
( ∑
j′∈Ψ′

θj
′

n Vj′(un)−Atn
))
.

Step 9. Set n := n+ 1 and go to Step 1.

Remark 3.1. Each fi(x, .) is a lower semicontinuous convex function and C ⊂
domfi(x, .) for each x ∈ C, and thus εn-diagonal subdifferential ∂εnfi(xn, .)(xn)
is nonempty for every εn > 0. Moreover, by Combettes and Hirstoaga in [8], for
each rn the problems in Step 6 are uniquely solvable, and since C is a nonempty
closed convex set, the projection in Step 8 exists and is unique. Therefore, all
steps in Algorithm 3.1 are defined with no ambiguity and Algorithm 3.1 is well
defined.

For the sake of simplicity, we define
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(1a) Wn =
∑
j′∈Ψ′

θj
′

n Vj′ for n ≥ 1,

(2a) {i′n}∞n=1 is a sequence where for each n, i′n ∈ Φ′ such that

tn = t
i′n
n = arg max{‖v − xn‖ : v ∈ {ti

′

n : i′ ∈ Φ′}},

i.e., tn = t
i′n
n = δnxn + (1− δn)Ui′n(yn),

(3a) {jn}∞n=1 is a sequence where for each n, jn ∈ Ψ such that

un = T
gin
rn Atn = ujnn = arg max{‖v −Atn‖ : v ∈ {ujn : j ∈ Ψ}}.

Remark 3.2. By Lemma 2.3 each Wn is a nonexpansive mapping and FixWn =⋂
j′∈Ψ′

FixVj′ for all n ≥ 1. Hence, it is easy to see that

FixW1 = FixW2 = . . . = FixWn = . . . .

To establish the convergence of Algorithm 3.1, we need the following Lemmas.

Lemma 3.3. For sequences {yin} (i ∈ Φ), {yn}, {tn} and {xn} generated by
Algorithm 3.1, we have

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 + 2(1− δn)
∑
i∈Φ

ξinα
i
nfi(xn, x

∗)− Ln + ϑn, ∀x∗ ∈ Γ

where Ln = (1− δn)
∑
i∈Φ ξ

i
n‖xn − yin‖2 + δn(1− δn)‖Ui′n(yn)− xn‖2 and ϑn =

2(1− δn)βnεn
ρn

+ 2(1− δn)β2
n.

Proof. Let x∗ ∈ Γ. From yin = PC(xn − αinwin) and x∗ ∈ Γ, we have

〈xn − αnwin − yin, yin − x∗〉 ≥ 0,

implying that

〈x∗ − yin, xn − yin〉 ≤ αin〈win, x∗ − yin〉
= αin〈win, x∗ − xn〉+ αin〈win, xn − yin〉
≤ αin〈win, x∗ − xn〉+ αin‖win‖‖xn − yin‖.(3.1)

But also xn ∈ C. Thus,

〈xn − αinwin − yin, yin − xn〉 ≥ 0,

and this together with (3.1) gives us

〈xn − yin, xn − yin〉 = ‖xn − yin‖2 ≤ αin〈win, xn − yin〉 ≤ αin‖win‖‖xn − yin‖.
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That is, ‖xn − yin‖ ≤ αin‖win‖. Thus,

αin‖win‖‖xn − yin‖ ≤ (αin‖win‖)2 =
(βn‖win‖

ηin

)2

= β2
n

( ‖win‖
max{ρn, ‖win‖}

)2

≤ β2
n.(3.2)

Since xn ∈ C and wn ∈ ∂εnfi(xn, .)(xn), we have

(3.3) fi(xn, x
∗) + εn = fi(xn, x

∗)− fi(xn, xn) + εn ≥ 〈wn, x∗ − xn〉.

Using definition of αin and ηin, we obtain

(3.4) αin =
βn
ηin

=
βn

max{ρn, ‖win‖}
≤ βn
ρn
.

From (3.1)-(3.4), we have

(3.5) 〈x∗ − yin, xn − yin〉 ≤ αinfi(xn, x∗) + βnεn
ρn

+ β2
n.

However,

(3.6) 2〈x∗ − yin, xn − yin〉 = ‖yin − x∗‖2 + ‖xn − yin‖2 − ‖xn − x∗‖2.

From (3.5) and (3.6), we have

(3.7) ‖yin − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yin‖2 + 2αinfi(xn, x
∗) + 2βnεn

ρn
+ 2β2

n.

Then, by definition of tn and by convexity of ‖.‖2, we have

‖tn − x∗‖2 = ‖δnxn + (1− δn)Ui′n(yn)− x∗‖2
= ‖δn(xn − x∗) + (1− δn)(Ui′n(yn)− x∗)‖2
= δn‖xn − x∗‖2 + (1− δn)‖Ui′n(yn)− x∗‖2 − δn(1− δn)‖Ui′n(yn)− xn‖2
= δn‖xn − x∗‖2 + (1− δn)‖Ui′n(

∑
i∈Φ

ξni y
i
n)− Ui′n(x∗)‖2

− δn(1− δn)‖Ui′n(yn)− xn‖2
≤ δn‖xn − x∗‖2 + (1− δn)‖

∑
i∈Φ

ξiny
i
n − x∗‖2 − δn(1− δn)‖Ui′n(yn)− xn‖2

≤ δn‖xn − x∗‖2 + (1− δn)
∑
i∈Φ

ξni ‖yin − x∗‖2 − δn(1− δn)‖Ui′n(yn)− xn‖2.

The last result together with (3.7) proves the lemma.

