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Weighted Young-type inequalities on locally compact
groups1

Frédéric Morneau-Guérin2

Abstract. We obtain an extension of Young’s convolution inequality in
weighted Lebesgue spaces of measurable functions defined on locally com-
pact groups. Our result provides a unified treatment of a theorem of Klein
and Russo extending the classical Young’s inequality to locally compact
groups, and a theorem of Biswas and Swanson generalizing Young’s in-
equality to weighted Lebesgue spaces on locally compact Abelian groups.
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1. Introduction

Given a locally compact (Hausdorff) group G with a left Haar measure λ
(i.e. the unique – up to a positive multiplicative constant – left-invariant Radon
measure on G) the space Lp(G) with 1 ≤ p ≤ ∞ is the usual Lebesgue space
of all (equivalence classes of) complex valued λ-measurable functions f on G
satisfying

(1 ≤ p <∞) ‖f‖p :=

(∫
G

|f(x)|p dLλ(x)

)1/p

< ∞,

or

‖f‖∞ := inf
{
M ≥ 0 : |f(x)| ≤M λ-almost everywhere

}
< ∞.

Let f, g : G → C be two λ-measurable functions. Their convolution f ∗ g :
G→ C is the function defined by the formula

(1.1) (f ∗ g)(x) =

∫
G

f(y)g(y−1x) dLλ(y).

However, for f ∗ g to be well-defined, we need to impose conditions on f and
g to ensure that (1.1) makes sense for almost all x ∈ G. A common choice is
to require that f, g ∈ L1(G). It is easy to check that under this hypothesis
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f ∗ g is well-defined, that it belongs to L1(G) and that it satisfies the following
inequality :

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

This inequality turns out to be a particular case of the following classical result.

Theorem 1.1. (Young’s inequality for convolution) For any locally
unimodular group G, if p, q, r ∈ [1,∞] are such that 1

p + 1
q = 1

r + 1, then for all

f ∈ Lp(G) and g ∈ Lq(G) the convolution f ∗ g exists and belongs to Lr(G).
Moreover,

(1.2) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Due to the pivotal role played by Theorem 1.1 in the study of the convo-
lution operator, considerable attention was devoted to investigating its various
improvements and generalizations. The program encompassed efforts aimed at
strengthening equation (1.2) to a sharp form, i.e.

‖f ∗ g‖r ≤ cp,q‖f‖p‖g‖q,

with cp,q < 1 (see, for instance, [2, 6, 11]), as well as investigations directed at
obtaining various other Young-type inequalities, i.e. inequalities of the form

(1.3) ‖f ∗ g‖Z ≤ ‖f‖X‖g‖Y ,

where X, Y and Z are function spaces, f ∈ X, and g ∈ Y .

2. Weighted Lp-spaces

Given a locally compact group G, a weight function on G is a strictly
positive λ-measurable function defined on G. Given 1 ≤ p ≤ ∞, the weighted
Lp-space with weight w is defined as follows :

Lp(G,w) :=
{
f : G→ C

∣∣∣ ‖f‖p,w <∞},
where ‖f‖p,w := ‖wf‖p. Hence Lp(G,w) is a Banach space with the norm
‖f‖p,w.

Weights and weighted function spaces play a distinguished role in numerical
mathematics and have several concrete applications in computer science, engi-
neering and statistics (time-frequency analysis, Gabor frames, wavelet frames,
sampling theory, etc.); see, for instance, [10, 15, 16, 14, 12]. Additionally,
weighted function spaces appear naturally in functional analysis and operator
theory. Such spaces have proved instrumental in questions of factorization as
well as in the interpolation theory; see [5, 8].

Following [4], for p, q, r ∈ [1,∞], we define YG(p, q, r) as the set of all triplets
of weight functions (w1, w2, w3) for which a Young-type inequality holds, i.e.
there exists a positive constant C = C(p, q, r, w1, w2, w3) with the property
that

‖f ∗ g‖r,w3
≤ C‖f‖p,w1

‖g‖q,w2
,



Weighted Young-type inequalities on locally compact groups 109

for all f ∈ Lp(G,w1) and g ∈ Lq(G,w2).
The pursuit of criteria for membership in the class YG(p, q, r) can be traced

at least as far back as the late 1950’s; see, for instance, [7]. The list of authors
who sought necessary and/or sufficient conditions for inequalities analogous
to (1.3) to hold true is too long to be mentioned exhaustively here. But let
us mention the work of Wermer [29], Nikol’skǐi [27], Kerlin & Lambert [19],
Feichtinger [9], Grabiner [13] Kerman & Sawyer [20], Abtahi, Nasr-Isfahani
& Rejali [1], Kuznetsova [23, 24, 25, 26, 22], Biswas & Swanson [4], Toft,
Johansson, Pilipović & Teofanov [28], and Guo, Chen, Fan & Zhao [17].

