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Commutative weakly nil-neat rings

Peter Danchev12 and Mahdi Samiei3

Abstract. We introduce and explore the notion of commutative weakly
nil-neat rings as those rings whose proper homomorphic images are weakly
nil-clean. Our characterization theorem completely gives a description of
this class of rings and extends results due to Danchev-McGovern [3] and
Samiei [7].
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1. Introduction and background

Throughout this article we shall assume that all rings are commutative,
possessing identity. The letters Nil(R), Id(R) and U(R) will stand for the set
of nilpotents, the set of idempotents and the set of units of R, respectively.
As it is well-known in the commutative case, Nil(R) forms an ideal which we
shall denote hereafter by N(R). Denoting by J(R) the Jacobson radical of R,
it is well known that N(R) ⊆ J(R). Besides, U(R) is a group which properly
contains 1 + J(R) ⊇ 1 + N(R). In that way, the set of all unipotent elements
1 +N(R) of R is denoted by Uni(R).

In [5], the important concept of a neat ring was defined and investigated: A
ring R is said to be neat if all its proper (i.e., those not equal to R) homomorphic
images are clean in the sense that they are of the type Id(R) +U(R) (see [6]).
Besides the class of clean rings, some valuable examples of such rings are as
follows: the ring (domain) Z of integers and any nonlocal PID; FGC-domains;
h-local domains, which are all known to be non clean; etc. as other non-trivial
constructions are provided in [5, Propositions 2.1, 2.4]. However, there is no
satisfactory description of the algebraic structure of these rings yet.

Imitating this idea, the more restricted class of so-called nil-neat rings was
introduced and studied in [7]. They are those rings whose proper (that is,
different from the former ring) homomorphic images are nil-clean in the sense
that they are of the kind Id(R) +N(R) (see [4]). As nil-clean rings are always
clean, it is easily seen that nil-neat rings are themselves neat. A complete
characterizing result for nil-neatness is obtained in the next useful form in [7,
Corollary 2.12]: Let R be a ring. Then R is nil-neat ⇐⇒ either R is a field,
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or R/J(R) is boolean (thus being isomorphic to a subring of a direct product
of copies of the field Z2) and, moreover, every non-zero prime ideal of R is
maximal.

In the other vein, the notion of weakly nil-clean rings was defined in [3] as
those rings R which are of the sort ±Id(R) + N(R). Note that Z3 is weakly
nil-clean but, unfortunately, Z3 × Z3 is not.

That is why it is rather natural to combine the above concepts, and so we
come to our basic point of view.

Definition 1.1. We shall say that a ring is weakly nil-neat if each its proper
(i.e., different from the whole ring) homomorphic image is weakly nil-clean.

Besides weakly nil-clean rings and nil-neat rings, direct examples of such
rings are the direct products Z2 × Z3 and Z3 × Z3, whereas the triple direct
products Z2×Z3×Z3 and Z3×Z3×Z3 are definitely not so as they contain the
homomorphic image Z3 × Z3 which is not weakly nil-clean as already noticed
above.

The motivation for writing up this paper is to considerably enlarge the re-
sults for nil-neat rings obtained in [7] to this new point of view. The paper is
structured as follows: In the subsequent section, we state and prove our pre-
liminaries and our central results. Our main theorem (Theorem 2.8) is actually
a criterion establishing when a ring is weakly nil-neat, thereby generalizing
the main theorem in [7] and its corollaries. We finish off the work with some
discussion and an open problem.

2. Preliminary and main results

We begin this section with a few preliminaries, starting with the following.

Proposition 2.1. A homomorphic image of a weakly nil-neat ring is again a
weakly nil-neat ring.

Proof. It is straightforward by employing Definition 1.1, which says that a
weakly nil-neat ring is the one for which every proper homomorphic image is
a weakly nil-clean ring and taking into account that the latter rings are closed
under homomorphisms.

Proposition 2.2. If R is a weakly nil-neat ring which is not weakly nil-clean,
then R is reduced.

