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Cyclic Picard operator and simulation type functions1

Sumit Chandok2

Abstract. In this manuscrpt, we introduce generalized (α, β,ZG)−
contraction using the concept of cyclic (α, β)-admissible mapping and
prove the existence of a Picard operator for such class in the structure
of metric spaces. Also we provide an example for the illustration of the
same.
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1. Introduction & Preliminaries

Let M be a nonempty set and f : M → M . A sequence {un} defined by
un = fnu0 is called a Picard sequence based at the point u0 ∈M . An operator
f is said to be a Picard operator if it has a unique fixed point z ∈ M and
z = lim

n→∞
fnu for all u ∈ M . An operator f is said to be a weakly Picard

operator if it has a fixed point z ∈ M and z = lim
n→∞

fnu for all u ∈ M .

Various classes of Picard operators exist in the literature (see, for example,
[4, 3, 5, 9, 14, 13]). Using the concept of cyclic (α, β)-admissible mapping,
we introduce generalized (α, β,ZG)− contraction and prove the existence of a
Picard operator for such class in the structure of metric spaces. Also we give
an example for the illustration of the same.

A mapping f : M → M is continuous if and only if it is sequentially
continuous, i.e., limn→∞ d(fxn, fx) = 0 for any sequence {xn} ⊂ X with
limn→∞ d(xn, x) = 0.

Now, we define a C-class function (see also [7, 10]) as

Definition 1.1. A mapping G : [0,+∞)2 → R is called a C-class function if
it is continuous and G (s, t) ≤ s for all s, t ≥ 0.

Definition 1.2. A mapping G : [0,+∞)2 → R has the property CG if there
exists an CG ≥ 0 such that

(CG1) G (s, t) > CG implies s > t;

(CG2) G (t, t) ≤ CG, for all t ∈ [0,+∞).

1This work has been supported by the AISTDF/DST research grant CRD/2018/000017.
2School of Mathematics, Thapar Institute of Engineering & Technology, Patiala-147004,

Punjab, India, e-mail: sumit.chandok@thapar.edu

https://doi.org/10.30755/NSJOM.09381
mailto:sumit.chandok@thapar.edu


36 S. Chandok

Some examples of C-class functions that have property CG are as follows:
a) G (s, t) = s− t, CG = r, r ∈ [0,+∞);

b) G (s, t) = s− (2+t)t
1+t , CG = 0;

c) G (s, t) = s
1+kt , k ≥ 1, CG = r

1+k , r ≥ 2.
For more examples of C-class functions that have property CG see [2, 7].
Khojasteh et al. ([6]) (see also [12, 8]) introduced the concept of a simulation

function.

Definition 1.3. (see [7]) We define ZG to be the family of all CG-simulation
functions ζ : [0,+∞)2 → R satisfying the following:

(ZG1) ζ (t, s) < G (s, t) for all t, s > 0, where G : [0,+∞)2 → R is a C-class
function;

(ZG2) if {tn} , {sn} are sequences in (0,+∞) such that lim
n→∞

tn = lim
n→∞

sn >

0, and tn < sn, then lim sup
n→∞

ζ (tn, sn) < CG.

Some examples of simulation functions and CG-simulation functions are:
d) ζ (t, s) = s

s+1 − t for all t, s ≥ 0.
e) ζ (t, s) = s − ϕ (s) − t for all t, s ≥ 0, where ϕ : [0,+∞) → [0,+∞) is a

lower semi continuous function and ϕ (t) = 0 if and only if t = 0.
For more examples of simulation functions and CG-simulation functions see

[2, 12, 6, 7, 8, 15].
Each simulation function as in paper [6] is also a CG-simulation function as

in Definition 1.3, but the converse is not true. For this claim see Example 3.3
of [12] using the C-class function G (s, t) = s− t.

Alizadeh et al. [1] introduced the notion of a cyclic (α, β)-admissible map-
ping which is defined as follows:

Definition 1.4. Let M be a nonempty set, f be a self-mapping on M and
α, β : M → [0,∞) be two mappings. We say that f is a cyclic (α, β)-admissible
mapping if x ∈ M with α(x) ≥ 1 implies β(fx) ≥ 1 and β(x) ≥ 1 implies
α(fx) ≥ 1.