The main purpose of this note is to present an extension to any locally com-
pact group of a theorem of Biswas & Swanson identifying sufficient conditions
ensuring that the triplet (w1, w2, w3) of weight functions on a locally compact
Abelian group G belongs to YG(p, q, r).

3. Interpolation theorem

In this section we state, for reference, the version of the Riesz–Thorin in-
terpolation theorem that will be used later in our proofs.

Theorem 3.1. (Riesz–Thorin interpolation theorem)
Let 1 ≤ p0, p1, q0, q1 ≤ ∞ with p0 6= p1 and q0 6= q1. If T is a linear operator
boundedly mapping Lp0(U, dµ) and Lp1(U, dµ) into Lq0(V, dv) and Lq1(V, dv),
respectively, then T : Lpθ (U, dµ)→ Lqθ (V, dv) with norm estimate

‖T‖Lpθ→Lqθ ≤ ‖T‖
1−θ
Lp0→Lq0

‖T‖θLp1→Lq1

for each θ ∈ [0, 1], provided that

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

Proof. See [3, Theorem 1.1.1.]

4. Main results

Before initiating the presentation of the main results, we shall briefly recall
some important properties of the modular function of a locally compact group.

Given µ a left Haar measure on some locally compact group G, then for
every x ∈ G, the measure µx defined by µx(E) = µ(Ex), for every Borel
set E, is also a left Haar measure. Hence, by uniqueness, there must exist a
positive number ∆(x) such that µx = ∆(x)µ. The map ∆ : G → (0,∞) thus
defined, called the modular function on G, is continuous, positive throughout
G, independent of the choice of µ, and it satisfies the following multiplicative
identity

∆(xy) = ∆(x)∆(y)

for all x, y ∈ G.
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An important feature of the modular function is that it determines when
the Haar measure is both left and right translation invariant. Indeed, the left
Haar measure µ on G is also right translation invariant if and only if ∆ ≡ 1,
in which case G is said to be unimodular.

For a more thorough and comprehensive presentation of the properties of
the modular function, one can consult [18].

Our first result deals with those triplets of indices satisfying the same rela-
tion as in the classical Young’s inequality for convolution. We proceed along
the lines set out by Klein & Russo in the unweighted case; see [21].

Theorem 4.1. Let G be a locally compact group with a left Haar measure λ
and of modular function ∆. Assume that p, q, r ∈ [1,∞] satisfy the following
relation

(4.1)
1

p
+

1

q
=

1

r
+ 1.

Let w1, w2, w3 be weight functions on G satisfying, for some positive constant
C, the following inequality

(4.2) w3(x) ≤ Cw1(y)w2(y−1x),

for λ-almost every x, y ∈ G. Then, for all f ∈ Lp(G,w1) and g ∈ Lq(G,w2),

the convolution f ∗ g∆
1
q−

1
r exists and belongs to Lr(G,w3). Moreover,∥∥∥f ∗ g∆

1
q−

1
r

∥∥∥
r,w3

≤ C‖f‖p,w1
‖g‖q,w2

.

It is worth noting that under our assumptions on p, q, r we have

1

q
− 1

r
= 1− 1

p
=

1

p′

where p′ denotes the Hölder conjugate of p. We chose to hold on to the notation
1
q −

1
r in the statement of Theorem 4.1 for the sake of consistency with the

notation of Theorem 4.1. However, in order to make the notation less cluttered
in the proof of Theorem 4.4, we will write 1

p′ rather than 1
q −

1
r .

It is helpful first to establish the following two results.

Lemma 4.2. Under the assumption of Theorem 4.1 we have, for all p ∈ [1,∞],∥∥∥f ∗ g∆
1
p′
∥∥∥
p,w3

≤ C‖f‖p,w1
‖g‖1,w2

Proof. If p =∞, it follows from (4.2) that for λ-almost every x, y ∈ G we have∣∣f ∗ g(x)∆
∣∣ ≤ C

w3(x)

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|∆(y−1x) dLλ(y)

≤ C‖f‖∞,w1

w3(x)

∫
G

w2(y−1x)|g(y−1x)|∆(y−1x) dLλ(y).
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Hence ∥∥f ∗ g∆
∥∥
∞,w3

≤ C‖f‖∞,w1‖g‖1,w2 .