Proof. Suppose, on the contrary, that R is a weakly nil-neat ring which is not
weakly nil-clean and N(R) 6= 0. Thus, by definition, R/N(R) is weakly nil-
clean, and hence in accordance with [3, Proposition 1.9 (i)] the ring R is also
weakly nil-clean, which is the desired contradiction.

Proposition 2.3. Let R be a ring. Then Uni(R) ∩−Uni(R) 6= ∅ if, and only
if, 2 ∈ N(R).
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Proof. ”Necessity.” By assumption there is 1+q = −1+t for some q, t ∈ N(R).
Thus 2 = t− q ∈ N(R), as stated.

”Sufficiency.” Given 2 is a nilpotent in R, we write 2 = q for some q ∈
N(R) and so 1 = −(1+(−q)) 6= 0 lies in the intersection [1+N(R)]∩−[1+N(R)]
showing that it is manifestly nonempty, as required.

Imitating [2], let us recall that a ring R is said to be weakly UU, and
henceforth abbreviated for short as WUU, if every unit can be presented as
q + 1 or q − 1, where q ∈ N(R).

Recall also that a ring R is local, provided R/J(R) is a field, that is, J(R)
is a maximal ideal of R. Likewise, a ring R is indecomposable, provided that
Id(R) = {0, 1}.

The following is valid:

Lemma 2.4. Let R be a ring. Then the following statements are equivalent:

(1) R is a local weakly nil-clean ring.

(2) R is an indecomposable weakly nil-clean ring.

(3) For all x ∈ R, either x ∈ N(R), or x ∈ Uni(R) or x ∈ −Uni(R).

(4) R is a WUU ring and R has exactly one prime ideal.

Proof. The implication (1)⇒ (2) is clear.
The equivalence (2)⇔ (3) is trivial by a direct use of definitions.
To prove that (2) ⇒ (4), suppose that R is an indecomposable weakly nil-

clean ring. It is easy to see that, for every x ∈ U(R), we have that x ∈ Uni(R)
or x ∈ −Uni(R). Now, we shall show that the ring R has exactly one prime
ideal. Letting R be an indecomposable weakly nil-clean domain, we conclude
from [3, Proposition 1.9(iii)] that R is isomorphic to either Z2 or Z3, and so
we are done. Next, if P1 and P2 are two non-zero prime ideals of R, then
R/(P1P2) ∼= Z2 × Z2 or R/(P1P2) ∼= Z2 × Z3. However, this contradicts the
fact, which we leave to the reader for verification, that every homomorphic
image of an indecomposable weakly nil-clean ring is again an indecomposable
weakly nil-clean ring.

Finally, both implications (4)⇒ (3) and (4)⇒ (1) are clearly true.

We now arrive at our crucial tool needed for further applications.

Lemma 2.5. The following conditions are equivalent for a ring R:

(1) R is weakly nil-neat.

(2) R/aR is weakly nil-clean for every non-zero a ∈ R.

(3) For any collection of non-zero prime ideals {Pj}j∈J of R with I = ∩j∈JPj

different than 0, the factor-ring R/I is weakly nil-clean.

(4) R/aR is weakly nil-neat for every a ∈ R.
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(5) R/I is weakly nil-clean for every non-zero semi-prime ideal I.

(6) R/I = Id(R/I) ∪ −Id(R/I) for every non-zero semi-prime ideal I.

(7) R/I is either boolean, or is isomorphic to Z3, or is isomorphic to B×Z3

for some boolean ring B, for every non-zero semi-prime ideal I.

(8) For every non-zero semi-prime ideal I of R, the factor-ring R/I is zero-
dimensional and R/P ∼= Z3 for at most one maximal ideal P containing
I, while R/Q ∼= Z2 for all other maximal ideals Q containing I.

(9) For every non-zero semi-prime ideal I of R it must be that J(R/I) = 0
and R/I is isomorphic to either a boolean ring, or to Z3, or to the direct
product of two such rings.

Proof. The equivalence (1) ⇔ (2) is clear by using the simple fact that a
homomorphic image of a weakly nil-clean ring is also weakly nil-clean.

The equivalence (3) ⇔ (5) is immediate since any semi-prime ideal is the
intersection of some family of prime ideals and since a homomorphic image of
a weakly nil-clean ring is again a weakly nil-clean ring.

