Cyclic Picard operator and simulation type functions¹ Sumit $Chandok^2$

Abstract. In this manuscrpt, we introduce generalized $(\alpha, \beta, Z_{\mathcal{G}})$ contraction using the concept of cyclic (α, β) -admissible mapping and
prove the existence of a Picard operator for such class in the structure
of metric spaces. Also we provide an example for the illustration of the
same.

AMS Mathematics Subject Classification (2010): 47H10; 54H25; 46J10; 46J15

Key words and phrases: Picard operator, fixed point, simulation function, generalized $(\alpha, \beta, \mathcal{Z}_{\mathcal{G}})$ – contraction.

1. Introduction & Preliminaries

Let M be a nonempty set and $f: M \to M$. A sequence $\{u_n\}$ defined by $u_n = f^n u_0$ is called a *Picard sequence* based at the point $u_0 \in M$. An operator f is said to be a *Picard operator* if it has a unique fixed point $z \in M$ and $z = \lim_{n \to \infty} f^n u$ for all $u \in M$. An operator f is said to be a *weakly Picard operator* if it has a fixed point $z \in M$ and $z = \lim_{n \to \infty} f^n u$ for all $u \in M$. An operator f is said to be a weakly Picard operator if it has a fixed point $z \in M$ and $z = \lim_{n \to \infty} f^n u$ for all $u \in M$. Various classes of Picard operators exist in the literature (see, for example, [4, 3, 5, 9, 14, 13]). Using the concept of cyclic (α, β) -admissible mapping, we introduce generalized $(\alpha, \beta, Z_{\mathcal{G}})$ - contraction and prove the existence of a Picard operator for such class in the structure of metric spaces. Also we give an example for the illustration of the same.

A mapping $f : M \to M$ is continuous if and only if it is sequentially continuous, i.e., $\lim_{n\to\infty} d(fx_n, fx) = 0$ for any sequence $\{x_n\} \subset X$ with $\lim_{n\to\infty} d(x_n, x) = 0$.

Now, we define a C-class function (see also [7, 10]) as

Definition 1.1. A mapping $G : [0, +\infty)^2 \to \mathbb{R}$ is called a *C*-class function if it is continuous and $G(s,t) \leq s$ for all $s,t \geq 0$.

Definition 1.2. A mapping $G : [0, +\infty)^2 \to \mathbb{R}$ has the property C_G if there exists an $C_G \ge 0$ such that

 $(C_G 1) G(s,t) > C_G \text{ implies } s > t;$

 $(C_G 2)$ $G(t,t) \leq C_G$, for all $t \in [0, +\infty)$.

¹This work has been supported by the AISTDF/DST research grant CRD/2018/000017. ²School of Mathematics, Thapar Institute of Engineering & Technology, Patiala-147004,

Punjab, India, e-mail: sumit.chandok@thapar.edu

Some examples of C-class functions that have property C_G are as follows: a) $G(s,t) = s - t, C_G = r, r \in [0, +\infty);$

- **b**) $G(s,t) = s \frac{(2+t)t}{1+t}, C_G = 0;$ **c**) $G(s,t) = \frac{s}{1+kt}, k \ge 1, C_G = \frac{r}{1+k}, r \ge 2.$

For more examples of C-class functions that have property C_G see [2, 7].

Khojasteh et al. ([6]) (see also [12, 8]) introduced the concept of a simulation function.

Definition 1.3. (see [7]) We define \mathcal{Z}_G to be the family of all C_G -simulation functions $\zeta: [0, +\infty)^2 \to \mathbb{R}$ satisfying the following:

 $(\mathcal{Z}_G 1) \zeta(t,s) < G(s,t)$ for all t, s > 0, where $G: [0,+\infty)^2 \to \mathbb{R}$ is a C-class function:

 $(\mathcal{Z}_G 2)$ if $\{t_n\}, \{s_n\}$ are sequences in $(0, +\infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > \infty$ 0, and $t_n < s_n$, then $\limsup_{n \to \infty} \zeta(t_n, s_n) < C_G$.

Some examples of simulation functions and C_G -simulation functions are: **d**) $\zeta(t,s) = \frac{s}{s+1} - t$ for all $t, s \ge 0$.

e) $\zeta(t,s) = s - \varphi(s) - t$ for all $t, s \ge 0$, where $\varphi: [0, +\infty) \to [0, +\infty)$ is a lower semi continuous function and $\varphi(t) = 0$ if and only if t = 0.