If p = 1 we have p′ = ∞ and it follows that ∆
1
p′ ≡ 1. Then by (4.2) we

have for λ-almost every x, y ∈ G

|f ∗ g(x)| ≤ C

w3(x)

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)| dLλ(y)

So, by Fubini’s theorem, we have

‖f ∗ g‖1,w3
=

∫
G

w3(x)|f ∗ g(x)| dLλ(x)

≤ C

∫
G

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)| dLλ(y) dLλ(x)

= C

∫
G

w1(y)|f(y)|
∫
G

w2(y−1x)|g(y−1x)| dLλ(x) dLλ(y) dL

= C

∫
G

w1(y)|f(y)|
∫
G

w2(x)|g(x)| dLλ(x) dLλ(y)

Hence ∥∥f ∗ g∥∥
1,w3

≤ C‖f‖1,w1‖g‖1,w2 .

If p ∈ (1,∞), then by (4.2) and Hölder’s inequality (see [18, Theorem 12.4])
we have for λ-almost every x, y ∈ G

∣∣∣f ∗ g∆
1
p′ (x)

∣∣∣
≤ C

w3(x)

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|∆(y−1x)
1
p′ dLλ(y)

≤ C

w3(x)

∫
G

w1(y)|f(y)|w2(y−1x)
1
p+

1
p′ |g(y−1x)|

1
p+

1
p′ ∆(y−1x)

1
p′ dLλ(y)

≤ C

w3(x)

(∫
G

w1(y)p|f(y)|pw2(y−1x)|g(y−1x) dLλ(y)

)1/p

·
(∫

G

w2(y−1x)|g(y−1x)|∆(y−1x) dLλ(y)

)1/p′

=
C

w3(x)

(∫
G

w1(y)p|f(y)|pw2(y−1x)|g(y−1x)| dLλ(y)

)1/p

‖g‖1/p
′

1,w2
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Therefore, by Fubini’s theorem, we have

‖f ∗ g∆
1
p′ ‖pp,w3

=

∫
G

w3(x)p
∣∣∣f ∗ g∆

1
p′ (x)

∣∣∣p dLλ(x)

≤ Cp‖g‖p/p
′

1,w2

∫
G

∫
G

w1(y)p|f(y)|pw2(y−1x)|g(y−1x)| dLλ(y) dLλ(x)

≤ Cp‖g‖p/p
′

1,w2

∫
G

w1(y)p|f(y)|p
∫
G

w2(y−1x)|g(y−1x)| dLλ(x) dLλ(y)

= Cp‖g‖p/p
′

1,w2

∫
G

w1(y)p|f(y)|p
∫
G

w2(x)|g(x)| dLλ(x) dLλ(y)

= Cp‖g‖p/p
′

1,w2
‖g‖1,w2‖f‖pp,w1

.

But p
p′ + 1 = p. So, taking the p-th root, we get∥∥∥f ∗ g∆

1
p′
∥∥∥
p,w3

≤ C‖f‖p,w1
‖g‖1,w2

Lemma 4.3. Under the assumption of Theorem 4.1 we have, for all p ∈ [1,∞],∥∥∥f ∗ g∆
1
p′
∥∥∥
∞,w3

≤ C‖f‖p,w1
‖g‖p′,w2

Proof. If p = 1 we have p′ = ∞ and it follows that ∆
1
p′ ≡ 1. Therefore (4.2)

implies that for λ-almost every x, y ∈ G we have∣∣f ∗ g(x)
∣∣ ≤ C

w3(x)

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)| dLλ(y)

=
C‖f‖1,w1

‖g‖∞,w2

w3(x)

Hence ∥∥f ∗ g∥∥∞,w3
≤ C‖f‖1,w1

‖g‖∞,w2

If p =∞, then we can apply Lemma 4.2 and the result follows.
If p ∈ (1,∞), then by (4.2) and Hölder’s inequality we have for λ-almost

every x, y ∈ G∣∣∣f ∗ g∆
1
p′ (x)

∣∣∣
≤ C

w3(x)

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|∆(y−1x)
1
p′ dLλ(y)

≤ C

w3(x)

(∫
G

w1(y)p|f(y)|p dLλ(y)

)1/p

·
(∫

G

w2(y−1x)p
′
|g(y−1x)|p

′
∆(y−1x) dLλ(y)

)1/p′

=
C

w3(x)
‖f‖p,w1

‖g‖p′,w2
.
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Hence ∥∥∥f ∗ g∆
1
p′
∥∥∥
∞,w3

≤ C‖f‖p,w1
‖g‖p′,w2

.