Lemma 3.4. For sequences {yin} (i ∈ Φ), {yn}, {un}, {tn} and {xn} generated
by Algorithm 3.1, we have

‖xn+1−x∗‖2 ≤ ‖xn−x∗‖2+2(1−δn)
∑
i∈Φ

ξinα
i
nfi(xn, x

∗)+ϑn−Kn−Ln, ∀x∗ ∈ Γ,

where Kn = µn(1− µnσ2)‖Wn(un)−Atn‖2 + µn‖un −Atn‖2,

Ln = (1− δn)
∑
i∈Φ

ξin‖xn − yin‖2 + δn(1− δn)‖Ui′n(yn)− xn‖2

and ϑn = 2(1− δn)βnεn
ρn

+ 2(1− δn)β2
n.
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Proof. Let x∗ ∈ Γ. By (ii) and (iii) of Lemma 2.8, we have

‖un −Ax∗‖2 = ‖T gjnrn Atn −Ax∗‖2 = ‖T gjnrn Atn − T
gjn
rn Ax∗‖2

≤ 〈T gjnrn Atn − T
gjn
rn Ax∗, Atn −Ax∗〉

= 〈T gjnrn Atn −Ax∗, Atn −Ax∗〉
= 1

2 (‖T gjnrn Atn −Ax∗‖2 + ‖Atn −Ax∗‖2 − ‖T
gjn
rn Atn −Atn‖2)

= 1
2 (‖un −Ax∗‖2 + ‖Atn −Ax∗‖2 − ‖un −Atn‖2).

This yields

(3.8) ‖un −Ax∗‖2 ≤ ‖Atn −Ax∗‖2 − ‖un −Atn‖2.

Using the nonexpansive property of V and (3.8), we have

(3.9)
‖Wn(un)−Ax∗‖2 = ‖Wn(un)−Wn(Ax∗)‖2 ≤ ‖un −Ax∗‖2

≤ ‖Atn −Ax∗‖2 − ‖un −Atn‖2.

Moreover,

(3.10)

〈A(tn − x∗),Wn(un)−Atn〉
= 〈A(tn − x∗) +Wn(un)−Atn −Wn(un) +Atn,Wn(un)−Atn〉
= 〈Wn(un)−Ax∗,Wn(un)−Atn〉 − ‖Wn(un)−Atn‖2
= 1

2

(
‖Wn(un)−Ax∗‖2 + ‖Wn(un)−Atn‖2 − ‖Atn −Ax∗‖2

)
−‖Wn(un)−Atn‖2

= 1
2

(
‖Wn(un)−Ax∗‖2 − ‖Wn(un)−Atn‖2 − ‖Atn −Ax∗‖2

)
.

From (3.9) and (3.10), we have

(3.11) 〈A(tn − x∗),Wn(un)−Atn〉 ≤ −1
2 (‖un −Atn‖2 + ‖Wn(un)−Atn‖2).

Then, using (3.11) and (C2) of Condition 1, we get

‖xn+1 − x∗‖2 = ‖PC(tn + µnA
∗(Wn(un)−Atn))− PC(x∗)‖2

≤ ‖(tn − x∗) + µn(Wn(un)−Atn)‖2

= ‖tn − x∗‖2 + ‖µnA∗(Wn(un)−Atn)‖2

+2µn〈tn − x∗, A∗(Wn(un)−Atn)〉
≤ ‖tn − x∗‖2 + µ2

n‖A∗‖2‖Wn(un)−Atn‖2

+2µn〈A(tn − x∗),Wn(un)−Atn〉
≤ ‖tn − x∗‖2 + µ2

n‖A‖2‖Wn(un)−Atn‖2

−µn
(
‖un −Atn‖2 + ‖Wn(un)−Atn‖2

)
= ‖tn − x∗‖2 − µn(1− µn‖A‖2)‖Wn(un)−Atn‖2 − µn‖un −Atn‖2

= ‖tn − x∗‖2 − µn(1− µnσ2)‖Wn(un)−Atn‖2 − µn‖un −Atn‖2.(3.12)

Therefore, the result follows from Lemma 3.3 and from (3.12).

Lemma 3.5. Let {yin} (i ∈ Φ), {yn}, {tn}, {un} and {xn} be sequences gen-
erated by Algorithm 3.1. Then,
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(a) for x∗ ∈ Γ, lim
n→∞

‖xn − x∗‖2 exists (and {xn} is bounded),

(b) for each i ∈ Φ, lim sup
n→∞

fi(xn, x) = 0 for all x ∈ Γ,

(c) for each i ∈ Φ and i′ ∈ Φ′, we have

lim
n→∞

‖Wn(un)−Atn‖ = lim
n→∞

‖un −Atn‖
= lim
n→∞

‖xn − yin‖ = lim
n→∞

‖Ui′n(yn)− xn
∥∥ = 0,

(d) for all i′ ∈ Φ′ and j ∈ Ψ, we have lim
n→∞

‖ujn − Atn‖ = lim
n→∞

‖tn − xn‖ =

lim
n→∞

‖Ui′(xn)− xn‖ = lim
n→∞

‖Wn(un)− un‖ = 0.

Proof. (a). Let x∗ ∈ Γ. Since fi(xn, x
∗) ≤ 0, Kn ≥ 0 and Ln ≥ 0, from Lemma

3.4, we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + ϑn.

Observing that ϑn = 2(1 − δn)βnεn
ρn

+ 2(1 − δn)β2
n ≤ 2βnεn

ρn
+ 2β2

n and using

(C5) of Condition 1, we can see that
∞∑
n=1

ϑn < ∞. Therefore, by Lemma 2.2,

limn→∞ ‖xn − x∗‖2 exists and this implies that the sequence {xn} is bounded.
(b). From Lemma 3.4, we have

Kn + Ln − 2(1− δn)
∑
i∈Φ

ξni α
i
nfi(xn, x

∗)

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ϑn
≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn

ρn
εn + 2β2

n.

Summing up the above inequalities for every k, we obtain

0 ≤
k∑

n=1

(
Kn + Ln + 2(1− δn)

∑
i∈Φ

ξni α
n
i [−fi(xn, x∗)]

)
≤

k∑
n=1

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn

ρn
εn + 2β2

n

)
.

This will yield

0 ≤
k∑

n=1
(Kn + Ln) +

k∑
n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
≤ ‖x1 − x∗‖2 − ‖xk+1 − x∗‖2 + 2

n∑
n=1

βn

ρn
εn + 2

n∑
n=1

β2
n.

Letting k → +∞, we have

0 ≤
∞∑
n=1

Kn +

∞∑
n=1

Ln +

∞∑
n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
< +∞.
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Hence,

(3.13)

∞∑
n=1

Kn < +∞,
∞∑
n=1

Ln < +∞

and
∞∑
n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
< +∞.

