A homological approach to \oplus -supplemented modules

Sepideh Khajvand Sany¹, Ali Reza Moniri Hamzekolaee²³ and Yahya Talebi⁴

Abstract. \oplus -supplemented modules as a famous generalization of lifting (projective supplemented) modules were widely studied in the last decades. In this paper, we peruse a homological approach to \oplus -supplemented modules. Let R be a ring, M a right R-module and $S = End_R(M)$. We say that M is endomorphism \oplus -supplemented (briefly, E- \oplus -supplemented) provided that for every $f \in S$, there exists a direct summand D of M such that Imf + D = M and $Imf \cap D \ll D$. We investigate some general properties of E- \oplus -supplemented modules and try to consider their relation with some known classes of modules such as dual Rickart modules, H-supplemented modules and \oplus -supplemented modules.

AMS Mathematics Subject Classification (2010): 16D10; 16D40; 16D80 Key words and phrases: \oplus -supplemented module; E-H-supplemented module; small submodule

1. Introduction

Recently, after the introduction of dual Rickart modules in [10], generalizations of dual Rickart modules seem to be interesting for researchers in Ring and Module Theory. In particular, making a connection between the ring of endomorphisms of a module M and the concepts of lifting modules, H-supplemented modules and others may help us describe their structures better. Let M be a module. Then M is called *dual Rickart*, if the image in M of any single element of S is generated by an idempotent of S, equivalently, for any $f \in S$, Imf is a direct summand of M. In [1], the author studied a new generalization of both lifting and dual Rickart modules namely \mathcal{I} -lifting modules. A module M is called \mathcal{I} -lifting provided that for every nonzero endomorphism f of M, there exists a direct summand D of M such that Imf/D is small in M/D (recall that a submodule N of a module M is small in M, denoted by $N \ll M$ in case N+K=M implies K=M). In [1], some properties of \mathcal{I} -lifting modules were investigated.

 $^{^1 \}rm Department$ of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, e-mail: khajvandsany.s@gmail.com

 $^{^2 \}rm Department$ of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, e-mail: a.monirih@umz.ac.ir

³Corresponding author

 $^{^4\}mathrm{Department}$ of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, e-mail: talebi@umz.ac.ir

In [12], the authors introduced a new proper generalization of both \mathcal{I} -lifting modules and H-supplemented modules via homomorphisms which they called E-H-supplemented modules. A module M is called E-H-supplemented provided that for every $f \in End_R(M)$, there is a direct summand D of M such that Imf + X = M if and only if D + X = M for every $X \leq M$. E-H-supplemented modules from various points of view were studied in [12]. The authors investigated the relation of E-H-supplemented modules with the famous classes of modules such as dual Rickart modules, \mathcal{I} -lifting modules and H-supplemented modules.

Inspired by [1] and [12], it is natural to define \oplus -supplemented modules using homomorphisms. So in this work we call a module M endomorphism \oplus supplemented in the case when for every nonzero endomorphism f of M, there is a direct summand D of M such that M = Imf + D and $Imf \cap D \ll D$. In Section 2, we investigate some properties of endomorphism \oplus -supplemented modules. We observe that endomorphism \oplus -supplemented modules generalize the dual Rickart modules. This relation makes the endomorphism \oplus -supplemented property more impressive. We also present conditions under which these two concepts coincide.

In what follows, J(R) denotes the Jacobson radical of a ring R and Rad(M) stands for the radical of a module M. Also, S denotes the endomorphism ring $End_R(M)$ of an R-module M. For any unexplained terminologies we refer to [2, 11, 17].

2. E- \oplus -supplemented modules

We shall list some basic definitions which we use freely throughout the paper.

Definition 2.1. Let M be a module. Then M is called:

(1) lifting in the case when for every submodule N of M there is a direct summand D of M contained in N such that $N/D \ll M/D$.

(2) *H*-supplemented provided that for every submodule *N* of *M* there exists a direct summand *D* of *M* such that M = N + X if and only if M = D + Xfor every submodule *X* of *M*.

(3) \oplus -supplemented if for every submodule N of M there exists a direct summand K of M such that M = N + K and $N \cap K \ll K$.

(4) dual Rickart in the case when for every endomorphism f of M, Imf is a direct summand of M.