Proof. (of Theorem 4.1) For fixed p ∈ [1,∞] and f ∈ Lp(G), it follows from
Lemmas 4.2 and 4.3 that the application T defined on simple functions by

g 7→ f ∗ g∆
1
p′ maps boundedly L1(G,w2) and Lp′(G,w2) respectively into

Lp(G,w3) and L∞(G,w3) with norm less than or equal to C‖f‖p,w1 in both
cases. Then, Theorem 3.1 implies that T maps Lpθ (G,w2) boundedly into
Lqθ (G,w3) for θ ∈ [0, 1], where pθ and qθ are defined as

1

pθ
=

1− θ
1

+
θ

p′
and

1

qθ
=

1− θ
p

+
θ

∞
.

Moreover, the following operator norm estimate holds :

‖T‖Lpθ (G,w2)→Lqθ (G,w3) ≤ ‖T‖
1−θ
L1(G,w2)→Lp(G,w3)

‖T‖θLp′ (G,w2)→L∞(G,w3)

≤ C‖f‖p,w1

Hence, if we set q := pθ and r := qθ, we get∥∥∥f ∗ g∆
1
p′
∥∥∥
r,w3

≤ C‖f‖p,w1‖g‖q,w2 .

Our second result deals with those triplets of indices satisfying a relation
slightly different than that of the classical Young’s inequality. The proof is
adapted from that of a theorem of Biswas & Swanson; see [4].

Theorem 4.4. Let G be a locally compact group with a left Haar measure λ
and of modular function ∆. Assume that p, q, r, t ∈ [1,∞] satisfy

(4.3) 1 < t ≤ min{p, q, r} ≤ ∞ and
1

p
+

1

q
=

1

r
+

1

t
,

and that t′ denotes the Hölder conjugate of t. Let w1, w2, w3 be weight functions
on G satisfying, for some positive constant C, the following inequality

(4.4) (w−t
′

1 ∗ w−t
′

2 )(x) ≤ Ct
′
w−t

′

3 (x).

for λ-almost every x, y ∈ G. Then for all f ∈ Lp(G,w1) and g ∈ Lq(G,w2) the
convolution f ∗ g exists and belongs to Lr(G,w3). Moreover,∥∥∥f ∗ g∆

1
q−

1
r

∥∥∥
r,w3

≤ ‖f‖p,w1
‖g‖q,w2

.
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Proof. We shall prove the theorem using division into cases. Throughout the
proof, assume that f ∈ Lp(G,w1) and g ∈ Lq(G,w2).

Case I. Suppose that p = q = r = ∞, wherefrom t = ∞, as well. We have
t′ = 1 and 1

q −
1
r = 0 so ∆1/q−1/r ≡ 1. Thus, for λ-almost every x, y ∈ G

∣∣f ∗ g(x)
∣∣ ≤ ∫

G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|
w1(y)w2(y−1x)

dLλ(y)

≤ ‖f‖∞,w1
‖g‖∞,w2

(w−11 ∗ w
−1
2 )(x)

≤ ‖f‖∞,w1
‖g‖∞,w2

Cw−13 (x).

Therefore

‖f ∗ g‖∞,w3
≤ C‖f‖∞,w1

‖g‖∞,w2
.

Case II. Suppose that p = t < ∞ and q = r = ∞. So once more we have
1
q −

1
r = 0 and ∆1/q−1/r ≡ 1. By Hölder’s inequality, we have for λ-almost

every x, y ∈ G

∣∣f ∗ g(x)
∣∣

≤
∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|
w1(y)w2(y−1x)

dLλ(y)

≤ ‖g‖∞,w2

∫
G

w1(y)|f(y)|
w1(y)w2(y−1x)

dLλ(y)

≤ ‖g‖∞,w2

(∫
G

w1(y)t|f(y)|t dLλ(y)

)1/t

·
(∫

G

1

w1(y)t′w2(y−1x)t′
dLλ(y)

)1/t′

= ‖g‖∞,w2
‖f‖t,w1

(
w−t

′

1 ∗ w−t
′

2 (x)
)1/t′

≤ ‖g‖∞,w2
‖f‖t,w1

(
Ct

′
w−t

′

3 (x)
)1/t′

Hence

‖f ∗ g‖∞,w3
≤ C‖f‖p,w1

‖g‖∞,w2
.

