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Cyclic Picard operator and simulation type functionsﬂ

Sumit Chandok?

Abstract.  In this manuscrpt, we introduce generalized (a, 8, Zg)—
contraction using the concept of cyclic («, 3)-admissible mapping and
prove the existence of a Picard operator for such class in the structure
of metric spaces. Also we provide an example for the illustration of the
same.
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1. Introduction & Preliminaries

Let M be a nonempty set and f : M — M. A sequence {u,} defined by
un = fMug is called a Picard sequence based at the point ug € M. An operator
f is said to be a Picard operator if it has a unique fixed point z € M and
z = lim f"u for all w € M. An operator f is said to be a weakly Picard

n—oo

operator if it has a fixed point z € M and z = lim f"u for all u € M.

n—oo
Various classes of Picard operators exist in the literature (see, for example,

[4 3, B, @ 14 [13]). Using the concept of cyclic («, 8)-admissible mapping,
we introduce generalized («, 8, Zg)— contraction and prove the existence of a
Picard operator for such class in the structure of metric spaces. Also we give
an example for the illustration of the same.

A mapping f : M — M is continuous if and only if it is sequentially
continuous, i.e., lim, o d(f2,, fr) = 0 for any sequence {x,} C X with
lim,, o d(xy,x) = 0.

Now, we define a C-class function (see also [7, [10]) as

Definition 1.1. A mapping G : [0, +00)? — R is called a C-class function if
it is continuous and G (s,t) < s for all s,¢ > 0.

Definition 1.2. A mapping G : [0, 4+00)? — R has the property Cg if there
exists an Cg > 0 such that

(Cgl) G (s,t) > Cg implies s > t;

(Ce2) G (t,t) < Cg, for all t € [0, 400).
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Some examples of C-class functions that have property Cg are as follows:
a)G(s,t)=s—t, Cg=r,re0,+0);
b) G (s,t) = s — B O =0;
c)G(s,t):ﬁ,kzZLC’G:ﬁ,TZQ.
For more examples of C-class functions that have property C¢q see [2 [7].
Khojasteh et al. ([6]) (see also [12][]) introduced the concept of a simulation
function.

Definition 1.3. (see [7]) We define Z¢ to be the family of all Cg-simulation
functions ¢ : [0, +00)? — R satisfying the following:

(Zc1) € (t,5) < G (s,t) for all t, s > 0, where G : [0, +00)? — R is a C-class
function;

(262) if {t,} , {sn} are sequences in (0, +00) such that nll_}IIOlo t, = lim s, >

n— o0
0, and t,, < s, then limsup ¢ (¢,,s,) < Cq.

n—oo

Some examples of simulation functions and Cg-simulation functions are:

d) ¢(t,s) =537 —tforallt,s >0.

e) ((t,s) =s—w(s)—tforallt,s >0, where ¢ : [0, 4+00) — [0, +00) is a
lower semi continuous function and ¢ (¢) = 0 if and only if ¢ = 0.

For more examples of simulation functions and Cg-simulation functions see
21 (12, 16, [7, |8, [15].

Each simulation function as in paper [0] is also a Cg-simulation function as
in Definition but the converse is not true. For this claim see Example 3.3
of [12] using the C-class function G (s,t) = s —t.

Alizadeh et al. [I] introduced the notion of a cyclic («, 3)-admissible map-
ping which is defined as follows:

Definition 1.4. Let M be a nonempty set, f be a self-mapping on M and
a,f: M — [0,00) be two mappings. We say that f is a cyclic (a, §)-admissible
mapping if x € M with a(z) > 1 implies S(fz) > 1 and S(x) > 1 implies
a(fz) > 1.

The following result will be required in the sequel.

Lemma 1.5. (see [11, [10]) Let (X,d) be a metric space and let {x,} be a
sequence in X such that

(1.1) lim d(zy,2n4+1) =0.

n—oo

If{z,} is not a Cauchy sequence in X, then there exist e > 0 and two sequences
{m (k)} and {n(k)} of positive integers such that n (k) > m (k) > k and the
following sequences tend to et when k — +oo:

(12) d (xm(k)v xn(k)) ) d (xm(k,)a xn(k,)—i—l) , d (wm,(k)—la xn(k)) ’

d (Tomk)—1,Tn)+1) s & (Tmk)+1: Tn(k)+1) -
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2. Main results

Definition 2.1. Let (M, d) be a complete metric space, f : M — M be a map-
ping and «, 8 : R — [0, 00) be two functions. Then f is said to be a generalized
(o, B, Zg)— contraction mapping if f satisfies the following conditions:

(1) f is cyclic (o, 8)-admissible;

(2) there exits a ¢ € Z¢g such that for all u,v € M, we have

(2.1) a(u)f(v) = 1, d(fu, fv) > 0= ((d(fu, fv),d(u,v)) = Ca.