Since the sequence {xn} is bounded by Condition I (B6) the sequence {win} is
also bounded. Thus, there is a real number wi ≥ ρ such that ‖win‖ ≤ wi. Thus,
for w = max{wi : i ∈ I}, we have

(3.14) αin =
βn
ηin

=
βn

max{ρn, ‖win‖}
=

βn

ρn max{1, ‖w
i
n‖
ρn
}
≥ βnρ

ρnwi
≥ βnρ

ρnw
.

Using 0 < σ1 ≤ δn ≤ σ2 < 1 from (C1) of Condition 1, we have

0 ≤ 2(1− σ2)

∞∑
n=1

(∑
i∈Φ

ξni α
i
n[−fi(xn, x∗)]

)
≤

∞∑
n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
< +∞.(3.15)

From (3.14) and (3.15), we have

0 ≤ 2(1− σ2)
∞∑
n=1

( ∑
i∈Φ

ξin
βnρ
ρnw

[−fi(xn, x∗)]
)

≤ 2(1− σ2)
∞∑
n=1

( ∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
< +∞.

Using 0 < ξ ≤ ξin ≤ 1 from (C3) of Condition 1 , we have

0 ≤ 2ρξ(1− σ2)

w

∞∑
n=1

(βn
ρn

∑
i∈Φ

[−fi(xn, x∗)]
)

≤ 2(1− σ2)

∞∑
n=1

(∑
i∈Φ

ξin
βnρ

ρnw
[−fi(xn, x∗)]

)
< +∞.(3.16)

Since
∑∞
n=1

βn

ρn
= +∞ and

∑
i∈Φ

[−fi(xn, x∗)] ≤ 0, from (3.16) we can conclude

that lim inf
n→∞

[
− fi(xn, x∗)

]
= 0, ∀x∗ ∈ Γ. Hence, the result follows.

(c). From (3.13) and (C1)-(C3) of Condition 1, we have

lim
n→∞

‖Wn(un)−Atn‖2 = lim
n→∞

‖un −Atn‖2 = lim
n→∞

‖xn − yin‖2

= lim
n→∞

‖Ui′n(yn)− xn
∥∥2

= 0.
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Hence, the result follows.
(d). By definition of un and using ‖un−Atn‖ → 0 from (c) above we have ‖uj−
Atn‖ → 0. Using definition of tn, we have ‖tn − xn‖ = (1− δn)‖xn − Ui′n(yn)‖.
This together with ‖xn − Ui′n(yn)‖ → 0 from (c) above gives ‖tn − xn‖ → 0.

Hence, ‖ti′n − xn‖ → 0 follows from ‖ti′n − xn‖ ≤ ‖tn − xn‖.
Similarly, using ‖Wn(un) − un‖ ≤ ‖Wn(un) − Atn‖ + ‖un − Atn‖ and using
results in (c) above, yields ‖Wn(un)− un‖ → 0. By definition of ti

′

n , we have

‖ti′n − xn‖ = ‖δnxn + (1− δn)Ui′(yn)− xn‖ = (1− δn)‖xn − Ui′(yn)‖
= (1− δn)‖xn − Ui′(xn) + Ui′(xn)− Ui′(yn)‖
≥ (1− δn)

(
‖xn − Ui′(xn)‖ − ‖Ui′(xn)− Ui′(yn)‖

)
≥ (1− δn)

(
‖xn − Ui′(xn)‖ − ‖xn − yn‖

)
That is, for all i′ ∈ Φ′, we have

‖xn − Ui′(xn)‖ ≤ ‖xn − yn‖+
1

1− δn
‖ti

′

n − xn‖.

Combining the last inequality together with (C1) of Condition 1, ‖ti′n−xn‖ → 0
and ‖xn − yn‖ → 0, we have ‖xn − Ui′(xn)‖ → 0 for all i′ ∈ Φ′.

Now we state the first main theorem for convergence of Algorithm 3.1.

Theorem 3.6. Let {yn}, {tn}, {un} and {xn} be the sequences generated by
Algorithm 3.1. Then the sequences {yn}, {tn} and {xn} converge strongly to
a point p in Γ and {un} converges strongly to a point Ap ∈ Ω2 where p =

lim
n→+∞

PΓ(xn).

Proof. Let x∗ ∈ Γ. From Lemma 3.5 (a), we have seen that the sequence {xn}
is bounded. There exists a subsequence {xnl

} of {xn} such that xnl
⇀ p as

l→ +∞, where p ∈ C and

lim sup
l→+∞

fi(xnl
, x∗) = lim

n→+∞
fi(xn, x

∗).

But by the weak upper semicontiniuty of each fi(., x
∗) and by Lemma 3.5 (b),

we have

fi(p, x
∗) ≥ lim sup

l→+∞
fi(xnl

, x∗) = lim
l→+∞

fi(xnl
, x∗) = lim sup

n→+∞
fi(xn, x

∗) = 0.

Since x∗ ∈ Ω and p ∈ C we have fi(x
∗, p) ≥ 0. By (B2) of Condition I, we have

fi(p, x
∗) ≤ 0. This together with the above fact gives fi(x

∗, p) = 0. Hence, by
(B3) of Condition I, we have p ∈ SEP (fi, C).
Since ‖xn−Ui′(xn)‖ → 0 from Lemma 3.5 (c) and since xnl

⇀ p, by demiclosed-
ness of IdC − Ui′ , we have p ∈ FixUi′ for all i′ ∈ Φ′. Thus, p ∈

⋂
i′∈Φ′

FixUi′ .