Case III. Suppose that q = t < ∞ and p = r = ∞. By Hölder’s inequality
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and (4.4) we have for λ-almost every x ∈ G

∣∣f ∗ g∆
1
q (x)

∣∣
≤

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|∆
1
q (y−1x)

w1(y)w2(y−1x)
dLλ(y)

≤ ‖f‖∞,w1

∫
G

w2(y−1x)|g(y−1x)|∆
1
q (y−1x)

w1(y)w2(y−1x)
dLλ(y)

≤ ‖f‖∞,w1

(∫
G

w2(y−1x)t|g(y−1x)|t∆
t
q (y−1x) dLλ(y)

)1/t

·
(∫

G

1

w1(y)t′w2(y−1x)t′
dLλ(y)

)1/t′

= ‖f‖∞,w1

(∫
G

w2(y−1x)q|g(y−1x)|q∆(y−1x) dLλ(y)

)1/q

·
(
w−t

′

1 ∗ w−t
′

2 (x)
)1/t′

≤ ‖f‖∞,w1
‖g‖q,w2

(
Ct

′
w−t

′

3 (x)
)1/t′

Therefore,

‖f ∗ g‖∞,w3
≤ C‖f‖∞,w1

‖g‖q,w2
.

Case IV. Suppose that p, q, t < ∞ and r = ∞. By Hölder’s inequality and
(4.4) we have

∣∣f ∗ g∆
1
q (x)

∣∣
≤

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|∆
1
q (y−1x)

w1(y)w2(y−1x)
dLλ(y)

≤
(∫

G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q (y−1x) dLλ(y)

)1/t

·
(∫

G

1

w1(y)t′w2(y−1x)t′
dLλ(y)

)1/t′

=

(∫
G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q (y−1x) dLλ(y)

)1/t

·
(
w−t

′

1 ∗ w−t
′

2 (x)
)1/t′

≤
(∫

G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q (y−1x) dLλ(y)

)1/t

·
(
Ct

′
w−t

′

3 (x)
)1/t′
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Therefore

w3(x)
∣∣f ∗ g∆

t
q (x)

∣∣
≤ C

(∫
G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q (y−1x) dLλ(y)

)1/t

for λ-almost every x ∈ G. Under our assumptions on p, q, r, t, we have 1
p/t +

1
q/t = 1 and 1

p/t ,
1
q/t > 1. Thus, by a second application of Hölder’s inequality

we obtain

w3(x)
∣∣f ∗ g∆1/q(x)

∣∣
≤ C

(∫
G

w1(y)p|f(y)|p dLλ(y)

)1/p

·
(∫

G

w2(y−1x)q|g(y−1x)|q∆(y−1x) dLλ(y)

)1/q

= C‖f‖p,w1
‖g‖q,w2

for λ-almost every x ∈ G. Hence

‖f ∗ g‖∞,w3 ≤ C‖f‖p,w1‖g‖q,w2 .

Case V. Suppose that p, q, r < ∞, wherefrom t < ∞, as well. By Hölder’s
inequality and (4.4) we have∣∣∣f ∗ g∆

1
q−

1
r (x)

∣∣∣
≤

∫
G

w1(y)|f(y)|w2(y−1x)|g(y−1x)|∆
1
q−

1
r (y−1x)

w1(y)w2(y−1x)
dLλ(y)

≤
(∫

G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q−

t
r (y−1x) dLλ(y)

)1/t

·
(∫

G

1

w1(y)t′w2(y−1x)t′
dLλ(y)

)1/t′

=

(∫
G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q−

t
r (y−1x) dLλ(y)

)1/t

·
(
w−t

′

1 ∗ w−t
′

2 (x)
)1/t′

≤
(∫

G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q−

t
r (y−1x) dLλ(y)

)1/t

·
(
Ct

′
w−t

′

3 (x)
)1/t′

Therefore

(4.5)

w3(x)
∣∣∣f ∗ g∆

1
q−

1
r (x)

∣∣∣
≤ C

(∫
G

w1(y)t|f(y)|tw2(y−1x)t|g(y−1x)|t∆
t
q−

t
r (y−1x) dLλ(y)

)1/t
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Define

F (x) :=
(
w1(x)|f(x)|

)t
and G(x) :=

(
w2(x)|g(x)|

)t
.