Lemma 2.2. Let M be a nonempty set and f : M — M be a cyclic («, f)—ad-
missible mapping. Assume that there exists an element vo € M such that
alzg) > 1 = B(x1) > 1 and B(xg) > 1 = afx1) > 1. Define a Picard
sequence {xn} C M by xpi1 = f"xo = fx,. Then a(x,) >1 = B(z,) >1
and B(zn) > 1 = a(xm) > 1 for allm,n € N with n < m.

Proof. Assume that there exist g € M such that a(xzg) > 1. Define a Picard
sequence {x,} by p41 = fa, = [Tz, for all n € NU {0}.

Assume that x,, # x,41 for all n € NU {0}. Assume that there exist
xo,21 € M such that a(xg) > 1 = B(fzo) = B(x1) > 1 and f(zg) > 1 =
a(fxo) = a(z1) > 1. By continuing the above process, we have a(z,) > 1 =
B(fon) = Blens1) > 1 and B(z,) > 1 = a(fa,) = a(@ap) = 1

Since a(zpy) > 1 = B(frm) = B(@ms1) > 1 and B(zy) > 1 =
a(frm) = a(Xme1) > 1, for all myn € N with n < m. Moreover, since
a(xm) >1 = B(xm-‘rQ) > 1 and ﬁ('rm) >1 = ()t(ﬂ?m+2) > 1, for all
m,n € N with n < m.

By continuing this process, we have a(z,) > 1 = f(x,,) > 1 and
B(xn) > 1 = a(zy) > 1, for all m,n € N. Hence the result. O

Lemma 2.3. Let (M,d) be a metric space, f : M — M be a self-mapping and
f be a generalized («, 8, Zg)— contraction. Suppose that there exists a Picard
sequence {z,} C M defined by x,,11 = f"xg = fx, such that x,, # x,41. Then
the sequence {d(zp,xni1)} is decreasing and d(Zpn,Tny1) — 0 as n — co.

Proof. Suppose that there is a Picard sequence {z,} such that z,,11 = f"x =
fxn, where n € NU {0}. Suppose that x,, # 2,41 for all n € NU {0}. Using
Lemma [2.2] we have a(z,) > 1 = B(z,) > 1and B(z,) > 1 = a(zy,) >
1, for all m,n € N. Thus a(x,)B(x,+1) > 1, for all n € NU {0}. Substituting
U= Tp, V= =Tpyi in we obtain that

Cg < C(d (fxn>f$n+1) ;d(xnaxn—i-l)) = C(d (In+1,117n+2) ;d(xnaxn—i-l))
< G(d(Tn, Tny1), d(Tni1, Tng2)) -

Using (Cgl) of Definition we have d (¢, 2p+1) > d(Tp41,Tnt2). Hence,
for all n € NU {0} we get that d (xp11,Zni2) < d (T, Tni1)

Further we have to prove that x, # x,, for n # m. Indeed, suppose that
Ty = Ty for some n > m. Then we choose x, 1 = Tm41 (which is obviously
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possible by the definition of the Picard sequence {z,}). Then following the
previous arguments, we have

A (X, Tpg1) < d(Xp_1,2pn) < < d(Tm, Tmy1) = d(Tn, Tny1),

which is a contradiction. Hence x,, # x,,.

Therefore there exists ¢ > 0 such that lim, oo d (2n, zpr1) =t > 0. Sup-
pose that ¢ > 0. Since d(Zp11,Zni2) < d(Tp,Zni1) and both d (zp41, Trni2)
and d (@, zp41) tend to ¢, using (£52) of Definition we get

CG < limsupC (d (xn+17xn+2) 7d($na $n+1)) < CG’

n—oo
which is a contradiction. Hence lim,, o0 d (Zp, nt1) = ¢ = 0. O

Lemma 2.4. Let (M,d) be a metric space, f : M — M be a self-mapping and
f be a generalized («, 8, Zg)— contraction. Suppose that there exists a Picard
sequence {x,} C M defined by x,,11 = fxg = fx, such that x,, # x,41. Then
the Picard sequence {x,} is a Cauchy sequence.