(5) \mathcal{I} -lifting if the image of any endomorphism f of M contains a direct summand D of M such that $Imf/D \ll M/D$.

(6) *E*-*H*-supplemented provided that for every $\varphi \in End_R(M)$, there exists a direct summand *D* of *M* such that $M = Im\varphi + X$ if and only if M = D + Xfor every submodule *X* of *M*.

By the definitions we have the following hierarchies:

$$\begin{array}{ccc} lifting & \Rightarrow & H-supplemented \\ & \downarrow & & \downarrow \\ \mathcal{I}-lifting & \Rightarrow & E-H-supplemented \end{array}$$

We start this section by introducing a new class of modules which is a proper generalization of \oplus -supplemented modules.

Definition 2.2. A module M is called *endomorphism* \oplus -supplemented $(E \oplus supplemented$, for short) in the case when for every $f \in S$, there exists a direct summand D of M such that Imf + D = M and $Imf \cap D \ll D$.

First of all, we prefer to emphasize that the class of E- \oplus -supplemented modules contains properly the class of (\oplus -)supplemented modules.

Example 2.3. (1) It is obvious that every dual Rickart module is E- \oplus -supplemented. So, every injective module over a right hereditary ring is E- \oplus -supplemented by [10, Theorem 2.29]. Consider the \mathbb{Z} -module $M = \mathbb{Q}^{(I)}$ where I is an arbitrary index set. Since M is injective, M is E- \oplus -supplemented. Also, it is well-known that \mathbb{Q} is not (\oplus -)supplemented, hence M is not \oplus -supplemented. Generally, every non-supplemented injective module over a right hereditary ring is E- \oplus -supplemented but not \oplus -supplemented.

(2) Let M be any \mathbb{Z} -module and p be an arbitrary prime number. Set $M(p) = \{m \in M \mid \exists n \in \mathbb{N}, p^n m = 0\}$. Zöchinger in [18] proved that M is supplemented if and only if M is a torsion \mathbb{Z} -module and for any prime number p, the \mathbb{Z} -module M(p) is a direct sum of an Artinian module and a module with bounded order. If M is an infinite direct sum of copies of the Prüfer p-group $\mathbb{Z}_{p^{\infty}}$, then M is not supplemented while M is a direct sum of supplemented modules. Note that M is injective and M is dual Rickart by [10, Theorem 2.29]. Hence M is E- \oplus -supplemented.

The following provides a rich source of E- \oplus -supplemented modules.

Proposition 2.4. Every E-H-supplemented module is E- \oplus -supplemented.

Proof. Let M be an E-H-supplemented module and $f \in S$. Then there is a decomposition $M = K \oplus K'$ such that Imf + X = M if and only if K + X = M for every $X \leq M$. Now, Imf + K' = M. We shall verify that $Imf \cap K' \ll K'$. To prove the last assertion, suppose that $(Imf \cap K') + L = K'$ for some submodule of K'. Then Imf + L = Imf + K' = M. M being an E-H-supplemented module implies K + L = M. Hence, by the modular law we conclude that L = K', as required.

Recall from [3] that a module M is called *epi-retractable* in the case when every submodule of M is a homomorphic image of M. It is not hard to check that for an epi-retractable module, the two concepts, H-supplemented and E-H-supplemented, coincide. The same assertion holds for the concepts of \oplus supplemented and E- \oplus -supplemented. Similarly, an epi-retractable module Mis lifting if and only if M is \mathcal{I} -lifting.

We show that the class of E- \oplus -supplemented modules contains properly the class of \mathcal{I} -lifting modules.

Example 2.5. (1) Let p be a prime number. Consider the \mathbb{Z} -module $M_1 = \mathbb{Z}_{p^3}$. Then by [7, Example 4.6], the \mathbb{Z} -module $M = M_1 \oplus \frac{M_1}{(p)} \oplus \frac{(p)}{(p^2)} \oplus \frac{(p^2)}{(0)}$ is H-supplemented, so that M is E-H-supplemented. Since $\mathbb{Z}_p \oplus \mathbb{Z}_{p^3}$ is isomorphic to a direct summand of M, M is not lifting from [6, Corollary 2]. M being a finitely generated \mathbb{Z} -module implies that M is epi-retractable by [3, Example 2.4]. Hence M is not \mathcal{I} -lifting. On the other hand, M is E- \oplus -supplemented as well as E-H-supplemented (Proposition 2.4).

