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On a product of universal relational systems

Nitima Phrommarat12 and Sivaree Sudsanit3

Abstract. In this paper, arities of relations are considered to be ar-
bitrary sets. We introduce and study a new operation of product of
universal relational systems, which lies between their direct product and
the direct product of their reflexive hulls. For the new operation of prod-
uct and the direct sum of universal relational systems, the validity of the
distributive law is shown. Moreover, we define a new power of universal
relational systems by combining their direct power and structural power.
Then, all the three powers are discussed. It is shown that the introduced
power of universal relational systems satisfies the first exponential law
with respect to the combined product. Further, we show that the weak
forms of the second and third exponential laws for each of the three pow-
ers of universal relational systems with respect to the new operation of
product are satisfied.
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1. Introduction

G. Birkhoff introduced the cardinal (i.e., direct) arithmetic of partially or-
dered sets and showed that it behaves analogously to the arithmetic of natural
numbers in [1] and [2], i.e., satisfies

(AB)C ∼= AB×C - the first exponential law,∏
i∈I AB

i
∼= (
∏
i∈I Ai)

B - the second exponential law,∏
i∈I ABi ∼= A

∑
i∈I Bi (if Bi, i ∈ I, are pair-wise disjoint) - the third expo-

nential law.
In [5], Birkhoff’s arithmetic of ordered sets was generalized. The cardi-

nal arithmetic was extended to relational systems e.g. in [6],[9],[10] and [11].
Conversely, the cardinal arithmetic was restricted from relational systems to
algebras in [12], to partial algebras in [13] and to hyperalgebras in [4]. In the
present paper, the study of the power of relational systems will be continued. In
accordance with [11], relations are considered to have arbitrary sets as arities.

Generally, the partial algebras and the hyperalgebras lie between relational
systems and algebras because algebras are the relational systems that are both
partial algebras and hyperalgebras.

1Department of Mathematics, Faculty of Science and Technology,Chiang Rai Rajabhat
University, Thailand e-mail: nitimachaisansuk@gmail.com

2Corresponding author
3Department of Mathematics, Faculty of Science and Technology,Chiang Rai Rajabhat

University, Thailand e-mail: s.sudsanit@gmail.com

https://doi.org/10.30755/NSJOM.09812
mailto:nitimachaisansuk@gmail.com
mailto:s.sudsanit@gmail.com


62 Nitima Phrommarat, Sivaree Sudsanit

M. Novotný and J. Šlapal introduced and studied a new operation of power
of n-ary relational systems by combining the direct power and the structural
power of the systems in [7]. In this note, we will extend the operation of power
discussed in [7] to universal relational systems.

In [4], N. Chaisansuk and J. Šlapal introduced and studied a new operation
of product of universal hyperalgebras which is combination of the direct sum
and the direct product of the systems. The operation of product discussed in [4]
will be extended from universal hyperalgebras to universal relational systems
in the present paper.

This note contributes to the development of the arithmetic of universal
relational systems. The new power and product of universal relational systems
will be studied and it will be proved first that the distributive law is valid for the
new product and the direct sum of universal relational systems. Further, the
validity of the first exponential law for the new power and the new product of
universal relational systems will be proved. For the new operation of product,
and each of the three powers of universal relational systems, the weak forms of
the second and third exponential laws will also be proved.

2. Combined Product of Universal Relational Systems

Given sets A,B, we denote by AB the set of all mappings of B into A. It is
easy to see that there is a bijection ϕ : (AB)C → AB×C(where × denotes the
Cartesian product) given by ϕ(h)(b, c) = h(c)(b) whenever h ∈ (AB)C , b ∈ B
and c ∈ C. The bijection ϕ will be called canonical.

Throughout the paper, maps f : B → A (A,B sets) will often be denoted
as indexed sets (fi; i ∈ B), where fi ∈ A for every i ∈ B. Of course, then fi
means f(i) for every i ∈ B.

Let Ω be a nonempty set. A family τ = (Kλ;λ ∈ Ω) of sets will be called
a type. By a universal relational system (briefly, a relational system) of type
τ we understand a pair A = 〈A, (pλ;λ ∈ Ω)〉, where A is a nonempty set,
the so-called carrier of A, and, for every λ ∈ Ω, pλ is Kλ-ary relation, i.e.,
pλ ⊆ AKλ . Of course, if Kλ = ∅, then pλ is nothing but a nonempty subset of
A. In the case τ = (K) where card K = n and card K = 2 relational systems
of type τ are usually called n-ary relations and binary relations, respectively.