For more examples of simulation functions and C_G -simulation functions see [2, 12, 6, 7, 8, 15].

Each simulation function as in paper [6] is also a C_G -simulation function as in Definition 1.3, but the converse is not true. For this claim see Example 3.3 of [12] using the C-class function G(s,t) = s - t.

Alizadeh et al. [1] introduced the notion of a cyclic (α, β) -admissible mapping which is defined as follows:

Definition 1.4. Let M be a nonempty set, f be a self-mapping on M and $\alpha, \beta: M \to [0, \infty)$ be two mappings. We say that f is a cyclic (α, β) -admissible mapping if $x \in M$ with $\alpha(x) \geq 1$ implies $\beta(fx) \geq 1$ and $\beta(x) \geq 1$ implies $\alpha(fx) \ge 1.$

The following result will be required in the sequel.

Lemma 1.5. (see [11, 10]) Let (X, d) be a metric space and let $\{x_n\}$ be a sequence in X such that

(1.1)
$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

If $\{x_n\}$ is not a Cauchy sequence in X, then there exist $\varepsilon > 0$ and two sequences $\{m(k)\}\$ and $\{n(k)\}\$ of positive integers such that n(k) > m(k) > k and the following sequences tend to ε^+ when $k \to +\infty$:

(1.2)
$$d(x_{m(k)}, x_{n(k)}), d(x_{m(k)}, x_{n(k)+1}), d(x_{m(k)-1}, x_{n(k)}),$$
$$d(x_{m(k)-1}, x_{n(k)+1}), d(x_{m(k)+1}, x_{n(k)+1}).$$

2. Main results

Definition 2.1. Let (M, d) be a complete metric space, $f : M \to M$ be a mapping and $\alpha, \beta : \mathbb{R} \to [0, \infty)$ be two functions. Then f is said to be a generalized $(\alpha, \beta, \mathcal{Z}_{\mathcal{G}})$ - contraction mapping if f satisfies the following conditions:

(1) f is cyclic (α, β) -admissible;

(2) there exits a $\zeta \in \mathcal{Z}_{\mathcal{G}}$ such that for all $u, v \in M$, we have

(2.1)
$$\alpha(u)\beta(v) \ge 1, d(fu, fv) > 0 \Rightarrow \zeta(d(fu, fv), d(u, v)) \ge C_G.$$

Lemma 2.2. Let M be a nonempty set and $f: M \to M$ be a cyclic (α, β) -admissible mapping. Assume that there exists an element $x_0 \in M$ such that $\alpha(x_0) \ge 1 \implies \beta(x_1) \ge 1$ and $\beta(x_0) \ge 1 \implies \alpha(x_1) \ge 1$. Define a Picard sequence $\{x_n\} \subseteq M$ by $x_{n+1} = f^n x_0 = f x_n$. Then $\alpha(x_n) \ge 1 \implies \beta(x_m) \ge 1$ and $\beta(x_n) \ge 1 \implies \alpha(x_m) \ge 1$ for all $m, n \in \mathbb{N}$ with n < m.

Proof. Assume that there exist $x_0 \in M$ such that $\alpha(x_0) \ge 1$. Define a Picard sequence $\{x_n\}$ by $x_{n+1} = fx_n = f^n x_0$, for all $n \in \mathbb{N} \cup \{0\}$.

Assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Assume that there exist $x_0, x_1 \in M$ such that $\alpha(x_0) \ge 1 \implies \beta(fx_0) = \beta(x_1) \ge 1$ and $\beta(x_0) \ge 1 \implies \alpha(fx_0) = \alpha(x_1) \ge 1$. By continuing the above process, we have $\alpha(x_n) \ge 1 \implies \beta(fx_n) = \beta(x_{n+1}) \ge 1$ and $\beta(x_n) \ge 1 \implies \alpha(fx_n) = \alpha(x_{n+1}) \ge 1$.

Since $\alpha(x_m) \geq 1 \implies \beta(fx_m) = \beta(x_{m+1}) \geq 1$ and $\beta(x_m) \geq 1 \implies \alpha(fx_m) = \alpha(x_{m+1}) \geq 1$, for all $m, n \in \mathbb{N}$ with n < m. Moreover, since $\alpha(x_m) \geq 1 \implies \beta(x_{m+2}) \geq 1$ and $\beta(x_m) \geq 1 \implies \alpha(x_{m+2}) \geq 1$, for all $m, n \in \mathbb{N}$ with n < m.