(2) (see [14, Example 2.3]) Let I and J be two ideals of a commutative local ring R with maximal ideal m such that $I \subset J \subseteq m$ and $mJ \nsubseteq I$ (e.g., R is a DVR with maximal ideal m, $I = m^4$ and $J = m^2$). We consider the module $M = R/I \times R/J$. From [14, Proposition 2.1] it follows that M is H-supplemented and so M is E- \oplus -supplemented, as M is E-H-supplemented. In other words, from [14, Example 2.3], M is not lifting. M being an epiretractable module implies M is not \mathcal{I} -lifting.

The converse of Proposition 2.4 does not hold in general.

Example 2.6. Let R be a discrete valuation ring and let I_1, \ldots, I_n be some ideals of R. Consider the R-module $M \cong R/I_1 \times \cdots \times R/I_n$. By [11, Lemma A.4], M is \oplus -supplemented and hence M is E- \oplus -supplemented. If $I_1 \subseteq \cdots \subseteq I_n \subset R$, then M is H-supplemented by [14, Proposition 2.1]. Otherwise, i.e., if the condition $I_1 \subseteq \cdots \subseteq I_n \subset R$ does not hold, M is not H-supplemented. Note also that M is an epi-retractable R-module by [3, Example 2.4(3)]. It means that in this case M is not E-H-supplemented.

We provide an assumption under which the \oplus -supplemented and E- \oplus -supplemented properties coincide.

Recall from [12, Definition 2.19] that a module M is *s*-retractable in the case when for every submodule N of M, there exists a nonzero homomorphism $f: M \to N$ such that $N/Imf \ll M/Imf$. By definition, every *s*-retractable module is retractable. In other words, every retractable hollow module is *s*-retractable. In particular, every local ring R over itself is an *s*-retractable module.

Proposition 2.7. In each of the following cases a module M is \oplus -supplemented if and only if M is E- \oplus -supplemented.

- (1) M is epi-retractable.
- (2) M is s-retractable.

Proof. (1) It is clear by definitions.

(2) The necessity is clear. For the converse, let N be a submodule of M. M being an s-retractable module implies that there is an endomorphism f of M with $Imf \subseteq N$ and $N/Imf \ll M/Imf$. Since M is E- \oplus -supplemented, there is a direct summand K of M such that Imf + K = M and $Imf \cap K \ll K$. Now, N + K = M. It remains to show that $N \cap K \ll K$. To verify this assertion, suppose that $(N \cap K) + L = K$ for some submodule L of K. Then N + L = N + K = M. It follows that N/Imf + (L + Imf)/Imf = M/Imf, which implies that L + Imf = M as $N/Imf \ll M/Imf$. By modularity, we

conclude that $L + (Imf \cap K) = K$. Hence L = K, since K is a supplement of Imf in M. This completes the proof. \Box

We next show that for a projective s-retractable module, the concepts of H-supplemented, E-H-supplemented, \oplus -supplemented and E- \oplus -supplemented module coincide.

Corollary 2.8. Let M be an s-retractable module. Consider the following:

(1) M is H-supplemented;

(2) M is E-H-supplemented;

(3) M is E- \oplus -supplemented;

(4) M is \oplus -supplemented.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4)$. They are equivalent in the case when M is self-projective.

Proof. (1) \Leftrightarrow (2) By [12, Proposition 2.20].

 $(2) \Rightarrow (3)$ It follows from Proposition 2.4.

(3) \Leftrightarrow (4) Follows by Proposition 2.7.

 $(4) \Rightarrow (1)$ This follows from the assumption that M is self-projective and [9, Proposition 2.6].

Let M be a module. Then by [15], M is called (non)cosingular if $(\overline{Z}(M) = M)$ $\overline{Z}(M) = 0$, in which $\overline{Z}(M) = \cap \{Kerf \mid f : M \to L, L \in \mathcal{U}\}$ where \mathcal{U} denotes the class of all small right R-modules. If we consider $M = R_R$, then $\overline{Z}(R_R)$ is a two-sided ideal of R.

Proposition 2.9. Let R be a commutative ring and M a torsion-free E- \oplus -supplemented R-module with $\overline{Z}(M) \neq M$. Then $\overline{Z}(R) \ll R$. In addition, if J(R) = 0, then R is a cosingular ring.