Let B = 〈B, (qλ;λ ∈ Ω)〉,A = 〈A, (pλ;λ ∈ Ω)〉 be a pair of relational
systems of type τ . Then A is called a relational subsystem of B provided
that A ⊆ B and pλ ⊆ qλ for every λ ∈ Ω. A map f : B → A is called
a homomorphism of B into A if, for each λ ∈ Ω, (bi; i ∈ Kλ) ∈ qλ implies
(f(bi); i ∈ Kλ) ∈ pλ. The set of all homomorphisms of B into A will be
denoted by Hom(B,A). If f is a bijection of B onto A and both f : B → A
and f−1 : A → B are homomorphisms, then f is called an isomorphism of B
onto A and we say that B and A are isomorphic, in symbols B ∼= A. We say
that B may be embedded into A and write B 4 A if there exists a relational
subsystem A′ of A such that B ∼= A′.

The direct product of a family Ai = 〈Ai, (piλ;λ ∈ Ω)〉, i ∈ I, of rela-
tional systems of type τ = (Kλ;λ ∈ Ω) is the relational system

∏
i∈I Ai =
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〈
∏
i∈I Ai, (qλ;λ ∈ Ω)〉 of type τ , where

∏
i∈I Ai denotes the Cartesian product

of sets and, for any λ ∈ Ω and any (fk; k ∈ Kλ) ∈ (
∏
i∈I Ai)

Kλ , (fk; k ∈ Kλ) ∈
qλ if and only if (fk(i); k ∈ Kλ) ∈ piλ. If the set I is finite, say I = {1, . . . ,m},
then we write A1 × . . . ×Am instead of

∏
i∈I Ai. If Ai = A for every i ∈ I,

then we write AI instead of
∏
i∈I Ai.

The direct sum of a family Ai = 〈Ai, (piλ;λ ∈ Ω)〉, i ∈ I, of relational
systems of type τ is the relational system

∑
i∈I Ai = 〈

⋃
i∈I Ai, (

⋃
i∈I p

i
λ;λ ∈

Ω)〉. If the set I is finite, say I = {1, . . . ,m}, then we write A1 ] . . . ] Am

instead of
∑
i∈I Ai.

Let A = 〈A, (pλ;λ ∈ Ω)〉 be a relational system of type τ = (Kλ;λ ∈ Ω)
and let λ0 ∈ Ω. An element a ∈ A is called reflexive with respect to the relation
pλ0 if (ai; i ∈ Kλ0) ∈ pλ0 whenever ai = a for every i ∈ Kλ0 . If every element
of A is a reflexive with respect to each relation pλ, λ ∈ Ω, then the relational
system A is said to be reflexive.

Let A = 〈A, (pλ;λ ∈ Ω)〉 be a relational system of type τ = (Kλ;λ ∈ Ω).
For every λ ∈ Ω, we denote by p̄λ the relation on A such that, for every
(ai; i ∈ Kλ) ∈ AKλ , (ai; i ∈ Kλ) ∈ p̄λ if and only if ai = a for every i ∈ Kλ or
(ai; i ∈ Kλ) ∈ pλ. The relational system 〈A, (p̄λ;λ ∈ Ω)〉 is called the reflexive
hull of A and is denoted by Ā.

Let Ai = 〈Ai, (piλ;λ ∈ Ω)〉, i ∈ I, be a family of relational systems of
type τ = (Kλ;λ ∈ Ω). The combined product of the family Ai, i ∈ I, is
the relational system

⊗
i∈I Ai = 〈

∏
i∈I Ai, (rλ;λ ∈ Ω)〉 of type τ given by⊗

i∈I Ai =
∑
i∈I
∏
j∈I Aij , where

Aij =

{
Āj if i = j,
Aj if i 6= j.