Proof. Suppose that there is a Picard sequence {z,} such that z,, 11 = f"z¢ =
fx, where n € NU{0}. Suppose that x,, # 2,1 for all n € NU {0}. Using
Lemmas and we have that the sequence {d(z,,2n,+1)} is decreasing
and d(xy,, Tne1) — 0 as n — oo.

Now, we have to show that {y,} is a Cauchy sequence. Suppose, to the
contrary, that it is not. Putting x = z,,,(x), ¥ = Tpx) in , we obtain

Ca < C(d (fTmm): [Ta@)) » d (Tm(r): Tur)))
(2.2) < G (d(Zm@r)s Taw)) » & (Tm()+15 Tak)+1)) -

Using (Cg1) of Definition it follows that

A (Tm(k)s Tnek)) > & (Tm(r) 415 Tagy1) -

Now, since the sequence {x,, } is not a Cauchy sequence, then by Lemma
we  have  d(Tpky Tok)s A (@m)+1Tagy+1)s & (Tme)s Tney+1)  and
d (xn(k)7xm(k)+1) tend to € > 0, as k — oco. Therefore, using 1] we have

Ca <limsup ¢ (d (m)+1, Tnk)+1) > & (Tm)+1> Tny+1)) < Cas
n—oo
which is a contradiction. Therefore, the Picard sequence {z,} is a Cauchy
sequence.

O

Theorem 2.5. Let (M,d) be a complete metric space, f : M — M be a
mapping and o, B : M — [0,1) be two functions. Suppose that the following
conditions hold.

(1) f is a generalized (o, B, Zg)— contraction mapping;
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(2) There exists an element xy € M such that a(zg) > 1 and B(xo) > 1;

(3) f is sequentially continuous;

or

If the sequence {x,} in M converges to x € M with the property a(xy,) >
1 (or B(xy) > 1) for alln € N, then a(z) > 1 (or B(z) > 1).

Then f is a weakly Picard operator.

Proof. Assume that there exist g € M such that a(xg) > 1. Define a Picard
sequence {z,} by z,y1 = fx, = [Tz, for all n € NU {0}. If there exist
nog € NU{0} such that u,, = fu,,, then we are done. Assume that u, # t,41
for all m € NU{0}. Assume that there exist xg, 21 € M such that a(zg) > 1 =
B(f20) = Blz1) > 1 and f(z0) > 1 = a(fzo) = a(e1) > 1. Using Lemma
we have a(z,) > 1 = f(zn) > 1and B(z,) > 1 = alz,) > 1, for
all m,n € N. Thus a(x,)B(zn+1) > 1, for all n € NU {0}.

Using Lemma we have that the sequence {d(zn,xnt1)} is decreasing
and d(xyn, Tne1) — 0 as n — oo.

Using Lemma we obtain that the Picard sequence {zy}, cyyoy 15 @
Cauchy sequence.

Now as (M,d) is a complete metric space, there exists € M such that
{xn} converges to .

The continuity of f and uniqueness of the limit implies fz = x, thus we get
a fixed point.

Now, suppose that the sequence {z,} in X converges to x € X with the
property a(z,) > 1 (or B(x,) > 1) for all n € N, then a(x) > 1 (or f(z) > 1).
Hence a(z)8(z) > 1

Further, we claim that fo = z. Suppose not, that is, fx # x. So d(fx,x) >
0 and d(z, fx) = nh—{%o d(xpy1, fz) = nh_}rglc d(fxn, fr) #0. Using we have

Ca < C(d(f%n,fl‘) 7d(mn’$))
(2.3) < G(d(zn,z),d(fzn, f2)).

Taking n — oo and using property (Cg1) of Definition we have d(z, fz) <
0, which is a contradiction. We, thus, obtain that f has a fixed point fz = z.
Hence f is a weakly Picard operator. O

Here, we have an example that if f satisfies all the hypotheses of Theorem
then the fixed point of f may not necessarily be unique.

Example. Let X = [0,1] be endowed with the usual metric d(z,y) =
|x — y| for all z,y € [0,400), and consider the mapping f : X — X given, for
all z € X, by fr =22 Define o,5: X — R as

1l,x=0

a(w):/g(x):{ 0,2 #0
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However, putting ¢ (t,s) = == —t, G (s,t) = s — t, Cg = 0, we have that f is

s+1

a generalized («a, 8, Zg)— contraction with respect to (. Hence using Theorem
we have 0 and 1 are fixed points of f. Hence f is a weakly Picard operator.
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