Proof. Let $0 \neq a \in \overline{Z}(R)$. Consider the homomorphism $f: M \to M$ defined by f(m) = ma for every $m \in M$. Then Imf = Ma. Now by the assumption there is a direct summand K of M such that Ma+K = M and $Ma \cap K \ll K$. As K is a summand of M, we have $Ma \cap K = Ka \ll K$ (note that if M is noncosingular, then Ma is noncosingular as a homomorphic image of M. Therefore, Ka as a direct summand of Ma must be both cosingular and noncosingular, which implies that a = 0). So that $Ka \subseteq Rad(M)$. From [16, Proposition 2.1], $Rad(M)\overline{Z}(R) = 0$. It follows that $Ka^2 = 0$. Since M is torsion-free, we have $a^2 = 0$. Therefore, $a \in J(R)$. This implies that $\overline{Z}(R) \subseteq J(R)$. This completes the proof.

In [8], the module M is called \mathcal{T} -noncosingular if for any $f \in S$, Imf is small in M implies f = 0. Note that a noncosingular module is clearly \mathcal{T} -noncosingular. Recall that a module M satisfies D_2 in the case when $M/N \cong D$ with D a direct summand of M, implies N is a direct summand of M.

Proposition 2.10. Let R be a commutative ring and M an E- \oplus -supplemented module. If M is \mathcal{T} -noncosingular, then for each $0 \neq a \in R$, aM is a direct summand of M. If, in addition, M satisfies D_2 then for each $a \in R$, $r_M(a)$ is a direct summand of M.

Proof. Let $0 \neq a \in R$. Consider the homomorphism $f: M \to M$ with f(m) = am. Then there is a direct summand K of M such that aM + K = M and $aM \cap K = aK \ll K$. Now the image of $jo\pi of: M \to M$ is aK, which is a small submodule of M. As M is \mathcal{T} -noncosingular, aK = 0. Hence, $aM \oplus K = M$. Now, suppose that M satisfies D_2 . Since $M/r_M(a) \cong aM$ and aM is a direct summand of M, then $r_M(a)$ is a direct summand of M.

Proposition 2.11. Let M be a module with Rad(M) = 0. Then the following are equivalent:

- (1) M is E-H-supplemented;
- (2) M is E- \oplus -supplemented;
- (3) M is dual Rickart;
- (4) M is \mathcal{I} -lifting.

Proof. $(1) \Rightarrow (2)$ It follows from Proposition 2.4.

 $(2) \Rightarrow (3)$ Let M be E- \oplus -supplemented and $f \in S$. Then Imf + K = Mand $Imf \cap K \ll K$, where K is a direct summand of M. Then $Imf \cap K = 0$, as Rad(M) = 0, which shows that M is dual Rickart.

 \square

 $(3) \Rightarrow (4)$ and $(4) \Rightarrow (1)$ are straightforward.

Let R be a ring. Then R is called a right V-ring in the case when every simple right R-module is injective. It is well-known that R is a right V-ring if and only if Rad(M) = 0 for every right R-module M. It follows from [15, Proposition 2.5 and Corollary 2.6] that all modules over a right V-ring R are noncosingular.

Corollary 2.12. The following statements are equivalent for a module M over a V-ring R:

- (1) M is E-H-supplemented;
- (2) M is E- \oplus -supplemented;
- (3) M is dual Rickart;
- (4) M is \mathcal{I} -lifting.

It follows from [8, Corollary 2.7] that a ring R is right (left) \mathcal{T} -noncosingular if and only if J(R) = 0. Now from this fact and Propositions 2.10 and 2.11 we have the following:

Corollary 2.13. Let R be a commutative ring with J(R) = 0. Then the following conditions are equivalent:

- (1) R is E-H-supplemented;
- (2) R is E- \oplus -supplemented;
- (3) R is a von Neumann regular ring.

Proof. (1) \Leftrightarrow (2) Follows from Proposition 2.11. (1) \Leftrightarrow (3) It is proved in [12, Corollary 2.5].