Thus, for any λ ∈ Ω and any ((aik; i ∈ I); k ∈ Kλ) ∈ (
∏
i∈I Ai)

Kλ , we have
((aik; i ∈ I); k ∈ Kλ) ∈ rλ if and only if there exists a subset J ⊆ I, card J ≤ 1,
such that ai ∈ piλ(aik; k ∈ Kλ) for every i ∈ I r J and aik = ai for every k ∈ Kλ

and every i ∈ J.
If the set I is finite, say I = {1, . . . ,m}, we write A1 ⊗ . . .⊗Am instead of⊗
i∈I Ai. We then clearly have A1 ⊗ . . . ⊗Am = (A11 ×A12 × . . . ×A1m) ]

(A21 ×A22 × . . .×A2m)] . . .] (Am1 ×Am2 . . . ,×Amm) = (Ā1 ×A2 × . . .×
Am) ] (A1

¯×A2 × . . .×Am) ] . . . ] (A1 ×A2 × . . .× Ām).
In particular, if I = {1, 2}, then, for every λ ∈ Ω and every ((ak, bk); k ∈

Kλ) ∈ (A1 ×A2)Kλ , ((ak, bk); k ∈ Kλ) ∈ rλ if and only if one of the following
three conditions is satisfied:

(i) (ak; k ∈ Kλ) ∈ p1λ and (bk; k ∈ Kλ) ∈ p2λ,

(ii) a = ak for every k ∈ Kλ and (bk; k ∈ Kλ) ∈ p2λ,

(iii) (ak; k ∈ Kλ) ∈ p1λ and b = bk for every k ∈ Kλ.

Example 2.1. Let A = 〈A, p〉,B = 〈B, q〉 be binary relational systems, where
A = {a, b}, B = {x, y}, p = {(a, b)} and q = {(x, y)}. Then A⊗B = (A×B, r),
where

r = {((a, x), (b, y)), ((a, x), (b, x)), ((a, y), (b, y)), ((a, x), (a, y)), ((b, x), (b, y))}.
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Example 2.2. Let A = 〈A, p〉,B = 〈B, q〉 be binary relational systems, where
A = {a}, B = {x, y}, p = {(a, a)} and q = {(x, y)}. Then A ⊗ B = (A ×
B, r), where r = {((a, x), (a, y)), ((a, x), (a, x)), ((a, y), (a, y))}. Thus, A⊗B is
reflexive.

Remark 2.3. Let Ai, i ∈ I, be a family of relational systems. If Ai is reflexive
for every i ∈ I, then

∏
i∈I Ai =

⊗
i∈I Ai. If Ai, i ∈ I, are reflexive with the

exception of at most one of them, then
⊗

i∈I Ai is reflexive.

The combined product of relational systems distributes over their direct
sum, which is shown as follows.

Theorem 2.4. Let Ai, i ∈ I, be a nonempty family of relational systems of the
same type τ and let B be a relational system of type τ . Then

∑
i∈I(B⊗Ai) =

B⊗
∑
i∈I Ai.

Proof. Let Ai = 〈Ai, (piλ;λ ∈ Ω)〉, i ∈ I, B = 〈B, (qλ;λ ∈ Ω)〉 and let τ =
(Kλ;λ ∈ Ω). Let

∑
i∈I Ai = 〈

⋃
i∈I Ai, (sλ;λ ∈ Ω)〉,B⊗Ai = 〈B ×Ai, (riλ;λ ∈

Ω)〉 for each i ∈ I, B ⊗
∑
i∈I Ai = 〈B ×

⋃
i∈I Ai, (uλ;λ ∈ Ω)〉 and

∑
i∈I(B ⊗

Ai) = 〈
⋃
i∈I(B × Ai), (vλ;λ ∈ Ω)〉. We will show that ((bk, ak); k ∈ Kλ) ∈ uλ

if and only if ((bk, ak); k ∈ Kλ) ∈ vλ for every (bk, ak) ∈ B ×
⋃
i∈I Ai =⋃

i∈I(B ×Ai) and for every k ∈ Kλ.

It is easy to see that the following conditions satisfy (a) ⇔ (b) ⇔ (c) ⇔
(d)⇔ (e):

(a) ((bk, ak); k ∈ Kλ) ∈ uλ;

(b) one of the following three cases occurs:

(i) (bk; k ∈ Kλ) ∈ qλ and (ak; k ∈ Kλ) ∈ sλ;

(ii) b = bk for every k ∈ Kλ and (ak; k ∈ Kλ) ∈ sλ;

(iii) (bk; k ∈ Kλ) ∈ qλ and a = ak for every k ∈ Kλ;

(c) one of the following three cases occurs:

(i) (bk; k ∈ Kλ) ∈ qλ and (ak; k ∈ Kλ) ∈ piλ for some i ∈ I;

(ii) b = bk for every k ∈ Kλ and (ak; k ∈ Kλ) ∈ piλ for some i ∈ I;

(iii) (bk; k ∈ Kλ) ∈ qλ and a = ak for every k ∈ Kλ;

(d) ((bk, ak); k ∈ Kλ) ∈ riλ for some i ∈ I;

(e) ((bk, ak); k ∈ Kλ) ∈ vλ.