The following result will be required in the sequel.

Lemma 1.5. (see [11, 10]) Let (X, d) be a metric space and let {xn} be a
sequence in X such that

(1.1) lim
n→∞

d (xn, xn+1) = 0.

If {xn} is not a Cauchy sequence in X, then there exist ε > 0 and two sequences
{m (k)} and {n (k)} of positive integers such that n (k) > m (k) > k and the
following sequences tend to ε+ when k → +∞:

(1.2) d
(
xm(k), xn(k)

)
, d
(
xm(k), xn(k)+1

)
, d
(
xm(k)−1, xn(k)

)
,

d
(
xm(k)−1, xn(k)+1

)
, d
(
xm(k)+1, xn(k)+1

)
.
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2. Main results

Definition 2.1. Let (M,d) be a complete metric space, f : M →M be a map-
ping and α, β : R→ [0,∞) be two functions. Then f is said to be a generalized
(α, β,ZG)− contraction mapping if f satisfies the following conditions:

(1) f is cyclic (α, β)-admissible;
(2) there exits a ζ ∈ ZG such that for all u, v ∈M , we have

α(u)β(v) ≥ 1, d(fu, fv) > 0⇒ ζ(d(fu, fv), d(u, v)) ≥ CG.(2.1)

Lemma 2.2. Let M be a nonempty set and f : M →M be a cyclic (α, β)−ad-
missible mapping. Assume that there exists an element x0 ∈ M such that
α(x0) ≥ 1 =⇒ β(x1) ≥ 1 and β(x0) ≥ 1 =⇒ α(x1) ≥ 1. Define a Picard
sequence {xn} ⊆M by xn+1 = fnx0 = fxn. Then α(xn) ≥ 1 =⇒ β(xm) ≥ 1
and β(xn) ≥ 1 =⇒ α(xm) ≥ 1 for all m,n ∈ N with n < m.

Proof. Assume that there exist x0 ∈ M such that α(x0) ≥ 1. Define a Picard
sequence {xn} by xn+1 = fxn = fnx0, for all n ∈ N ∪ {0}.

Assume that xn 6= xn+1 for all n ∈ N ∪ {0}. Assume that there exist
x0, x1 ∈ M such that α(x0) ≥ 1 =⇒ β(fx0) = β(x1) ≥ 1 and β(x0) ≥ 1 =⇒
α(fx0) = α(x1) ≥ 1. By continuing the above process, we have α(xn) ≥ 1 =⇒
β(fxn) = β(xn+1) ≥ 1 and β(xn) ≥ 1 =⇒ α(fxn) = α(xn+1) ≥ 1.

Since α(xm) ≥ 1 =⇒ β(fxm) = β(xm+1) ≥ 1 and β(xm) ≥ 1 =⇒
α(fxm) = α(xm+1) ≥ 1, for all m,n ∈ N with n < m. Moreover, since
α(xm) ≥ 1 =⇒ β(xm+2) ≥ 1 and β(xm) ≥ 1 =⇒ α(xm+2) ≥ 1, for all
m,n ∈ N with n < m.

By continuing this process, we have α(xn) ≥ 1 =⇒ β(xm) ≥ 1 and
β(xn) ≥ 1 =⇒ α(xm) ≥ 1, for all m,n ∈ N. Hence the result.

Lemma 2.3. Let (M,d) be a metric space, f : M →M be a self-mapping and
f be a generalized (α, β,ZG)− contraction. Suppose that there exists a Picard
sequence {xn} ⊆M defined by xn+1 = fnx0 = fxn such that xn 6= xn+1. Then
the sequence {d(xn, xn+1)} is decreasing and d(xn, xn+1)→ 0 as n→∞.