The implication (2)⇒ (4) is evident by virtue of [3, Proposition 1.9(i)].
The implication (4)⇒ (1) is true by choosing a = 0.
The implication (1)⇒ (5) is apparent.
As for the implication (5) ⇒ (1), assume that I is a non-zero ideal of R.

Thus, by our assumption, R/
√
I is a weakly nil-clean ring. However, it follows

from [3, Corollary 1.18] that R/I is a weakly nil-clean ring.
The double implications (5)⇔ (6)⇔ (7) are self-evident applying [3, The-

orem 1.13].
The double implications (7) ⇔ (8) ⇔ (9) are obvious by making use of [3,

Theorem 1.17].

The following comments could be useful in shedding up some more light on
the proof of the previous statement.

Remark 2.6. The implication (5)⇒ (8) is trivial employing [3, Theorem 1.17].
Besides, concerning the implication (8)⇒ (6), suppose that I is a non-zero

semi-prime ideal of R. Then, by an easy verification, we can show that R/I is a
subring of the ring Z3×

∏
Z2, thus concluding that R/I = Id(R/I)∪−Id(R/I),

as required.

As an immediate consequence, we obtain:

Corollary 2.7. A ring R is weakly nil-neat if, and only if,

(i) Every non-zero prime ideal of R is maximal and

(ii) For any non-zero semi-prime ideal I of R it must be that R/M ∼= Z3 for
at most one maximal ideal M containing I, while R/N ∼= Z2 for all other
maximal ideals N containing I.
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Proof. Suppose that R is a weakly nil-neat ring. Point (i) can be obtained by
applying [3, Proposition 1.9] to any non-zero prime ideal of R, and point (ii) is
clear by employing Lemma 2.5 (8).

The converse implication is pretty obvious by using Lemma 2.5 (8).

Before stating and proving our key result, it is worthwhile to mention the
following equivalent facts, namely: A ring R is zero-dimensional (abbreviated
as dim(R) = 0) if, and only if, R is π-regular (that is, for each r ∈ R, there is
n ∈ N such that rn ∈ rn+1R) if, and only if, every non-zero prime ideal of R is
maximal. We are now ready to proceed by proving our main characterization
theorem, which asserts the following:

Theorem 2.8. A ring R is weakly nil-neat if, and only if, exactly one of the
following is true:

(1) R is a field (in particular, R could be isomorphic to Z2 or to Z3),

or

(2) J(R) 6= 0 and R/J(R) is isomorphic to either a boolean ring (i.e., to a
subring of a direct product of copies of Z2), or to Z3, or to the direct product
of two such rings,

or

(3) J(R) = 0, R is not a field, and R is isomorphic to either a boolean ring
B (i.e., to a subring of a direct product of copies of Z2), or to B × Z3, or to
Z3×Z3 and, moreover, in all cases every non-zero prime ideal of R is maximal.

Proof. Firstly, assume that R is a weakly nil-neat ring. If R is a field, we are
done, so we shall assume hereafter that R is a weakly nil-neat ring which is not
a field.

Firstly, let J(R) 6= 0. Then J(R) is a non-zero semi-prime ideal of R and so,
by virtue of Lemma 2.5, the quotient R/J(R) is either boolean, or is isomorphic
to Z3, or is isomorphic to B × Z3 for some boolean ring B, as asserted.

Secondly, suppose J(R) = 0 and Max(R) = {Mi}i∈T for some index set
T . It is clear that Mi 6= 0, because R is not a field. This fact shows that
R has at least two maximal ideals. If T = {1, 2}, then in accordance with
Lemma 2.5 (9) we will have that either R/Mi

∼= Z2, or R/Mi
∼= Z3 for i ∈ T .