This proves the statement.
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3. The power of universal relational systems

Let B = 〈B, (qλ;λ ∈ Ω)〉 and A = 〈A, (pλ;λ ∈ Ω)〉 be relational systems of
the same type τ = (Kλ;λ ∈ Ω).

The direct power of relational systems A and B is the relational system
A�B = 〈Hom(B,A), (tλ;λ ∈ Ω)〉 of type τ where, for any λ ∈ Ω and any
(fi; i ∈ Kλ) ∈ (Hom(B,A))Kλ , (fi; i ∈ Kλ) ∈ tλ if and only if (fi(b); i ∈
Kλ) ∈ pλ for each b ∈ B.

The structural power of relational systems A and B is the relational system
A◦B = 〈Hom(B,A), (sλ;λ ∈ Ω)〉 of type τ where, for any λ ∈ Ω and any
(fi; i ∈ Kλ) ∈ (Hom(B,A))Kλ , (fi; i ∈ Kλ) ∈ sλ if and only if (fi(bi); i ∈
Kλ) ∈ pλ whenever (bi; i ∈ Kλ) ∈ qλ.

The combined power of relational systems is defined by combining the direct
power and the structural power of relational systems.

Definition 3.1. Let B = 〈B, (qλ;λ ∈ Ω)〉 and A = 〈A, (pλ;λ ∈ Ω)〉 be re-
lational systems of the same type τ = (Kλ;λ ∈ Ω). The combined power of
relational systems A and B is the relational system AB given by:

AB = A�B ∩A◦B

Thus, AB = 〈Hom(B,A), (rλ;λ ∈ Ω)〉 is the relational system of type τ
where, for any λ ∈ Ω and any (fi; i ∈ Kλ) ∈ (Hom(B,A))Kλ , (fi; i ∈ Kλ) ∈ rλ
if and only if (fi(bi); i ∈ Kλ) ∈ pλ whenever (bi; i ∈ Kλ) ∈ q̄λ.

Remark 3.2. a) Given relational systems A and B, it may easily be seen that
A◦B ⊆ A�B if B is reflexive, and then A◦B = AB.

b) Let K,L,A be nonempty sets. By a K × L-matrix M over A, we un-
derstand any map M : K × L → A, i.e., the indexed sets (aij ; i ∈ K, j ∈ L)
denoted briefly by (aij). In [11], a relational system 〈A, (pλ;λ ∈ Ω)〉 of type
τ is called diagonal if, for every λ ∈ Ω and every Kλ × Kλ-matrix (aij) over
A, from (aij ; i ∈ Kλ) ∈ pλ for each j ∈ Kλ and (aij ; j ∈ Kλ) ∈ pλ for each
i ∈ Kλ it follows that (aii; i ∈ Kλ) ∈ pλ for each i ∈ Kλ. For idempotent
algebras with one finitary operation, the diagonality introduced coincides with
the diagonality studied in [8]. Given relational systems A and B of the same
type, if A is diagonal, then A�B ⊆ A◦B, and then A�B = AB.

c) Let A and B be relational systems. If A is diagonal and B is reflexive,
then A�B = A◦B = AB.

In general, the direct power and the structural power of relational systems
need not fulfill the first exponential law. The validity of the first exponential
law for the combined power of relational systems with respect to the combined
product is shown as follows.

Lemma 3.3. Let A,B,C be relational systems of the same type. Then the
canonical bijection ϕ : (AB)C → AB×C restricted to Hom(C,AB) is a bijection
of Hom(C,AB) onto Hom(B⊗C,A).
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Proof. Let B = 〈B, (qλ;λ ∈ Ω)〉,A = 〈A, (pλ;λ ∈ Ω)〉,C = 〈C, (sλ;λ ∈ Ω)〉.
Let τ = (Kλ;λ ∈ Ω) be the type of A,B and C. Let

AB = 〈Hom(B,A), (rλ;λ ∈ Ω)〉, B⊗C = 〈B × C, (vλ;λ ∈ Ω)〉,

(AB)C = 〈Hom(C,AB), (tλ;λ ∈ Ω)〉 and

AB⊗C = 〈Hom(B⊗C,A), (uλ;λ ∈ Ω)〉.