Hence, p ∈ Ω1.
Since 〈ynl

, h〉 = 〈ynl
− xnl

, h〉 + 〈xnl
, h〉, ∀h ∈ H1, and using limk→+∞ ‖xn −
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yn‖ = 0 from Lemma 3.5, we have ynl
⇀ p as l → +∞. Therefore, Aynl

⇀ Ap
as l → +∞. Similarly, we can have tnl

⇀ p as j → +∞ and hence Atnl
⇀ Ap

as l → +∞. Since limn→+∞ ‖un − Atn‖ = 0 and 〈unl
, u〉 = 〈unl

− Atnl
, u〉 +

〈Atnl
, u〉, ∀u ∈ H2, we have unl

⇀ Ap as l → +∞. If there exists n0 ∈ N
such that Ap ∈ FixWn0

, then in view of Remark 3.2 it is easy to concude that
Ap ∈

⋂
j′∈Ψ′

FixVj′ . Thus, let us assume that Ap /∈ FixWn for all n ≥ 1. Using

Opial’s condition and Lemma 3.5 (d), we have

lim inf
l→+∞

‖unl
−Ap‖ < lim inf

l→+∞
‖unl

−Wnl
(Ap)‖

= lim inf
l→+∞

‖unl
−Wnl

(unl
) +Wnl

(unl
)−Wnl

(Ap)‖
≤ lim inf

l→+∞
(‖unl

−Wnl
(unl

)‖+ ‖Wnl
(unl

)−Wnl
(Ap)‖)

= lim inf
l→+∞

‖Wnl
(unl

)−Wnl
(Ap)‖ ≤ lim inf

l→+∞
‖unl

−Ap‖,

which is a contradiction. It must be the case that Ap ∈ FixWn for some
n ≥ 1 (implying that Ap ∈ FixWn for all n ≥ 1 using Remark 3.2). Hence,
Ap ∈

⋂
j′∈Ψ′

FixVj′ .

Let r > 0. Assume Ap /∈ Fix(T
gj0
r ) for some j0 ∈ Ψ and for some r > 0. Thus,

T
gj0
r (Ap) 6= Ap. That is, Ap /∈

⋂
j∈Ψ

Fix(T
gj
r ). Thus, using Opial’s condition,

Lemma 2.9 and lim
n→∞

‖ujn −Atn‖ = 0, ∀j ∈ Ψ, we get

lim inf
l→+∞

‖Atnl
−Ap‖ < lim inf

l→+∞
‖Atnl

− T gj0r (Ap)‖

= lim inf
l→+∞

‖Atnl
− uj0nl

+ uj0nl
− T gj0r (Ap)‖

≤ lim inf
l→+∞

(‖Atnl
− uj0nl

‖+ ‖uj0nl
− T gj0r (Ap)‖)

= lim inf
l→+∞

‖uj0nl
− T gj0r (Ap)‖

= lim inf
l→+∞

‖T gj0rnl
(Atnl

)− T gj0r (Ap)‖

≤ lim inf
l→+∞

(‖Atnl
−Ap‖+

|rnl
−r|

rnl
‖T gj0rnl

(Atnl
)−Atnl

‖)

= lim inf
l→+∞

(‖Atnl
−Ap‖+

|rnl
−r|

rnl
‖uj0nl

−Atnl
‖)

= lim inf
l→+∞

‖Atnl
−Ap‖

which is a contradiction. Hence, it must be the case that Ap ∈ Fix(T
gj
r ) for all

j ∈ Ψ and r > 0. By Lemma 2.8 ((iii)), Fix(T
gj
r ) = SEP (gi, D). Therefore,

Ap ∈
⋂
j∈Ψ

SEP (gj , D). Therefore, Ap ∈ Ω2. That is, p ∈ Ω1 and Ap ∈ Ω2.

Hence, p ∈ Γ and p is weak cluster point of the sequence {xn}. By Lemma
3.5, {‖xn− p‖2} converges. Thus, we conclude that the sequence {xn} strongly
converges to p. As a result of this it is easy to see that tn → p and yn → p as
n→ +∞. Moreover, Ayn → Ap, Atn → Ap, and Axn → Ap. From

‖un −Ap‖ ≤ ‖un −Atn‖+ ‖Atn −Ap‖
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we have un → Ap. We will end the proof by showing p = lim
n→+∞

PΓ(xn). From

Lemma 3.4, we have

(3.17) ‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + ϑn, ∀x∗ ∈ Γ.

Let zn = PΓ(xn). Since PΓ(xn) ∈ Γ and using (3.17), we have

(3.18) ‖xn+1 − zn‖2 ≤ ‖xn − zn‖2 + ϑn.

But by the property of metric projection, we have

‖xn+1 − zn+1‖2 ≤ ‖xn+1 − x∗‖2, ∀x∗ ∈ Γ.

Thus,

(3.19) ‖xn+1 − zn+1‖2 ≤ ‖xn+1 − zn‖2.

From (3.18) and (3.19), we have ‖xn+1 − zn+1‖2 ≤ ‖xn − zn‖2 + ϑn. Since∑∞
n=1 ϑn <∞, by Lemma 2.2 we have that limn→+∞ ‖xn − zn‖2 exists. Using

the definition of metric projection, we can conclude

(3.20) ‖PΓ(xk)− PΓ(xm)‖2 + ‖xm − PΓ(xm)‖2 ≤ ‖xm − PΓ(xk)‖2.

Let m ≥ k. Then from (3.18-3.20), we get

‖zk − zm‖2 = ‖PΓ(xk)− PΓ(xm)‖2 ≤ ‖xm − PΓ(xk)‖2 − ‖xm − PΓ(xm)‖2
= ‖xm − zk‖2 − ‖xm − zm‖2
≤ ‖xm−1 − zk‖2 + ϑm−1 − ‖xm − zm‖2
≤ ‖xk − zk‖2 +

∑m−1
l=k ϑl − ‖xm − zm‖2.

As a result of
∑∞
n=1 ϑn < ∞ and since limn→+∞ ‖xn − zn‖2 exists if we let

m, k → +∞ we can see that ‖zk − zm‖2 → 0. This implies the sequence
{zn} is a Cauchy sequence and hence it converges to some point z in Γ. Since
zn = PΓ(xn), we have

〈xn − zn, x∗ − zn〉 ≤ 0, ∀x∗ ∈ Γ.

Thus, 〈xn − zn, p− zn〉 ≤ 0. This leads to

‖z − p‖2 = 〈p− z, p− z〉 = lim
n→+∞

〈xn − zn, p− zn〉 ≤ 0.

Therefore, p = z and lim
n→+∞

PΓ(xn) = p.

The following corollary is an immediate consequence of Theorem 3.6 obtained
by setting Ui′ = IdC for all i′ ∈ Φ′ and Vj′ = IdD for all j′ ∈ Ψ′.
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Corollary 3.7. Let {yn}, {tn}, {un} and {xn} be sequences generated by iter-
ative algorithm

x1 ∈ C
win ∈ ∂εnfi(xn, .)(xn), i ∈ Φ,

αin = βn

ηin
, ηin = max{ρn, ‖win‖}, i ∈ Φ,

yin = PC(xn − αinwin), i ∈ I,
yn =

∑
i∈Φ

ξiny
i
n,

tn = δnxn + (1− δn)yn,
ujn = T

gj
rn (Atn), j ∈ Ψ,

un = arg max{‖v −Atn‖ : v ∈ {ujn : j ∈ Ψ}},
xn+1 = PC(tn + µnA

∗(un −Atn)).