Let M be a module. Following [1], M is called \mathcal{I} -supplemented provided that the image of every endomorphism of M has a supplement in M, i.e. for every $f \in S$, there is a submodule N of M such that M = Imf + N and $Imf \cap N \ll N$. Also, the module M is called *amply* \mathcal{I} -supplemented in the case that whenever M = Imf + B, then B contains a supplement of Imf in M. By definitions, every amply \mathcal{I} -supplemented module is \mathcal{I} -supplemented. It is clear by definitions that every $E \oplus$ -supplemented module is \mathcal{I} -supplemented. The following is an analogue of [5, Lemma 1.1] for $E \oplus$ -supplemented (the techniques of the proof are the same as [5, Lemma 1.1]).

Proposition 2.14. Let R be a commutative prime ring and M a torsionfree injective R-module. Then M is \mathcal{I} -supplemented if and only if M is E- \oplus supplemented.

Proof. Let M be \mathcal{I} -supplemented and $f \in S$. Suppose that L is a supplement of Imf in M. Therefore, Imf + L = M and $Imf \cap L \ll L$. Let c be a nonzero element of R. Since M is injective, it will be divisible by [4, Proposition 6.12]. Hence M = Mc = (Imf)c + Lc which is equal to Imf + Lc since (Imf)c = f(M)c = f(Mc) = f(M) = Imf. It follows that M = Imf + Lc. By the modular law, $L = Imf \cap L + Lc$. As $Imf \cap L \ll L$, we conclude that L = Lc. Now, the fact that L = Lc holds for every nonzero element cof R implies that L is a divisible R-module by [4, Theorem 6.4]. Hence by [4, Proposition 6.12], L is an injective R-module and therefore L is a direct summand of M. This completes the proof. The converse is obvious.

The proof of the following which consider the relation of \mathcal{I} -supplemented modules with dual Rickart modules and amply \mathcal{I} -supplemented modules follows from [11, Proposition 4.39] and the definitions.

Theorem 2.15. Let M be a projective module. Consider the following:

- (1) M is dual Rickart;
- (2) M is \mathcal{I} -supplemented;
- (3) M is amply \mathcal{I} -supplemented.

Then $(1) \Rightarrow (2) \Leftrightarrow (3)$. They are equivalent if, for each $f \in S$, Imf is a supplement submodule in M.

Proof. $(1) \Rightarrow (2)$ It is clear by definitions.

 $(2) \Rightarrow (1)$ With a similar strategy to the second part of the proof of [11, Proposition 4.39], it can be shown that for every $f \in S$, Imf is a direct summand of M.

 $(2) \Rightarrow (3)$ Follows from the proof of [17, 41.15].

(3) \Rightarrow (2) By definitions, every amply \mathcal{I} -supplemented module is \mathcal{I} -supplemented. \Box

Corollary 2.16. Let M be a projective module such that Imf is a supplement in M for every $f \in S$. Then the following statements are equivalent:

(1) M is dual Rickart;

(2) M is \mathcal{I} -supplemented;

(3) M is E- \oplus -supplemented.

Proposition 2.17. Let M be an indecomposable module. Then the following are equivalent:

- (1) M is E- \oplus -supplemented;
- (2) For every $f \in S$, $Imf \ll M$ or f is an epimorphism;
- (3) M is E-H-supplemented.

Proof. (1) \Rightarrow (2) Let $f \in S$ be nonzero. By (1), there is a direct summand K of M, such that M = Imf + K and $K \cap Imf \ll K$. M being indecomposable implies that K = 0 or K = M. If K = M, then Imf is a small submodule of M, otherwise f is epimorphism.

 $(2) \Rightarrow (3)$ Suppose that f is an arbitrary endomorphism of M. If $Imf \ll M$, pick the summand D := 0 and if Imf = M pick the summand D := M. Now for any $X \leq M$, Imf + X = M if and only if D + X = M.

 $(3) \Rightarrow (1)$ It follows from Proposition 2.4.

Recall that a module M is coHopfian if every monomorphism $f \in S$ is an isomorphism. Following the last result, if M is indecomposable, E- \oplus supplemented and \mathcal{T} -noncosingular, then M is coHopfian.

In [13], a module is called duo (resp. $weak \ duo$) if every submodule (resp. direct summand) of M is fully invariant in M.

Theorem 2.18. For a module M consider the following:

(1) M is dual Rickart;

(2) M is E- \oplus -supplemented and \mathcal{T} -noncosingular.