Let λ ∈ Ω, h ∈ Hom(C,AB) and let ((bi, ci); i ∈ Kλ) ∈ vλ for every i ∈ Kλ.
We will show that (ϕ(h)(bi, ci); i ∈ Kλ) ∈ pλ. Clearly, one of the following three
conditions is satisfied:

(i) (bi; i ∈ Kλ) ∈ qλ and (ci; i ∈ Kλ) ∈ sλ;

(ii) b = bi for every i ∈ Kλ and (ci; i ∈ Kλ) ∈ sλ;

(iii) (bi; i ∈ Kλ) ∈ qλ and c = ci for every i ∈ Kλ.

Suppose that (i) is satisfied. Since (ci; i ∈ Kλ) ∈ sλ, by the above consid-
erations we have (h(ci); i ∈ Kλ) ∈ rλ. Then (h(ci)(bi); i ∈ Kλ) ∈ rλ because
(bi; i ∈ Kλ) ∈ qλ. Therefore, (ϕ(h)(bi, ci); i ∈ Kλ) ∈ pλ provided that (i) is
satisfied.

If (ci; i ∈ Kλ) ∈ sλ, then (h(ci); i ∈ Kλ) ∈ rλ, hence (h(ci)(b); i ∈ Kλ)) =
pλ(ϕ(h)(b, ci); i ∈ Kλ) ∈ pλ for every b ∈ B. Thus, (ϕ(h)(b, ci); i ∈ Kλ) ∈ pλ
provided that (ii) is satisfied.

If (bi; i ∈ Kλ) ∈ qλ, then (h(c)(bi); i ∈ Kλ) = (ϕ(h)(bi, c); i ∈ Kλ) ∈ pλ
because h(c) ∈ Hom(B,A) for every c ∈ C. So we have, (ϕ(h)(bi, c); i ∈ Kλ) ∈
pλ provided that (iii) is satisfied.

We have shown that ϕ(h) ∈ Hom(B⊗C,A).
Let g ∈ Hom(B ⊗ C,A), c ∈ C and (bi; i ∈ Kλ) ∈ qλ. Consequently,

((bi, c); i ∈ Kλ) ∈ vλ. Since g is a homomorphism, we have (g(bi, c); i ∈ Kλ) ∈
pλ. Thus, (ϕ−1(g)(c)(bi); i ∈ Kλ) ∈ pλ. Therefore, ϕ−1(g)(c) ∈ Hom(B,A)
for each c ∈ C.

Next, let (ci; i ∈ Kλ) ∈ sλ. We will show that (ϕ−1(g)(ci); i ∈ Kλ) ∈ rλ.
Assume (bi; i ∈ Kλ) ∈ q̄λ, then we have ((bi, ci); i ∈ Kλ) ∈ vλ. Since g is a
homomorphism, we get (g(bi, ci); i ∈ Kλ) ∈ pλ. So (ϕ−1(g)(bi)(ci); i ∈ Kλ) =
(g(bi, ci); i ∈ Kλ) ∈ pλ. Consequently, (ϕ−1(g)(ci); i ∈ Kλ) ∈ rλ, which yields
ϕ−1(g) ∈ Hom(C,AB).

Theorem 3.4. Let A,B,C be relational systems of the same type, then

(AB)C ∼= AB⊗C.

Proof. Let B = 〈B, (qλ;λ ∈ Ω)〉,A = 〈A, (pλ;λ ∈ Ω)〉,C = 〈C, (sλ;λ ∈ Ω)〉
and let τ = (Kλ;λ ∈ Ω) be the type of A,B and C. Let

AB = 〈Hom(B,A), (rλ;λ ∈ Ω)〉, B⊗C = 〈B × C, (vλ;λ ∈ Ω)〉,

(AB)C = 〈Hom(C,AB), (tλ;λ ∈ Ω)〉 and
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AB⊗C = 〈Hom(B⊗C,A), (uλ;λ ∈ Ω)〉.

Because of Lemma 3.3, we only have to show that ϕ and ϕ−1 are homomor-
phisms.

Let (hi; i ∈ Kλ) ∈ tλ whenever hi ∈ Hom(C,AB) and let ((bi, ci); i ∈
Kλ) ∈ vλ for every i ∈ Kλ. We will show that (ϕ(hi)(bi, ci); i ∈ Kλ) ∈ pλ.
Clearly, one of the following three conditions is satisfied:

(i) (bi; i ∈ Kλ) ∈ qλ and (ci; i ∈ Kλ) ∈ sλ;

(ii) b = bi for every i ∈ Kλ and (ci; i ∈ Kλ) ∈ sλ;

(iii) (bi; i ∈ Kλ) ∈ qλ and c = ci for every i ∈ Kλ.