Then {yn}, {tn} and {xn} converge strongly to a point p ∈
{
x ∈

⋂
i∈Φ

SEP (fi, C) :

Ax ∈
⋂
j∈Ψ

SEP (gj , D)
}

and {un} converge strongly to Ap ∈
⋂
j∈Ψ

SEP (gj , D).

Moreover, p = lim
n→+∞

PΩ(xn), where

Ω =
{
x ∈

⋂
i∈Φ

SEP (fi, C) : Ax ∈
⋂
j∈Ψ

SEP (gj , D)
}
.

Note that when Φ = Ψ = Φ′ = Ψ′ = {1}, the Algorithm 3.1 coincides with
Algorithms 3.1 in [14].

3.2. Algorithm without prior knowledge of the operator norm

In practice, to estimate the norm of an operator is not always easy. Next, we
modify Algorithm 3.1 where the implementation of the algorithm does not need
any prior information regarding the operator norm if it is not easy to estimate
the norm of an operator.
Take the parameter sequences in Algorithm 3.2 satisfying the conditions:

Condition 2

(C1) ρn ≥ ρ > 0, βn ≥ 0, εn ≥ 0, 0 < σ1 ≤ δn ≤ σ2 < 1.

(C2) r > 0, 0 < η < 4, 0 < η ≤ ηn ≤ 4− η.

(C3) 0 < ξ ≤ ξin ≤ 1, (i ∈ Φ) such that
∑
i∈Φ

ξin = 1 for each n ≥ 1.

(C4) 0 < θ ≤ θj′ ≤ 1, (j′ ∈ Ψ′) such that
∑
j′∈Ψ′

θj
′

= 1.

(C5)
∞∑
n=1

βn

ρn
= +∞,

∞∑
n=1

βnεn
ρn

< +∞,
∞∑
n=1

β2
n < +∞.

We shall now introduce the setting used as a stepsize that can be controlled and
help us eliminate the requirement of the operator norm. Let α > 0 and x ∈ H1.
Then h

gj
α (x), l

gj
α (x), hα(x) and lα(x) are defined as follows:
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(I) for each j ∈ Ψ,

hgjα (x) =
1

2

∥∥∥ ∑
j′∈Ψ′

θj
′
Vj′
(
T gjα A(x)

)
−A(x)

∥∥∥2

and
lgjα (x) = A∗

( ∑
j′∈Ψ′

θj
′
Vj′
(
T gjα A(x)

)
−A(x)

)
.

(II) hα(x) = h
gj0
α (x) and lα(x) = l

gj0
α (x), where j0 is in Ψ such that

T
gj0
α A(x) = arg max{‖v −Ax‖ : v ∈ {T gjα (Ax) : j ∈ Ψ}},

that is,

hα(x) =
1

2

∥∥∥ ∑
j′∈Ψ′

θj
′
Vj′
(
T
gj0
α A(x)

)
−A(x)

∥∥∥2

and so
lα(x) = A∗

( ∑
j′∈Ψ′

θj
′
Vj′
(
T
gj0
α A(x)

)
−A(x)

)
where j0 ∈ Ψ such that

T
gj0
α A(x) = arg max{‖v −Ax‖ : v ∈ {T gjα (Ax) : j ∈ Ψ}}.

Using h
gj
α , l

gj
α , hα and lα given in (I) and (II) above, we are now in a position

to introduce our algorithm.

Algorithm 3.2
Initialization : Choose x1 ∈ C. Let the real sequences {ρn}, {βn}, {εn},
{rn}, {δn}, {ξin} (i ∈ Φ), {ηn} and the real numbers r and θj

′
(j′ ∈ Ψ′) satisfy

Condition 2.

Step 1. For each i ∈ Φ, find wn ∈ H1 such that wn ∈ ∂εnf(xn, .)(xn).

Step 2. For each i ∈ Φ, calculate αin = βn

ηin
, ηin = max{ρn, ‖win‖} and

yin = PTn(xn − αinwin), where

Tn =

{
C if n = 1,
{z ∈ H1 : 〈tn−1 + µn−1lr(tn−1)− xn, z − xn〉 ≤ 0}, otherwise.

Step 3. Evaluate yn =
∑
i∈Φ

ξiny
i
n.

Step 4. For each i′ ∈ I ′ find ti
′

n = δnxn + (1− δn)Ui′(yn).

Step 5. Find among ti
′

n , i′ ∈ Φ′, the farthest element from xn, i.e.,

tn = arg max{‖v − xn‖ : v ∈ {ti
′

n : i′ ∈ Φ′}}.
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Step 6. For each j ∈ Ψ find ujn = T
gj
r (Atn), j ∈ Ψ.

Step 7. Find among ujn, j ∈ Ψ, the farthest element from Atn, i.e.,

un = arg max{‖v −Atn‖ : v ∈ {ujn : j ∈ Ψ}}.

Step 8. Evaluate xn+1 = PC(tn + µnlr(tn)), where

µn =

{
0 if lr(tn) = 0,
ηnhr(tn)
‖lr(tn))‖2 , otherwise.

Step 9. Set n = n+ 1 and go to Step 1.

Remark 3.8. By definition of Tn, we see that Tn is either half-space or the
whole space H1. Therefore, for each n, Tn is closed and convex set, and the
computation of projection yin = PTn

(xn − αinwin) in Step 2 of Algorithm 3.2 is
explicit and easier than the computation of projection yin = PC(xn − αinwin)
in Step 2 of Algorithm 3.2 when C has a complex structure. Moreover, by a
similar reasoning as for Algorithm 3.1, Algorithm 3.2 is well defined.