Thus R is isomorphic to a subring of either Z2 × Z2, or Z2 × Z3, or Z3 × Z3.
For the case when |T | > 2, and hence i > 2, we set Ik := ∩

i 6=k
Mi and let

R/Mk
∼= Z3. We, therefore, can see by routine check that Ik is a non-zero

semi-prime ideal of R. We now claim that R/Ms � Z3, for all maximal ideals
Ms ∈ {Mi}i 6=k. Otherwise, with Corollary 2.7 at hand, there is a maximal
ideal Ml ∈ {Mi}i6=k such that R/Ml

∼= Z3. Consequently, we deduce that R is
isomorphic to a subring of Z3×Z3×

∏
Z2, that is a contradiction (for example,

Z3×Z3×Z2 has a homomorphic image isomorphic to Z3×Z3, which is surely
not weakly nil-clean). Letting now R/Mk � Z3. By using Lemma 2.5 (9), we
have that R/Mk

∼= Z2 and also, by Corollary 2.7, that for at most one maximal
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ideal Ml ∈ {Mi}i 6=k the isomorphism R/Ml
∼= Z3 holds, whereas for all other

maximal ideals Ms ∈ {Mi}i6=k we have that R/Ml
∼= Z2. Since R/Mk

∼= Z2,
we conclude that R is isomorphic to a subring of Z3 ×

∏
Z2, as claimed.

Conversely, assume the validity of precisely one of points (1), (2) and (3).
First, it is clear that R has to be a weakly nil-neat ring whenever R is a field.
Now, assume that R is not a field. If foremost J(R) 6= 0 and I is a non-zero
semi-prime ideal of R, by our hypothesis, the quotient R/J(R) is isomorphic
to either a boolean ring, or to Z3, or to the direct product of two such rings.
Moreover, it is elementarily seen that J(R) ⊂ I and so R/I is also isomorphic
to either a boolean ring, or to Z3, or to the direct product of two such rings,
as required by Lemma 2.5 (7).

Letting now J(R) = 0, we shall distinguish between two basic cases:

Case 1. Assume that R is isomorphic to a subring of a direct product of copies
of Z2 and at most one copy of Z3.

Then, we have a monomorphism ϕ : R → Z3 ×
∏
Z2. We know that the

order of the element 1R is equal to the order of the element 1ϕ(R). This implies
that o(1R) is either 2 or 3 or 6, because Z3×

∏
Z2 has characteristic exactly 6.

Now, let I be a non-zero semi-prime ideal of R, let Mj be a maximal ideal of
R containing I, and consider the epimorphism πj : R→ R/Mj . It is clear that
πj(1R) = 1R/Mj

and so, 2 or 3 divides the order of the element 1R/Mj
. We infer

that the field R/Mj has characteristic 2 or 3, and hence R/Mj is isomorphic to
either Z3 or Z2. It is easy to see that there do not exist two maximal ideals M
and N of R containing I such that R/M ∼= Z3

∼= R/N , since by our assumption
R is isomorphic to a subring of the product Z3 ×

∏
Z2, which will lead to a

contradiction. Applying now Corollary 2.7, we see that R is weakly nil-neat.

Case 2. Assume that R is isomorphic to a subring of Z3 × Z3.

So, the ring R embeds into a 9-element ring, so R has either 1, 3 or 9
elements and this definitely suffices. In fact, any such 3-element ring R has no
zero divisors (which is trivial to be shown by using the existence of the identity
element), and thus R is an integral domain with no nontrivial ideals, and hence
it is surely isomorphic to the field Z3. The one-element case is trivial, and this
leaves the case when |R| = 9, so R = Z3 × Z3. This surely is a weakly nil-neat
ring (as it was discussed earlier in the paper).

Remark 2.9. As an alternative proof of Case 2 above, which is parallel to that
of Case 1 and which could be of some interest to the reader as a valuable
material for a further development of the investigated theme, we may suggest
the following: We have a monomorphism ψ : R → Z3 × Z3 and hence o(1R)
is 3, because Z3 × Z3 has characteristic 3. Now, let I be a non-zero semi-
prime ideal of R, let Mj be a maximal ideal of R containing I, and consider
the epimorphism πj : R → R/Mj . It is clear that πj(1R) = 1R/Mj

, whence 3
divides the order of the element 1R/Mj

. We deduce that the field R/Mj has
characteristic 3 and hence R/Mj is isomorphic to Z3. It remains to show that
if K is a non-zero semi-prime ideal of R, then there will not exist two maximal
ideals M and N of R containing K such that R/M ∼= Z3

∼= R/N . In fact, to
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show that, suppose the contrary, namely that this double isomorphism holds.
Since J(R) = 0, we conclude that there exists a non-zero maximal ideal P of
R which is not containing K. We, however, know by the above argument that
R/P ∼= Z3, which is a contradiction to the assumption that R is isomorphic to
a subring of the product Z3 × Z3, as needed.