By continuing this process, we have $\alpha(x_n) \ge 1 \implies \beta(x_m) \ge 1$ and $\beta(x_n) \ge 1 \implies \alpha(x_m) \ge 1$, for all $m, n \in \mathbb{N}$. Hence the result.

Lemma 2.3. Let (M, d) be a metric space, $f : M \to M$ be a self-mapping and f be a generalized $(\alpha, \beta, \mathcal{Z}_{\mathcal{G}})$ - contraction. Suppose that there exists a Picard sequence $\{x_n\} \subseteq M$ defined by $x_{n+1} = f^n x_0 = f x_n$ such that $x_n \neq x_{n+1}$. Then the sequence $\{d(x_n, x_{n+1})\}$ is decreasing and $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$.

Proof. Suppose that there is a Picard sequence $\{x_n\}$ such that $x_{n+1} = f^n x_0 = fx_n$, where $n \in \mathbb{N} \cup \{0\}$. Suppose that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Using Lemma 2.2, we have $\alpha(x_n) \ge 1 \implies \beta(x_m) \ge 1$ and $\beta(x_n) \ge 1 \implies \alpha(x_m) \ge 1$, for all $m, n \in \mathbb{N}$. Thus $\alpha(x_n)\beta(x_{n+1}) \ge 1$, for all $n \in \mathbb{N} \cup \{0\}$. Substituting $u = x_n, v = x_{n+1}$ in (2.1) we obtain that

$$C_G \leq \zeta \left(d \left(f x_n, f x_{n+1} \right), d \left(x_n, x_{n+1} \right) \right) = \zeta \left(d \left(x_{n+1}, x_{n+2} \right), d \left(x_n, x_{n+1} \right) \right)$$

< $G \left(d \left(x_n, x_{n+1} \right), d \left(x_{n+1}, x_{n+2} \right) \right).$

Using $(C_G 1)$ of Definition 1.2, we have $d(x_n, x_{n+1}) > d(x_{n+1}, x_{n+2})$. Hence, for all $n \in \mathbb{N} \cup \{0\}$ we get that $d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1})$.

Further we have to prove that $x_n \neq x_m$ for $n \neq m$. Indeed, suppose that $x_n = x_m$ for some n > m. Then we choose $x_{n+1} = x_{m+1}$ (which is obviously

possible by the definition of the Picard sequence $\{x_n\}$). Then following the previous arguments, we have

$$d(x_n, x_{n+1}) < d(x_{n-1}, x_n) < \dots < d(x_m, x_{m+1}) = d(x_n, x_{n+1}),$$

which is a contradiction. Hence $x_n \neq x_m$.

Therefore there exists $t \ge 0$ such that $\lim_{n\to\infty} d(x_n, x_{n+1}) = t \ge 0$. Suppose that t > 0. Since $d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1})$ and both $d(x_{n+1}, x_{n+2})$ and $d(x_n, x_{n+1})$ tend to t, using $(\mathcal{Z}_G 2)$ of Definition 1.3, we get

$$C_{G} \leq \limsup_{n \to \infty} \zeta \left(d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n}, x_{n+1}\right) \right) < C_{G},$$

which is a contradiction. Hence $\lim_{n\to\infty} d(x_n, x_{n+1}) = t = 0$.

Lemma 2.4. Let (M, d) be a metric space, $f : M \to M$ be a self-mapping and f be a generalized $(\alpha, \beta, \mathcal{Z}_{\mathcal{G}})$ - contraction. Suppose that there exists a Picard sequence $\{x_n\} \subseteq M$ defined by $x_{n+1} = f^n x_0 = f x_n$ such that $x_n \neq x_{n+1}$. Then the Picard sequence $\{x_n\}$ is a Cauchy sequence.

Proof. Suppose that there is a Picard sequence $\{x_n\}$ such that $x_{n+1} = f^n x_0 = fx_n$ where $n \in \mathbb{N} \cup \{0\}$. Suppose that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Using Lemmas 2.2 and 2.3, we have that the sequence $\{d(x_n, x_{n+1})\}$ is decreasing and $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$.