Using this notation, we can express (4.5) as follows :

w3(x)
∣∣∣f ∗ g∆

1
q−

1
r (x)

∣∣∣ ≤ C
(
F ∗G∆

t
q−

t
r

)
(x)1/t,

so

(4.6)
∥∥∥f ∗ g∆

1
q−

1
r

∥∥∥
r,w3

=
∥∥∥w3

(
f ∗ g∆

1
q−

1
r

)∥∥∥
r
≤ C

∥∥∥F ∗G∆
t
q−

t
r

∥∥∥1/t
r/t

.

Note that we have p
t ,
q
t ,
r
t ≥ 1 and

1

p/t
+

1

q/t
=

1

r/t
+ 1

Therefore, Theorem 4.1 implies
(4.7)∥∥∥F ∗G∆

1
q/t
− 1
r/t

∥∥∥
r/t
≤ ‖F‖p/t‖G‖q/t = ‖w1f‖tp‖w2g‖tq = ‖f‖tp,w1

‖g‖tq,w2
.

Putting together (4.6) and (4.7) we obtain∥∥∥f ∗ g∆
1
q−

1
r

∥∥∥
r,w3

≤ C‖f‖p,w1
‖g‖q,w2

.

Note that under the stated assumptions on p, q, r, t, these five cases are
exhaustive since (4.3) implies that we cannot have simultaneously p = q = ∞
and r <∞; similarly, when p =∞, then q and r cannot be both finite; nor can
p and r be both finite when q =∞.

5. Concluding remarks and questions

Both Theorem 4.1 and Theorem 4.4 provide sufficient conditions for
(w1, w2, w3) to belong to YG(p, q, r). A natural question to ask is whether
these sufficient conditions are necessary.

One can easily show (using the Dirac measure at x) that if G is discrete,
then (w1, w2, w3) ∈ YG(p, q, r) only if condition (4.2) holds true. This means,
in the case where G is discrete and p, q, r ∈ [1,∞] satisfy (4.1), that condition
(4.2) completely characterizes the class YG(p, q, r). If, instead, p, q, r satisfy
(4.3), then condition (4.2) is not sufficient; for an easy explicit counterexample,
consider G := Z, w1 = w2 = w3 ≡ 1, p = q = r = t = 2, α ∈

(
1
2 ,

3
4

)
, and the

function f : Z→ C defined by

f(k) :=

{
kα, k > 0,

0, k ≤ 0.
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Clearly, f ∈ `2(Z) ∼= `2(Z, w1) ∼= `2(Z, w2). On the other hand,

(f ∗ f)(n) =

n∑
k=1

k−α(n− k)−α ≥
n∑
k=1

k−αn−α ≥ Cαn
1−αn−α

for all n ≥ 1, where Cα > 0 is a constant independent of n. As α < 3
4 , it follows

that f ∗ f 6∈ `2(Z) ∼= `2(Z, w3).
As for condition (4.4), one can readily verify that it completely characterizes

the class YG(p, q, r) if p = q = r = t = ∞. Under the additional assumption
that G is compact, we can even relax the assumptions on p, q, r, t and simply
require that r =∞ and (4.3) holds true.

Remark that the case where p, q, r, t < ∞ satisfy (4.3) stands out. Indeed,
in [23, 26], Kuznetsova provided various counterexamples showing that the
condition (4.2) is not necessary for the the conclusion of Theorem 4.4 to hold
true. Nevertheless, the following question remains open.

Question 5.1. If 1 < p, q, r, t <∞ satisfy the hypothesis of Theorem 4.4, does
there exist a countable Abelian group G and weight functions w1, w2, w3 on G
such that (w1, w2, w3) ∈ YG(p, q, r) but (4.4) fails ?
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Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 188, 8-10 (1979), 451–
471.
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[14] Gröchenig, K. Weight functions in time-frequency analysis. In Pseudo-
differential operators: partial differential equations and time-frequency analy-
sis, vol. 52 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2007,
pp. 343–366.
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