Then $(1) \Rightarrow (2)$. The converse holds if M is a weak duo module.

Proof. (1) \Rightarrow (2) It is clear by definitions.

(2) \Rightarrow (1) Let M be \mathcal{T} -noncosingular and E- \oplus -supplemented. Suppose that $f \in End(M)$. Now there is a direct summand K of M such that Imf + K = M and $Imf \cap K \ll K$. Set $K \oplus K' = M$. Consider the R-homomorphism $\pi_K : M \to K$ such that $\pi_K(x + x') = x$ for every $x \in K$ and $x' \in K'$. Now $jo\pi_K of : M \to M$ is a homomorphism where $j : K \to M$ is the inclusion. So $jo\pi_K of(M) = Imf \cap K \ll M$ as M is a weak duo module. Since M is \mathcal{T} -noncosingular, $jo\pi_K of = 0$. It follows that $Imf \cap K = 0$. This completes the proof.

Proposition 2.19. Let M be an E- \oplus -supplemented module and N a direct summand of M. Suppose that for every direct summand D of M with M = N + D, $N \cap D$ is also a direct summand of M. Then N is E- \oplus -supplemented.

Proof. Let $f: N \to N$ be an endomorphism of N. Set $N \oplus N' = M$ for a submodule N' of M. It is clear that $g = jof \sigma \pi_N \colon M \to M$ is an endomorphism of M where $\pi_N \colon M \to N$ is projection of M onto N and $j: N \to M$ is the inclusion. It is not hard to see that Img = Imf. M being E- \oplus -supplemented implies that there is a direct summand D of M such that Imf + D = M and $Imf \cap D \ll D$. By the assumption $N \cap D$ is a direct summand of M. Set $(N \cap D) \oplus K = M$, for a summand K of M. Consider an arbitrary d in D. Then d = n+k for some $n \in (N \cap D)$ and $k \in K$. However, k = d-n implies $k \in D$, so

 $k \in K \cap D$. Hence $D = (N \cap D) \oplus (K \cap D)$. Now, $Imf + (N \cap D) + (K \cap D) = M$. The modular law implies that $Imf + (N \cap D) = N$. It also clear that $Imf \cap (N \cap D) \ll (N \cap D)$ since $N \cap D$ is a direct summand of D.

A module M has D_3 if for any direct summands M_1 and M_2 of M with $M = M_1 + M_2$, $M_1 \cap M_2$ is a direct summand of M. A module M is said to have the SIP (Summand Intersection Property) if the intersection of two direct summands of M is again a direct summand of M.

Theorem 2.20. Let M be an E- \oplus -supplemented module with D_3 or having the SIP. Then every direct summand of M is E- \oplus -supplemented. In particular, every direct summand of an E- \oplus -supplemented weak duo module inherits the property.

Proof. It follows immediately from Proposition 2.19. The last statement follows from [13, Corollary 2.2] and the first part. \Box

Condition D_3 is not necessary in Theorem 2.20, as the following example shows.

Example 2.21. ([14, Example 3.9]) Let I and J be two ideals of a commutative local ring R with maximal ideal m such that $I \subset J \subseteq m$ (e.g. R is a discrete valuation ring with maximal ideal m, $I = m^3$ and $J = m^2$). We consider the module $M = \frac{R}{I} \times \frac{R}{J}$ and its submodules $A = R(\bar{1}, \bar{0}), B = R(\bar{1}, \bar{1})$ and $C = R(\bar{0}, \bar{1})$. Note that $M = A + B = A \oplus C = B \oplus C$. On the other hand, we have $A \cap B = J/I \times 0$. Hence $A \cap B \subseteq Rad(M)$ and $A \cap B \ll M$. Therefore $0 \neq A \cap B$ is not a direct summand of M. So M does not satisfy D_3 . Moreover, every direct summand of M is H-supplemented by [14, Proposition 2.1] and therefore is \oplus -supplemented. Hence every direct summand of M is E- \oplus -supplemented.

We next show that under an assumption, a finite direct sum of E- \oplus -supplemented modules is E- \oplus -supplemented.

Proposition 2.22. Let $M = M_1 \oplus M_2$ be a weak duo module. Then M_1 and M_2 are $E \oplus -supplemented$ if and only if M is $E \oplus -supplemented$.