Similarly, define

(1b) W =
∑
j′∈Ψ′

θj
′
Vj′ ,

(2b) {i′n}+∞n=1 is a sequence where for each n, i′n ∈ Φ′ such that

tn = t
i′n
n = arg max{‖v−xn‖ : v ∈ {ti

′

n : i′ ∈ Φ′}} = δnxn+(1−δn)Ui′n(yn),

(3b) {jn}+∞n=1 is a sequence where for each n, jn ∈ Ψ such that

un = ujnn = arg max{‖v −Atn‖ : v ∈ {ujn : j ∈ Ψ}}.

Remark 3.9. (1b) above has a form of (1a) defined in Algorithm 3.1, i.e., by
setting Wn = W for all n ≥ 1, where W =

∑
j′∈Ψ′

θj
′
Vj′ .

Remark 3.10. In Algorithm 3.2, hr(tn) and lr(tn) are simply given as

hr(tn) =
1

2
‖WT

gjn
r Atn −Atn‖2 =

1

2
‖Wujnn −Atn‖2

and lr(tn) = A∗
(
WT

gjn
r Atn −Atn

)
= A∗

(
Wujnn −Atn

)
.

Lemma 3.11. Let {yin} (i ∈ Φ), {yn}, {tn} and {xn} be sequences generated
by Algorithm 3.2. Then

(a) C ⊂ Tn for all n ≥ 1.
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(b) For x∗ ∈ Γ,

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 + 2(1− δn)
∑
i∈Φ

ξinα
i
nfi(xn, x

∗)− Ln + ϑn,

where Ln = (1 − δn)
∑
i∈Φ

ξin‖xn − yin‖2 + δn(1 − δn)‖Ui′n(yn) − xn‖2 and

ϑn = 2(1− δn)βnεn
ρn

+ 2(1− δn)β2
n.

Proof. (a). From xn = PC(tn−1 + µn−1lr(tn−1)) and by the property of metric
projection we have

〈tn−1 + µn−1lr(tn−1)− xn, z − xn〉, ∀z ∈ C

which, together with the definition of Tn, implies that C ⊂ Tn.
(b). Let x∗ ∈ Γ. From yin = PTn

(xn − βn

ηin
win) and x∗, xn ∈ C ⊂ Tn, we have

〈xn − αinwin − yin, yin − x∗〉 ≥ 0.

The result follows by a similar proof as we used in Lemma 3.3.

Lemma 3.12. Let {yin} (i ∈ Φ), {yn}, {un}, and {xn} be a sequences generated
by Algorithm 3.2. Then, for all x∗ ∈ Γ, we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + 2(1− δn)
∑
i∈Φ

ξinα
i
nfi(xn, x

∗) + ϑn −Kn − ϕn,

where Kn = (1−δn)
∑
i∈Φ

ξin‖xn−yin‖2 +δn(1−δn)‖Ui′n(yn)−xn‖2−‖un−Atn‖2,

ϑn = 2(1− δn)βnεn
ρn

+ 2(1− δn)β2
n and ϕn = 4µnhr(tn)− µ2

n‖lr(tn)‖2.

Proof. Let x∗ ∈ Γ. Using (3.9) in Lemma 3.4, we have

〈tn − x∗, lr(tn)〉 = 〈tn − x∗, A∗(W (un)−Atn)〉
= 〈A(tn − x∗),W (un)−Atn〉

=
〈
A(tn − x∗) +W (un)−Atn −W (un) +Atn,W (un)−Atn

〉
=

〈
W (un)−Ax∗,W (un)−Atn

〉
− ‖W (un)−Atn‖2

=
1

2

(
‖W (un)−Ax∗‖2 + ‖W (un)−Atn‖2 − ‖Atn −Ax∗‖2

)
−‖W (un)−Atn‖2

=
1

2

(
‖W (un)−Ax∗‖2 − ‖W (un

)
−Atn‖2 − ‖Atn −Ax∗‖2

)
≤ −1

2

(
‖un −Atn‖2 + ‖W (un)−Atn‖2

)
= −1

2

(
‖un −Atn‖2 + 2hr(tn)

)
.(3.21)
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Using (3.21), we have

‖xn+1 − x∗‖2

= ‖PC(tn + µnlr(tn))− PC(x∗)‖2 ≤ ‖tn + µnlr(tn)− x∗‖2

= ‖tn − x∗‖2 + µ2
n‖lr(tn)‖2 − 2µn〈lr(tn), tn − x∗〉

≤ ‖tn − x∗‖2 + µ2
n‖lr(tn)‖2 − 4µnhr(tn)− ‖un −Atn‖2

= ‖tn − x∗‖2 − ‖un −Atn‖2

−[4µnhr(tn)− µ2
n‖lr(tn)‖2].(3.22)

Therefore, (3.22) and Lemma 3.11 give the result.

Note that by the definition of µn, we have

ϕn =

{
0, if lr(tn) = 0

ηn(4− ηn) hr(tn)2

‖lr(tn)‖2 , otherwise.

Lemma 3.13. Let {yin} (i ∈ Φ), {tn}, {un} and {xn} be the sequences gener-
ated by Algorithm 3.2. Then

(a). for x∗ ∈ Γ, lim
n→+∞

‖xn − x∗‖2 exists (and {xn} is bounded),

(b). lim sup
n→∞

fi(xn, x) = 0 for all x ∈ Γ,

(c). lim
n→∞

‖un −Atn‖ = lim
n→∞

‖xn − yin‖ = lim
n→∞

‖Ui′n(yn)− xn‖ = 0,

(d). for all j ∈ Ψ and i′ ∈ Φ′, we have

lim
n→∞

‖ujn −Atn‖ = lim
n→∞

‖Ui′(xn)− xn‖ = lim
n→∞

‖tn − xn‖
= lim
n→∞

hr(tn) = lim
n→∞

‖W (un)− un‖ = 0.

Proof. (a). Let x∗ ∈ Γ. Since fi(xn, x
∗) ≤ 0, Kn ≥ 0, ϕn ≥ 0 from Lemma 3.12,

we have
‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + ϑn.

Therefore, the result follows.
(b). From Lemma 3.12, we have

ϕn +Kn + 2(1− δn)
∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ϑn
≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn

ρn
εn + 2β2

n.