Proof. Suppose that there is a Picard sequence {xn} such that xn+1 = fnx0 =
fxn, where n ∈ N ∪ {0}. Suppose that xn 6= xn+1 for all n ∈ N ∪ {0}. Using
Lemma 2.2, we have α(xn) ≥ 1 =⇒ β(xm) ≥ 1 and β(xn) ≥ 1 =⇒ α(xm) ≥
1, for all m,n ∈ N. Thus α(xn)β(xn+1) ≥ 1, for all n ∈ N ∪ {0}. Substituting
u = xn, v = xn+1 in (2.1) we obtain that

CG ≤ ζ (d (fxn, fxn+1) , d (xn, xn+1)) = ζ (d (xn+1, xn+2) , d (xn, xn+1))

< G (d (xn, xn+1) , d (xn+1, xn+2)) .

Using (CG1) of Definition 1.2, we have d (xn, xn+1) > d (xn+1, xn+2). Hence,
for all n ∈ N ∪ {0} we get that d (xn+1, xn+2) < d (xn, xn+1).

Further we have to prove that xn 6= xm for n 6= m. Indeed, suppose that
xn = xm for some n > m. Then we choose xn+1 = xm+1 (which is obviously
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possible by the definition of the Picard sequence {xn}). Then following the
previous arguments, we have

d (xn, xn+1) < d (xn−1, xn) < · · · < d (xm, xm+1) = d (xn, xn+1) ,

which is a contradiction. Hence xn 6= xm.
Therefore there exists t ≥ 0 such that limn→∞ d (xn, xn+1) = t ≥ 0. Sup-

pose that t > 0. Since d (xn+1, xn+2) < d (xn, xn+1) and both d (xn+1, xn+2)
and d (xn, xn+1) tend to t, using (ZG2) of Definition 1.3, we get

CG ≤ lim sup
n→∞

ζ (d (xn+1, xn+2) , d (xn, xn+1)) < CG,

which is a contradiction. Hence limn→∞ d (xn, xn+1) = t = 0.

Lemma 2.4. Let (M,d) be a metric space, f : M →M be a self-mapping and
f be a generalized (α, β,ZG)− contraction. Suppose that there exists a Picard
sequence {xn} ⊆M defined by xn+1 = fnx0 = fxn such that xn 6= xn+1. Then
the Picard sequence {xn} is a Cauchy sequence.

Proof. Suppose that there is a Picard sequence {xn} such that xn+1 = fnx0 =
fxn where n ∈ N ∪ {0}. Suppose that xn 6= xn+1 for all n ∈ N ∪ {0}. Using
Lemmas 2.2 and 2.3, we have that the sequence {d(xn, xn+1)} is decreasing
and d(xn, xn+1)→ 0 as n→∞.

Now, we have to show that {yn} is a Cauchy sequence. Suppose, to the
contrary, that it is not. Putting x = xm(k), y = xn(k) in (2.1), we obtain

CG ≤ ζ
(
d
(
fxm(k), fxn(k)

)
, d
(
xm(k), xn(k)

))
< G

(
d
(
xm(k), xn(k)

)
, d
(
xm(k)+1, xn(k)+1

))
.(2.2)

Using (CG1) of Definition 1.2, it follows that

d
(
xm(k), xn(k)

)
> d

(
xm(k)+1, xn(k)+1

)
.

Now, since the sequence {xn} is not a Cauchy sequence, then by Lemma 1.5,
we have d

(
xm(k), xn(k)

)
, d

(
xm(k)+1, xn(k)+1

)
, d

(
xm(k), xn(k)+1

)
and

d
(
xn(k), xm(k)+1

)
tend to ε > 0, as k →∞. Therefore, using (2.1), we have

CG ≤ lim sup
n→∞

ζ
(
d
(
xm(k)+1, xn(k)+1

)
, d
(
xm(k)+1, xn(k)+1

))
< CG,

which is a contradiction. Therefore, the Picard sequence {xn} is a Cauchy
sequence.

Theorem 2.5. Let (M,d) be a complete metric space, f : M → M be a
mapping and α, β : M → [0, 1) be two functions. Suppose that the following
conditions hold.