Suppose that (i) is satisfied. Since (ci; i ∈ Kλ) ∈ sλ, we have (hi(ci); i ∈
Kλ) ∈ rλ. Then (hi(ci); i ∈ Kλ) ∈ rλ because (bi; i ∈ Kλ) ∈ qλ. Therefore,
(ϕ(hi)(bi, ci); i ∈ Kλ) ∈ pλ provided that (i) is satisfied.

If (ci; i ∈ Kλ) ∈ sλ, then (hi(ci); i ∈ Kλ) ∈ rλ, hence (hi(ci)(b); i ∈ Kλ)) =
(ϕ(hi)(b, ci); i ∈ Kλ) ∈ pλ for every b ∈ B. Thus, (ϕ(hi)(b, ci); i ∈ Kλ) ∈ pλ
for every b ∈ B provided that (ii) is satisfied.

If (bi; i ∈ Kλ) ∈ qλ, then (hi(c)(bi); i ∈ Kλ) = (ϕ(hi)(bi, c); i ∈ Kλ) ∈ pλ
because (hi(c); i ∈ Kλ) ∈ rλ for every c ∈ C. So, (ϕ(hi)(bi, c); i ∈ Kλ) ∈ pλ
provided that (iii) is satisfied. Hence ϕ is a homomorphism of (AB)C onto
AB⊗C.

Next, we will show that ϕ−1 is a homomorphism of AB⊗C onto (AB)C.
Let (gi; i ∈ Kλ) ∈ uλ, (ci; i ∈ Kλ) ∈ s̄λ and (bi; i ∈ Kλ) ∈ q̄λ. Then we have
((bi, ci); i ∈ Kλ) ∈ vλ and, consequently, (gi(bi, ci); i ∈ Kλ) ∈ pλ. Therefore,
(ϕ−1(gi)(ci)(bi); i ∈ Kλ) = (gi(bi, ci); i ∈ Kλ) ∈ pλ. Then, (ϕ−1(gi)(ci); i ∈
Kλ) ∈ rλ. Since (gi; i ∈ Kλ) ∈ uλ, we have (gi(b, c); i ∈ Kλ) ∈ pλ for every
(b, c) ∈ B×C. Hence, (ϕ−1(gi); i ∈ Kλ) ∈ tλ, so that ϕ−1 is a homomorphism.

We have shown that (AB)C is isomorphic to AB⊗C.

Corollary 3.5. Let A,B,C be relational systems of the same type. If B and
C are reflexive, then

(A◦B)◦C ∼= A◦B×C.

Proof. Obviously, if B and C are reflexive, then B×C is reflexive. Therefore,
B×C = B⊗C. By Remark 3.2(a), we have (A◦B)◦C = (AB)C and A◦(B×C) =
AB×C = AB⊗C. Thus, the assertion follows from Theorem 3.4.

Corollary 3.6. Let A,B,C be relational systems of the same type. If A is
diagonal and B and C are reflexive, then

(A�B)�C ∼= A�(B×C).

Proof. By Remark 3.2 (b) and Remark 3.2(c), we have (A�B)�C = (AB)C and
A�(B×C) = AB×C. Since B and C are reflexive, B × C is reflexive. So, we
have B×C = B⊗C. Thus, the assertion follows from Theorem 3.4.
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For the direct power and the structural power of relational systems and their
direct product, the second and third exponential laws are valid. These results
were proved in [9] and [3]. Then, we get the second and third exponential laws
also for the combined power. However, these laws are not generally true for the
combined product of relational systems. Next, we will show that, for the direct
power, the structural power and combined power of relational systems, weak
forms of the second and third exponential laws hold with respect to combined
product.

Theorem 3.7. Let Ai, i ∈ I be a nonempty family of relational systems of the
same type τ and let B be a relational system of type τ . Then the second expo-
nential law holds for the direct power, the structural power and the combined
power:

(1)
⊗

i∈I(A
�B
i ) 4 (

⊗
i∈I Ai)

�B;

(2)
⊗

i∈I(A
◦B
i ) 4 (

⊗
i∈I Ai)

◦B;

(3)
⊗

i∈I(A
B
i ) 4 (

⊗
i∈I Ai)

B.