Summing up the above inequalities for every k, we obtain

0 ≤
k∑

n=1

(
ϕn +Kn + 2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
≤

k∑
n=1

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn

ρn
εn + 2β2

n

)
.
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This will yield

0 ≤
k∑

n=1
ϕn +

k∑
n=1

Kn +
k∑

n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
≤ ‖x1 − x∗‖2 − ‖xk+1 − x∗‖2 + 2

k∑
n=1

βn

ρn
εn + 2

k∑
n=1

β2
n.

Letting k → +∞, we have

0 ≤
∞∑
n=1

ϕn +

∞∑
n=1

Kn +

∞∑
n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
< +∞.

Hence,

(3.23)

∞∑
n=1

ϕn < +∞,
∑∞
n=1Kn < +∞,

∞∑
n=1

(
2(1− δn)

∑
i∈Φ

ξinα
i
n[−fi(xn, x∗)]

)
< +∞.

The result follows in the same way as in the proof of Lemma 3.5.

(c). From
∞∑
n=1

Kn < +∞ and Condition 2, we have

lim
n→∞

‖un −Atn‖2 = lim
n→∞

‖xn − yin‖2 = lim
n→∞

‖Ui′n(yn)− xn‖2 = 0.

(d). The proof of lim
n→∞

‖ujn − Atn‖ = lim
n→∞

‖Ui′(xn) − xn‖ = lim
n→∞

‖tn − xn‖
remains the same as in Lemma 3.5 (d).

From (3.23) we have
∞∑
n=1

[4µnhr(tn) − µ2
n‖lr(tn)‖2] < +∞. Without loss of

generality, we can assume that lr(tn) 6= 0 for all n.

Thus,
∞∑
n=1

[4µnhr(tn)− µ2
n‖lr(tn)‖2] < +∞ implies that

∞∑
n=1

ηn(4− ηn)
hr(tn)2

‖lr(tn)‖2
< +∞.

Since 0 < η ≤ ηn ≤ 4− η, we have

(3.24)

∞∑
n=1

hr(tn)2

‖lr(tn)‖2
< +∞.

Since lim
n→∞

‖tn−xn‖ = 0 and {xn} is bounded, {tn} is also bounded. Moreover,

since A is a bounded linear operator, W is a nonexpansive operator, and using
the triangle inequality and Lemma 2.8 for T

gj
r , it is easy to see that l

gj
r (.) is

Lipschitz continuous for all j ∈ Ψ. Thus, from the Lipschitz continuity of
l
gj
r (.) and from boundedness of the sequence {tn}, it follows that {‖lgjr (tn)‖2} is
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bounded for each j ∈ Ψ and hence {‖lr(tn)‖2} is bounded. This together with
(3.24) implies that limn→∞ hr(tn) = 0. The inequality

‖W (un)− un‖ ≤ (2hr(tn))
1
2 + ‖un −Atn‖

gives limn→∞ ‖W (un)− un‖ = 0.

The second main theorem is about the convergence of Algorithm 3.2.

Theorem 3.14. Let {yn}, {tn}, {un} and {xn} be the sequences generated
by Algorithm 3.2. Then the sequences {yn}, {tn} and {xn} converge strongly
to the point p in Γ and {un} converges strongly to the point Ap ∈ Ω2 where
p = lim

n→∞
PΓ(xn).

Proof. The proof of this Theorem is similar to the proof of Theorem 3.6 by
taking Wn = W for all n ≥ 1. Therefore, the proof is omitted.

Similarly, if we set Ui′ = IdC for all i′ ∈ Φ′ and Vj′ = IdD for all j′ ∈ Ψ′,
Theorem 3.14 solves

x ∈
⋂
i∈Φ

SEP (fi, C) such that Ax ∈
⋂
j∈Ψ

SEP (gj , D).

When Φ = Ψ = Φ′ = Ψ′ = {1} the Algorithm 3.2 coincides with Algorithm 3.2
in [14].

Example 3.15. Let C and D be closed convex subsets of H1 and H2, respec-
tively, where C and D contain the zero vector. Let the bifunctions fi : C×C →
R be defined by the Cournot-Nash equilibrium model

fi(x, y) = 〈Pix+Qiy + si, y − x〉, i ∈ Φ = {1, . . . , N},

where Pi, Qi are p × p matrices of order p such that Qi is symmetric positive
semidefinite and Qi−Pi is negative semidefinite, si ∈ Rp, and let gj : D×D → R
be defined by

gj(u, v) = Gj(v)−Gj(u), j ∈ Ψ = {1, . . . ,M},

where Gj(u) = 1
2u

T H̄ju + B̄Tj u, with B̄j ∈ Rp and H̄j being a symmetric
positive definite matrix of order q. Let Ui′ : C → C, Vj′ : D → D given by

Ui′(x) =
1

i′
x, i′ ∈ Φ′ = {1, . . . , N ′}

and

Vj′(u) =
1

j′
u, j′ ∈ Ψ′ = {1, . . . ,M ′}.

Let A : Rp → Rq where A is q × p nonzero matrix.
It is easy to show that each Ui′ and Vj′ is nonexpansive mapping, each fi satisfy
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Condition I on C, each gj satisfy Condition II on D, Ω1 = {0}, Ω2 = {0} and
A(0) = 0. Therefore, Γ = {0}.

Note that in this case, the resolvent T
gj
r of the bifunction gj coincides with

the proximal mapping of the function Gj with the constant r > 0, that is,

T gjr (u) = arg min{rGj(v) + ‖u− v‖2 : v ∈ D}, j ∈ Ψ = {1, . . . ,M}

or the following convex quadratic problem

T gjr (u) = arg min
{1

2
vT Ĥjv + B̂Tj v : v ∈ D}, j ∈ Ψ = {1, . . . ,M}

where Ĥj = 2(H̄j + 1
r Id) and B̂j = B̄j − 2

ru where Id is q × q identity matrix.

For each j ∈ Ψ, the convex quadratic problem arg min
{

1
2v
T Ĥjv+B̂Tj v : v ∈ D}

can be effectively solved, for instance, by MATLAB Optimization Toolbox.

Conclusions

We proposed two algorithms and we proved that the proposed algorithms
have strong convergence. The first algorithm is designed with N + 1 projec-
tions on the feasible set and with the prior knowledge of operator norm while
the second algorithm is simpler in computations where only one projection on
feasible set needs to be implemented and the information of operator norm is
not necessary to construct solution approximations.