Let us recall that a ring R is said to be uniquely clean if each its element
is uniquely written as the sum of a unit and an idempotent, and is said to
be uniquely nil-clean if every its element is uniquely written as the sum of a
nilpotent and an idempotent.

The next consequence discovers the more complicated structure of weakly
nil-neat rings than that of nil-neat rings.

Corollary 2.10. Let R be a ring such that J(R) 6= 0 and let R be not a
domain. Consider the following statements:

(1) R is a weakly nil-clean ring.

(2) R is a weakly nil-neat ring.

(3) R is a clean WUU ring.

Then (1)⇒ (2)⇒ (3). Moreover, if 2 ∈ N(R), then the above three statements
are equivalent and also equivalent to:

(4) R is a clean UU ring.

(5) R is a nil-clean ring;

(6) R is a uniquely nil-clean ring;

(7) R is a uniquely clean ring such that every prime ideal of R is maximal;

(8) J(R) is a nil ideal, and R/J(R) is a Boolean ring;

(9) R is an exchange UU ring.

(10) R is a nil-neat ring.

Proof. The implication (1) ⇒ (2) is clearly true. The reverse implication (2)
⇒ (1) follows directly by using Proposition 2.3.

Regarding the implication (2) ⇒ (3), suppose that R is a weakly nil neat
ring. It follows from Theorem 2.8 that J(R) is nil and R/J(R) is isomorphic
to either a boolean ring, or Z3, or the direct product of two such rings. We,
therefore, deduce from [2, Corollary 2.14] that R is a clean WUU ring.

Now, let 2 ∈ J(R). To show the validity of (3) ⇒ (2), let x ∈ R. Then
−x + 1 = u + e for some u ∈ U(R) and e ∈ Id(R). Since R is a WUU ring,
we can write −x = n + e or −x = (2 + n) + e for some n ∈ N(R), and hence
x = n + e or x = m − e for some m ∈ N(R), because 2 ∈ J(R). Thus R is a
weakly nil-clean ring, as promised.

The implication (3)⇒ (5) is immediate by knowing [3, Proposition 1.10].
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The series of implications (4-10) ⇒ one of (1-3) are trivial; e.g. (5) ⇒ (1),
or (4) ⇒ (3), are immediate, so we leave them to the interested reader for a
direct check.

Finally, the equivalences (4) ⇔ (5) ⇔ (6) ⇔ (7) ⇔ (8) ⇔ (9) ⇔ (10) are
immediately true by taking into account [7, Theorem 2.13].

3. Discussion and open question

The next comments shed some more light on the discussed theme.

Remark 3.1. The class of weakly nil-clean rings (not necessarily commutative)
was completely described in [2] and, independently, in [8] (see also [1]). In fact,
it was proved that for such a ring R the direct decomposition R ∼= R1 × R2

holds, where either R1 = {0} or R1 is a nil-clean ring, and either R2 = {0} or
R2 is a ring for which R2/J(R2) ∼= Z3. Therefore, in the case when R1 and R2

are both non-zero, then there is a proper epimorphism of the weakly nil-clean
ring R to the nil-clean ring R1.

In that way, combining Theorem 2.8 with [7, Corollary 2.12], one concludes
that a similar direct decomposition (and hence a corresponding epimorphism)
of a commutative weakly nil-neat ring into a commutative nil-neat ring and an
additional direct factor which can be visualized explicitly.

We finish off our work with the following intriguing and quite difficult prob-
lem.

Problem 3.2. Develop the theory of non-commutative nil-neat and weakly nil-
neat rings.

Acknowledgement

We would like to thank the referee for his/her careful reading of the manu-
script and for the several comments and suggestions in hopes of making this
article more acceptable. The authors are also very grateful to the handling ed-
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