Now, we have to show that $\{y_n\}$ is a Cauchy sequence. Suppose, to the contrary, that it is not. Putting $x = x_{m(k)}$, $y = x_{n(k)}$ in (2.1), we obtain

(2.2)
$$C_G \leq \zeta \left(d \left(f x_{m(k)}, f x_{n(k)} \right), d \left(x_{m(k)}, x_{n(k)} \right) \right) \\ < G \left(d \left(x_{m(k)}, x_{n(k)} \right), d \left(x_{m(k)+1}, x_{n(k)+1} \right) \right).$$

Using $(C_G 1)$ of Definition 1.2, it follows that

$$d(x_{m(k)}, x_{n(k)}) > d(x_{m(k)+1}, x_{n(k)+1}).$$

Now, since the sequence $\{x_n\}$ is not a Cauchy sequence, then by Lemma 1.5, we have $d(x_{m(k)}, x_{n(k)})$, $d(x_{m(k)+1}, x_{n(k)+1})$, $d(x_{m(k)}, x_{n(k)+1})$ and $d(x_{n(k)}, x_{m(k)+1})$ tend to $\varepsilon > 0$, as $k \to \infty$. Therefore, using (2.1), we have

$$C_G \leq \limsup_{n \to \infty} \zeta \left(d\left(x_{m(k)+1}, x_{n(k)+1} \right), d\left(x_{m(k)+1}, x_{n(k)+1} \right) \right) < C_G,$$

which is a contradiction. Therefore, the Picard sequence $\{x_n\}$ is a Cauchy sequence.

Theorem 2.5. Let (M, d) be a complete metric space, $f : M \to M$ be a mapping and $\alpha, \beta : M \to [0, 1)$ be two functions. Suppose that the following conditions hold.

(1) f is a generalized $(\alpha, \beta, \mathcal{Z}_{\mathcal{G}})$ - contraction mapping;

- (2) There exists an element $x_0 \in M$ such that $\alpha(x_0) \ge 1$ and $\beta(x_0) \ge 1$;
- (3) f is sequentially continuous;

or

If the sequence $\{x_n\}$ in M converges to $x \in M$ with the property $\alpha(x_n) \ge 1$ (or $\beta(x_n) \ge 1$) for all $n \in \mathbb{N}$, then $\alpha(x) \ge 1$ (or $\beta(x) \ge 1$).

Then f is a weakly Picard operator.

Proof. Assume that there exist $x_0 \in M$ such that $\alpha(x_0) \geq 1$. Define a Picard sequence $\{x_n\}$ by $x_{n+1} = fx_n = f^n x_0$, for all $n \in \mathbb{N} \cup \{0\}$. If there exist $n_0 \in \mathbb{N} \cup \{0\}$ such that $u_{n_0} = fu_{n_0}$, then we are done. Assume that $u_n \neq u_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Assume that there exist $x_0, x_1 \in M$ such that $\alpha(x_0) \geq 1 \implies \beta(fx_0) = \beta(x_1) \geq 1$ and $\beta(x_0) \geq 1 \implies \alpha(fx_0) = \alpha(x_1) \geq 1$. Using Lemma 2.2, we have $\alpha(x_n) \geq 1 \implies \beta(x_m) \geq 1$ and $\beta(x_n) \geq 1 \implies \alpha(x_m) \geq 1 \implies \alpha(x_m) \geq 1$, for all $m, n \in \mathbb{N}$. Thus $\alpha(x_n)\beta(x_{n+1}) \geq 1$, for all $n \in \mathbb{N} \cup \{0\}$.

Using Lemma 2.3, we have that the sequence $\{d(x_n, x_{n+1})\}$ is decreasing and $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$.

Using Lemma 1.5, we obtain that the Picard sequence $\{x_n\}_{n\in\mathbb{N}\cup\{0\}}$ is a Cauchy sequence.

Now as (M, d) is a complete metric space, there exists $x \in M$ such that $\{x_n\}$ converges to x.

The continuity of f and uniqueness of the limit implies fx = x, thus we get a fixed point.