Acknowledgement

The authors would like to thank Debre Berhan University and Naresuan
University for partial financial support of this research.

References

[1] Alizadeh, S., and Moradlou, F. A strong convergence theorem for equilibrium
problems and generalized hybrid mappings. Mediterr. J. Math. 13, 1 (2016), 379–
390.

[2] Anh, P. N. A hybrid extragradient method extended to fixed point problems
and equilibrium problems. Optimization 62, 2 (2013), 271–283.

[3] Anh, P. N., and Muu, L. D. A hybrid subgradient algorithm for nonexpansive
mappings and equilibrium problems. Optim. Lett. 8, 2 (2014), 727–738.

[4] Byrne, C., Censor, Y., Gibali, A., and Reich, S. The split common null
point problem. J. Nonlinear Convex Anal. 13, 4 (2012), 759–775.

[5] Ceng, L.-C., Hadjisavvas, N., and Wong, N.-C. Strong convergence theorem
by a hybrid extragradient-like approximation method for variational inequalities
and fixed point problems. J. Global Optim. 46, 4 (2010), 635–646.

[6] Censor, Y., Gibali, A., and Reich, S. Algorithms for the split variational
inequality problem. Numer. Algorithms 59, 2 (2012), 301–323.



32 Anteneh Getachew Gebrie, Rabian Wangkeeree

[7] Censor, Y., Gibali, A., Reich, S., and Sabach, S. Common solutions to
variational inequalities. Set-Valued Var. Anal. 20, 2 (2012), 229–247.

[8] Combettes, P. L., and Hirstoaga, S. A. Equilibrium programming in Hilbert
spaces. J. Nonlinear Convex Anal. 6, 1 (2005), 117–136.

[9] Daniele, P., and Maugeri, A. Equilibrium problems and variational inequali-
ties: a continuum transportation model. Elsevier Sci. B. V., Amsterdam, 2001.

[10] Deutsch, F., and Yamada, I. Minimizing certain convex functions over the
intersection of the fixed point sets of nonexpansive mappings. Numer. Funct.
Anal. Optim. 19, 1-2 (1998), 33–56.

[11] Dinh, B. V., Son, D. X., Jiao, L., and Kim, D. S. Linesearch algorithms
for split equilibrium problems and nonexpansive mappings. Fixed Point Theory
Appl. (2016), Paper No. 27, 21.

[12] Fan, K. A minimax inequality and applications. In Inequalities, III (Proc. Third
Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of
Theodore S. Motzkin) (1972), pp. 103–113.

[13] Fl̊am, S. D., and Antipin, A. S. Equilibrium programming using proximal-like
algorithms. Math. Programming 78, 1, Ser. A (1997), 29–41.

[14] Gebrie, A. G., and Wangkeeree, R. Hybrid projected subgradient-proximal
algorithms for solving split equilibrium problems and split common fixed point
problems of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl.
(2018), Paper No. 5, 28.

[15] Gebrie, A. G., and Wangkeeree, R. Proximal method of solving split system
of minimization problem. J. Appl. Math. Comput. 61 (2019), 1–26.

[16] Gebrie, A. G., and Wangkeeree, R. Parallel proximal method of solving split
system of fixed point set constraint minimization problems. Rev. R. Acad. Cienc.
Exactas F́ıs. Nat. Ser. A Mat. RACSAM 114, 1 (2020).

[17] Goebel, K., and Kirk, W. A. Topics in metric fixed point theory, vol. 28
of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1990.

[18] He, Z. The split equilibrium problem and its convergence algorithms. J. Inequal.
Appl. (2012), 2012:162, 15.

[19] Hieu, D. V. Parallel extragradient-proximal methods for split equilibrium prob-
lems. Math. Model. Anal. 21, 4 (2016), 478–501.

[20] Hieu, D. V. Projected subgradient algorithms on systems of equilibrium prob-
lems. Optim. Lett. 12, 3 (2018), 551–566.

[21] Hieu, D. V. Two hybrid algorithms for solving split equilibrium problems. Int.
J. Comput. Math. 95, 3 (2018), 561–583.

[22] Kazmi, K. R., and Rizvi, S. H. Iterative approximation of a common solution
of a split equilibrium problem, a variational inequality problem and a fixed point
problem. J. Egyptian Math. Soc. 21, 1 (2013), 44–51.

[23] Mann, W. R. Mean value methods in iteration. Proc. Amer. Math. Soc. 4
(1953), 506–510.

[24] Moudafi, A. On the convergence of splitting proximal methods for equilibrium
problems in Hilbert spaces. J. Math. Anal. Appl. 359, 2 (2009), 508–513.



Parallel projected subgradient-proximal methods for solving FPSCEPs 33

[25] Plubtieng, S., and Punpaeng, R. A general iterative method for equilibrium
problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 336,
1 (2007), 455–469.

[26] Qin, X., Cho, Y. J., and Kang, S. M. Convergence analysis on hybrid pro-
jection algorithms for equilibrium problems and variational inequality problems.
Math. Model. Anal. 14, 3 (2009), 335–351.

[27] Santos, P., and Scheimberg, S. An inexact subgradient algorithm for equi-
librium problems. Comput. Appl. Math. 30, 1 (2011), 91–107.

[28] Tada, A., and Takahashi, W. Weak and strong convergence theorems for a
nonexpansive mapping and an equilibrium problem. J. Optim. Theory Appl. 133,
3 (2007), 359–370.

[29] Takahashi, S., and Takahashi, W. Strong convergence theorem for a gen-
eralized equilibrium problem and a nonexpansive mapping in a Hilbert space.
Nonlinear Anal. 69, 3 (2008), 1025–1033.

[30] Wang, S., and Guo, B. New iterative scheme with nonexpansive mappings for
equilibrium problems and variational inequality problems in Hilbert spaces. J.
Comput. Appl. Math. 233, 10 (2010), 2620–2630.

[31] Xu, H.-K. Viscosity approximation methods for nonexpansive mappings. J.
Math. Anal. Appl. 298, 1 (2004), 279–291.

Received by the editors March 27, 2019
First published online January 10, 2020


	Introduction
	Preliminaries
	Main result
	Algorithm requiring prior knowledge of operator norm
	 Algorithm without prior knowledge of the operator norm