Proof. Let A = 〈Ai, (piλ;λ ∈ Ω)〉 for every i ∈ I, B = 〈B, (qλ;λ ∈ Ω)〉
and let τ = (Kλ;λ ∈ Ω). Let

⊗
i∈I Ai = 〈

∏
i∈I Ai, (rλ;λ ∈ Ω)〉, AB

i =
〈Hom(B,Ai), (u

i
λ;λ ∈ Ω)〉 for every i ∈ I,

⊗
i∈I(A

B
i ) = 〈

∏
i∈I Hom(B,Ai), (sλ;

λ ∈ Ω)〉 and (
⊗

i∈I Ai)
B = 〈Hom(B,

⊗
i∈I Ai), (tλ;λ ∈ Ω)〉.

We define the map α :
∏
i∈I Hom(B,Ai) → (

∏
i∈I Ai)

B by α(f i; i ∈
I)(b) = (f i(b); i ∈ I) for each b ∈ B.

Let (f i; i ∈ I) ∈
∏
i∈I Hom(B,Ai) and (bk; k ∈ Kλ) ∈ qλ. Since f i ∈

Hom(B,Ai), we have (f i(bk); k ∈ Kλ) ∈ pi for every i ∈ I. Then ((f i(bk); i ∈
I); k ∈ Kλ) ∈ rλ and we have (α(f i; i ∈ I)(bk); k ∈ Kλ) ∈ rλ. Therefore,
α(f i; i ∈ I) ∈ Hom(B,

⊗
i∈I Ai).

Suppose that α(f i; i ∈ I) = α(gi; i ∈ I), where (f i; i ∈ I), (gi; i ∈ I) ∈∏
i∈I Hom(B,Ai). Then (f i(b); i ∈ I) = α(f i; i ∈ I)(b) = α(gi; i ∈ I)(b) =

(gi(b); i ∈ I) for every b ∈ B. Therefore, f i(b) = gi(b) for every i ∈ I and
every b ∈ B. Hence, f i = gi for every i ∈ I. Thus, α:

∏
i∈I Hom(B,Ai) →

Hom(B,
⊗

i∈I Ai) is an injection.
We will show that α is a homomorphism. Let ((f ik; i ∈ I); k ∈ Kλ) ∈ sλ

and let J ⊆ I, card J ≤ 1. Consequently, (f ik; k ∈ Kλ) ∈ uiλ for every i ∈ I r J
and f i = f ik for every k ∈ Kλ and i ∈ J.

Hence, (f ik(b); k ∈ Kλ) ∈ piλ for every i ∈ I r J and every b ∈ B and
f ik(b) = f i(b) for every k ∈ Kλ, i ∈ J and every b ∈ B. Therefore, ((f ik(b); i ∈
I); k ∈ Kλ) ∈ rλ for every b ∈ B. This gives the condition (1).

If (bk; k ∈ Kλ) ∈ qλ, then we have (f ik(bk); k ∈ Kλ) ∈ piλ for every i ∈ I r J
and f ik(bk) = f i(b) for every k ∈ Kλ, i ∈ J . Therefore, ((f ik(bk); i ∈ I); k ∈
Kλ) ∈ rλ. Thus (α(f ik; i ∈ I); k ∈ Kλ) ∈ tλ. This gives the condition (2).

Since ⊗
i∈I

(AB
i ) =

⊗
i∈I

(A�Bi ) ∩
⊗
i∈I

(A◦Bi ) and



On a product of universal relational systems 69

(
⊗
i∈I

Ai)
�B ∩ (

⊗
i∈I

Ai)
◦B = (

⊗
i∈I

Ai)
B,

the condition (3) is satisfied.

It may be simply shown that, in Theorem 3.7, ∼= may be written instead of
4 if Ai is reflexive for every i ∈ I. By using Remark 2.3, we obtain the second
exponential law for the three powers with respect to the direct product

(1)
∏
i∈I A�Bi

∼= (
∏
i∈I Ai)

�B;

(2)
∏
i∈I A◦Bi

∼= (
∏
i∈I Ai)

◦B;

(3)
∏
i∈I AB

i
∼= (
∏
i∈I Ai)

B.