Proof. Let $f \in End_R(M)$. Consider the *R*-homomorphisms $t_i : M_i \to M$ and $\pi_i : M \to M_i$ for i = 1, 2. Then $g_i = \pi_i f t_i \in End_R(M_i)$ for i = 1, 2. As M_i for i = 1, 2 is *E*-⊕-supplemented, there exists a direct summand K_i of M_i , for i = 1, 2, such that $Img_i + K_i = M_i$ and $Img_i \cap K_i \ll K_i$. Set $K_i \oplus K'_i = M_i$, where $K'_i \leq M_i$ and $K = K_1 \oplus K_2$. Since M_i is a fully invariant submodule of *M* for i = 1, 2, then $f(M_i) \subseteq M_i$, which implies that $Imf = Img_1 \oplus Img_2$. Now, $Imf + K = (Img_1 + K_1) + (Img_2 + K_2) = M_1 + M_2 = M$. Next, we show that $Imf \cap K = (Img_1 \cap K_1) + (Img_2 \cap k_2)$. Suppose that $x \in [Imf \cap K = (Img_1 \oplus Img_2) \cap (K_1 \oplus K_2)]$. Then $x = g(m_1) + g(m_2) = k_1 + k_2$ for $m_1 \in M_1$, $m_2 \in M_2$, $k_1 \in K_1$ and $k_2 \in K_2$. It follows that $g_1(m_1) = k_1$ and $g(m_2) = k_2$, which implies that $x = g_1(m_1) + g_2(m_2) \in (Img_1 \cap K_1) + (Img_2 \cap K_2)$. The other inclusion is obvious. Therefore, $Imf \cap K = (Img_1 \cap K_1) + (Img_2 \cap K_2) \ll M_1 \in M_1$.

 $K_1 + K_2 = K$. Hence Imf has a supplement in M. This completes the proof. The converse holds by Theorem 2.20.

In the next results, we try to present some assumptions under which every E- \oplus -supplemented module is \mathcal{I} -lifting.

Theorem 2.23. Let M be an E- \oplus -supplemented module. In each of the following cases M is \mathcal{I} -lifting.

- (1) M is projective.
- (2) M is weak duo.

Proof. (1) Let M be a projective E- \oplus -supplemented module and $f: M \to M$ be an endomorphism of M. Then there is a direct summand D of M such that Imf + D = M and $Imf \cap D \ll D$. Set $D \oplus D' = M$. Since M is projective, there exists a decomposition $T \oplus D = M$ by [11, Lemma 4.47], where $T \subseteq Imf$. We show that $Imf/T \ll M/T$. To prove that, let Imf/T + L/T = M/T, where L is a submodule of M containing T. Then Imf + L = M. Since Tis contained in Imf, modularity implies that $T \oplus (D \cap Imf) = Imf$. Now $T + (D \cap Imf) + L = M$ which, combined with $D \cap Imf \ll M$, implies that T + L = M. Hence L = M, as $T \subseteq L$.

(2) Let M be a weak duo E- \oplus -supplemented module and $f \in S$. Then there exists a direct summand D of M such that Imf + D = M and $Imf \cap D \ll D$. Suppose that $D \oplus D' = M$ such that $D' \leq M$. Then $Imf = f(D) \oplus f(D')$. It follows that f(D) + f(D') + D = M. Since M is weak duo, $f(D) \subseteq D$. So, $f(D') \oplus D = M$. By the modular law we conclude that f(D') = D', which implies that $D' \subseteq Imf$. Now, since $Imf \cap D \ll D$, we conclude that $Imf/D' \ll M/D'$. Therefore, M is \mathcal{I} -lifting.

We end this manuscript by presenting a new characterization of f-semiperfect rings in terms of the E- \oplus -supplemented rings.

Recall from [17] that a ring R is f-semiperfect in the case when for every finitely generated right ideal I of R, the R-module R/I has a projective cover.

Corollary 2.24. Let R be a ring. Then the following are equivalent:

- (1) R_R is E- \oplus -supplemented;
- (2) R_R is \mathcal{I} -lifting;
- (3) Every cyclic right ideal of R lies above a direct summand of R_R ;
- (4) R is f-semiperfect.

Proof. $(1) \Rightarrow (2)$ It follows from Theorem 2.23.

 $(2) \Rightarrow (3)$ This follows from the fact that the image of every endomorphism of R_R is a cyclic right ideal of R.