(1) f is a generalized (α, β,ZG)− contraction mapping;
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(2) There exists an element x0 ∈M such that α(x0) ≥ 1 and β(x0) ≥ 1;

(3) f is sequentially continuous;

or

If the sequence {xn} in M converges to x ∈M with the property α(xn) ≥
1 (or β(xn) ≥ 1) for all n ∈ N, then α(x) ≥ 1 (or β(x) ≥ 1).

Then f is a weakly Picard operator.

Proof. Assume that there exist x0 ∈ M such that α(x0) ≥ 1. Define a Picard
sequence {xn} by xn+1 = fxn = fnx0, for all n ∈ N ∪ {0}. If there exist
n0 ∈ N∪{0} such that un0

= fun0
, then we are done. Assume that un 6= un+1

for all n ∈ N∪{0}. Assume that there exist x0, x1 ∈M such that α(x0) ≥ 1 =⇒
β(fx0) = β(x1) ≥ 1 and β(x0) ≥ 1 =⇒ α(fx0) = α(x1) ≥ 1. Using Lemma
2.2, we have α(xn) ≥ 1 =⇒ β(xm) ≥ 1 and β(xn) ≥ 1 =⇒ α(xm) ≥ 1, for
all m,n ∈ N. Thus α(xn)β(xn+1) ≥ 1, for all n ∈ N ∪ {0}.

Using Lemma 2.3, we have that the sequence {d(xn, xn+1)} is decreasing
and d(xn, xn+1)→ 0 as n→∞.

Using Lemma 1.5, we obtain that the Picard sequence {xn}n∈N∪{0} is a
Cauchy sequence.

Now as (M,d) is a complete metric space, there exists x ∈ M such that
{xn} converges to x.

The continuity of f and uniqueness of the limit implies fx = x, thus we get
a fixed point.

Now, suppose that the sequence {xn} in X converges to x ∈ X with the
property α(xn) ≥ 1 (or β(xn) ≥ 1) for all n ∈ N, then α(x) ≥ 1 (or β(x) ≥ 1).
Hence α(x)β(x) ≥ 1

Further, we claim that fx = x. Suppose not, that is, fx 6= x. So d(fx, x) >
0 and d(x, fx) = lim

n→∞
d(xn+1, fx) = lim

n→∞
d(fxn, fx) 6= 0. Using (2.1) we have

CG ≤ ζ (d (fxn, fx) , d (xn, x))

< G (d (xn, x) , d (fxn, fx)) .(2.3)

Taking n→∞ and using property (CG1) of Definition 1.2, we have d(x, fx) ≤
0, which is a contradiction. We, thus, obtain that f has a fixed point fx = x.
Hence f is a weakly Picard operator.

Here, we have an example that if f satisfies all the hypotheses of Theorem
2.5, then the fixed point of f may not necessarily be unique.

Example. Let X = [0, 1] be endowed with the usual metric d (x, y) =
|x− y| for all x, y ∈ [0,+∞), and consider the mapping f : X → X given, for
all x ∈ X, by fx = x2. Define α, β : X → R as

α(x) = β(x) =

{
1, x = 0

0, x 6= 0
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However, putting ζ (t, s) = s
s+1 − t, G (s, t) = s− t, CG = 0, we have that f is

a generalized (α, β,ZG)− contraction with respect to ζ. Hence using Theorem
2.5, we have 0 and 1 are fixed points of f . Hence f is a weakly Picard operator.
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contractive mappings involving new function classes and applications. Filomat
31, 7 (2017), 1893–1907.

[3] Berinde, V. On the approximation of fixed points of weak contractive map-
pings. Carpathian J. Math. 19, 1 (2003), 7–22.

[4] Berinde, V. Approximating fixed points of weak contractions using the picard
iteration. Nonlinear Anal. Forum. 9, 1 (2004), 43–53.

[5] Berinde, V. Iterative Approximation of Fixed Points. Springer-Verlag, Berlin
Heidelberg, 2007.

[6] Khojasteh, F., Shukla, S., and Radenović, S. A new approach to the study
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