Now, suppose that the sequence $\{x_n\}$ in X converges to $x \in X$ with the property $\alpha(x_n) \ge 1$ (or $\beta(x_n) \ge 1$) for all $n \in \mathbb{N}$, then $\alpha(x) \ge 1$ (or $\beta(x) \ge 1$). Hence $\alpha(x)\beta(x) \ge 1$

Further, we claim that fx = x. Suppose not, that is, $fx \neq x$. So d(fx, x) > 0 and $d(x, fx) = \lim_{n \to \infty} d(x_{n+1}, fx) = \lim_{n \to \infty} d(fx_n, fx) \neq 0$. Using (2.1) we have

(2.3)
$$C_G \leq \zeta \left(d \left(f x_n, f x \right), d \left(x_n, x \right) \right) \\ < G \left(d \left(x_n, x \right), d \left(f x_n, f x \right) \right).$$

Taking $n \to \infty$ and using property $(C_G 1)$ of Definition 1.2, we have $d(x, fx) \leq 0$, which is a contradiction. We, thus, obtain that f has a fixed point fx = x. Hence f is a weakly Picard operator.

Here, we have an example that if f satisfies all the hypotheses of Theorem 2.5, then the fixed point of f may not necessarily be unique.

Example. Let X = [0, 1] be endowed with the usual metric d(x, y) = |x - y| for all $x, y \in [0, +\infty)$, and consider the mapping $f : X \to X$ given, for all $x \in X$, by $fx = x^2$. Define $\alpha, \beta : X \to \mathbb{R}$ as

$$\alpha(x) = \beta(x) = \begin{cases} 1, x = 0\\ 0, x \neq 0 \end{cases}$$

However, putting $\zeta(t,s) = \frac{s}{s+1} - t$, G(s,t) = s - t, $C_G = 0$, we have that f is a generalized $(\alpha, \beta, \mathcal{Z}_{\mathcal{G}})$ - contraction with respect to ζ . Hence using Theorem 2.5, we have 0 and 1 are fixed points of f. Hence f is a weakly Picard operator.

References

- ALIZADEH, S., MORADLOU, F., AND SALIMI, P. Some fixed point results for (α, β)-(ψ, φ)-contractive mappings. *Filomat* 28, 3 (2014), 635–647.
- [2] ANSARI, A. H., IŞIK, H., AND RADENOVIĆ, S. Coupled fixed point theorems for contractive mappings involving new function classes and applications. *Filomat* 31, 7 (2017), 1893–1907.
- [3] BERINDE, V. On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 19, 1 (2003), 7–22.
- [4] BERINDE, V. Approximating fixed points of weak contractions using the picard iteration. Nonlinear Anal. Forum. 9, 1 (2004), 43–53.
- [5] BERINDE, V. Iterative Approximation of Fixed Points. Springer-Verlag, Berlin Heidelberg, 2007.
- [6] KHOJASTEH, F., SHUKLA, S., AND RADENOVIĆ, S. A new approach to the study of fixed point theory for simulation functions. *Filomat 29*, 6 (2015), 1189–1194.
- [7] LIU, X.-L., ANSARI, A. H., CHANDOK, S., AND RADENOVIĆ, S. On some results in metric spaces using auxiliary simulation functions via new functions. *J. Comput. Anal. Appl.* 24, 6 (2018), 1103–1114.
- [8] NASTASI, A., AND VETRO, P. Fixed point results on metric and partial metric spaces via simulation functions. J. Nonlinear Sci. Appl. 8, 6 (2015), 1059–1069.
- [9] OLGUN, M., BIÇER, O., AND ALYI LDIZ, T. A new aspect to Picard operators with simulation functions. *Turkish J. Math.* 40, 4 (2016), 832–837.
- [10] RADENOVIĆ, S., AND CHANDOK, S. Simulation type functions and coincidence points. *Filomat 32*, 1 (2018), 141–147.
- [11] RADENOVIĆ, S., KADELBURG, Z., JANDRLIĆ, D., AND JANDRLIĆ, A. Some results on weakly contractive maps. *Bull. Iranian Math. Soc.* 38, 3 (2012), 625– 645.
- [12] ROLDÁN-LÓPEZ-DE HIERRO, A.-F., KARAPI NAR, E., ROLDÁN-LÓPEZ-DE HI-ERRO, C., AND MARTÍNEZ-MORENO, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 275 (2015), 345–355.
- [13] RUS, I. A. Weakly picard mappings. Comment. Math. Univ. Caroline. 34, 4 (1993), 769–773.
- [14] RUS, I. A. Picard operator and applications. Babes-Bolyai Univ., Cluj-Napoca, 1996.
- [15] WANG, S., ANSARI, A. H., AND CHANDOK, S. Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions. *Fixed Point Theory Appl.* (2015), 2015:209, 16.

Received by the editors April 15, 2019 First published online June 6, 2020