 $(3) \Rightarrow (1)$ Let $g: R \to R$ be an endomorphism. Then Img is a cyclic right ideal of R which lies above a direct summand of R_R by assumption. The rest is clear.

 $(2) \Leftrightarrow (4)$ It is proved in [1, Theorem 2.7].

The following example introduces an E- \oplus -supplemented ring which is not semiperfect.

Example 2.25. Let $Q = \prod_{i=1}^{\infty} F_i$, where $F_i = \mathbb{Z}_2$ for all $i \in \mathbb{N}$ and R denotes the subring of Q generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_Q . It is well-known that R is a von Neumann regular V-ring and hence J(R) = 0. Therefore, R can not be semiperfect while R is \mathcal{I} -lifting and hence $E \oplus$ -supplemented.

We shall provide a condition under which the two concepts, E- \oplus -supplemented and semiperfect, are equivalent for rings.

Proposition 2.26. Let R be a principal ideal domain. Then R_R is E- \oplus -supplemented if and only if R is semiperfect.

Proof. Clear.

References

- AMOUZEGAR KALATI, T. A generalization of lifting modules. Ukrainian Math. J. 66, 11 (2015), 1654–1664. Reprint of Ukraïn. Mat. Zh. 66 (2014), no. 11, 1477–1484.
- [2] CLARK, J., LOMP, C., VANAJA, N., AND WISBAUER, R. Lifting Modules. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
- [3] GHORBANI, A., AND VEDADI, M. R. Epi-retractable modules and some applications. Bull. Iranian Math. Soc. 35, 1 (2009), 155–166, 283.
- [4] GOODEARL, K. R., AND WARFIELD, JR., R. B. An introduction to Noncommutative Noetherian Rings, vol. 16 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1989.
- [5] HARMANCI, A., KESKIN, D., AND SMITH, P. F. On ⊕-supplemented modules. Acta Math. Hungar. 83, 1-2 (1999), 161–169.
- [6] KESKIN, D. Finite direct sums of (D1)-modules. Turkish J. Math. 22, 1 (1998), 85–91.
- [7] KESKIN, D., NEMATOLLAHI, M. J., AND TALEBI, Y. On *H*-supplemented modules. *Algebra Colloq.* 18, Special Issue 1 (2011), 915–924.
- [8] KESKIN, D., AND TRIBAK, R. On *T*-noncosingular modules. Bull. Aust. Math. Soc. 80, 3 (2009), 462–471.
- [9] KOŞAN, M. T., AND KESKIN, D. H-supplemented duo modules. J. Algebra Appl. 6, 6 (2007), 965–971.
- [10] LEE, G., RIZVI, S. T., AND ROMAN, C. S. Dual Rickart modules. Comm. Algebra 39, 11 (2011), 4036–4058.
- [11] MOHAMED, S. H., AND MÜLLER, B. J. Continuous and Discrete Modules, vol. 147 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.
- [12] MONIRI HAMZEKOLAEE, A. R., HARMANCI, A., TALEBI, Y., AND UNGOR, B. A new approach to *H*-supplemented modules via homomorphisms. *Turkish J. Math.* 42, 4 (2018), 1941–1955.
- [13] OZCAN, A. C., HARMANCI, A., AND SMITH, P. F. Duo modules. *Glasg. Math. J.* 48, 3 (2006), 533–545.

- [14] TALEBI, Y., TRIBAK, R., AND MONIRI HAMZEKOLAEE, A. R. On *H*-cofinitely supplemented modules. *Bull. Iranian Math. Soc.* 39, 2 (2013), 325–345.
- [15] TALEBI, Y., AND VANAJA, N. The torsion theory cogenerated by *M*-small modules. *Comm. Algebra 30*, 3 (2002), 1449–1460.
- [16] TRIBAK, R., AND KESKIN, D. On \overline{Z}_M -semiperfect modules. *East-West J. Math.* 8, 2 (2006), 195–205.
- [17] WISBAUER, R. Foundations of Module and Ring Theory, german ed., vol. 3 of Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
- [18] ZÖSCHINGER, H. Komplementierte Moduln über Dedekindringen. J. Algebra 29 (1974), 42–56.

Received by the editors November 9, 2019 First published online May 17, 2020