Theorem 3.8. Let A be a relational system of type τ and let Bi, i ∈ I, be
a family of pair-wise disjoint relational systems of the same type τ . Then the
third exponential law holds for the direct power, the structural power and the
combined power:

(1) A
∑
i∈I �Bi 4

⊗
i∈I A�Bi ;

(2) A
∑
i∈I ◦Bi 4

⊗
i∈I A◦Bi ;

(3) A
∑
i∈I Bi 4

⊗
i∈I ABi .

Proof. Let A = 〈A, (pλ;λ ∈ Ω)〉, Bi = 〈Bi, (qiλ;λ ∈ Ω)〉 for every i ∈ I and let
τ = (Kλ;λ ∈ Ω). Let

∑
i∈I Bi = 〈

⋃
i∈I Bi, (vλ;λ ∈ Ω)〉, ABi = 〈Hom(Bi,A),

(riλ;λ ∈ Ω)〉 for every i ∈ I,
∏
i∈I(A

Bi) = 〈
∏
i∈I Hom(Bi,A), (tλ;λ ∈ Ω)〉 and

A
∑
i∈I Bi = 〈Hom(

∑
i∈I Bi,A), (uλ;λ ∈ Ω)〉.

We define the map α : Hom(
∑
i∈I Bi,A) →

∏
i∈I Hom(Bi,A) by α(h) =

(f i; i ∈ I) whenever h ∈ Hom(
∑
i∈I Bi,A), where f i = h|Bi for every i ∈ I.

It may easily be seen that fi is a homomorphism of Bi into A for every i ∈ I.
It follows that α(h) ∈

∏
i∈I Hom(Bi,A). Clearly, α is an injection of the set

Hom(
∑
i∈I Bi,A) into

∏
i∈I Hom(Bi,A)

We will show that α is a homomorphism. Let (hk; k ∈ Kλ) ∈ uλ. So,
(hk|Bi(bi); k ∈ Kλ) = (f ik(bi); k ∈ Kλ) ∈ pλ for any bi ∈ Bi and for any i ∈ I.
This gives the condition (1). If (bik; k ∈ Kλ) ∈ qiλ, then (hk|Bi(bik); k ∈ Kλ) =
(f ik(bik); k ∈ Kλ) ∈ pλ for any i ∈ I. This gives the condition (2). And,
the condition (3) is satisfied because A

∑
i∈I Bi =

∏
i∈I A�Bi ∩ A

∑
i∈I ◦Bi and⊗

i∈I ABi =
⊗

i∈I A�Bi ∩
⊗

i∈I A◦Bi .

It may be simply shown that, in Theorem 3.8, ∼= may be written instead of
4 if Bi is reflexive for every i ∈ I. It may be seen that A�Bi , A◦Bi and ABi

are reflexive for every i ∈ I because the underlying set of the three powers is
a set of all homomorphisms from Bi into A for every i ∈ I. By using Remark
2.3, we obtain the third exponential law for the three powers and the direct
product



70 Nitima Phrommarat, Sivaree Sudsanit

(1)
∏
i∈I A�Bi ∼= A

∑
i∈I �Bi ;

(2)
∏
i∈I A◦Bi ∼= A

∑
i∈I ◦Bi ;

(3)
∏
i∈I ABi ∼= A

∑
i∈I Bi .

Remark 3.9. As for generality, hyperalgebras lie between relational systems
and algebras. Let Ω be a nonempty set and τ = (Kλ;λ ∈ Ω). An universal
hyperalgebra A = 〈A, (pλ;λ ∈ Ω)〉 of type τ = (Kλ;λ ∈ Ω) is a relational system
A = 〈A, (qλ;λ ∈ Ω)〉 of type (Kλ ∪ {kλ};λ ∈ Ω), where {kλ} is a singleton set
and kλ /∈ Kλ for every λ ∈ Ω, such that for each f = (ai; i ∈ Kλ) ∈ AKλ there
exists g = (ai; i ∈ Kλ ∪ {kλ}) ∈ qλ such that g|Kλ = f. If such g(kλ) is unique
whenever (ai; i ∈ Kλ) ∈ AKλ , then the universal relational system A is nothing
but a universal algebra (cf. [3]). The power of hyperalgebras was studied in
[4] and that of algebras in [3]. A combined power AB of universal algebras
(hyperalgebras) is a direct power if A is both diagonal and commutative and
B is idempotent. Of course, if A,B are universal algebras (hyperalgebras),
then the power AB need not be a universal algebra (hyperalgebra). Therefore,
it is an open problem to find conditions under which the three exponential laws
or at least their weak forms are satisfied for universal algebras (hyperalgebras).
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