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A homological approach to &-supplemented modules

Sepideh Khajvand SanyEl,
Ali Reza Moniri Hamzekolaeﬂ and Yahya Talebﬂ

Abstract. P-supplemented modules as a famous generalization of
lifting (projective supplemented) modules were widely studied in the
last decades. In this paper, we peruse a homological approach to &-
supplemented modules. Let R be a ring, M a right R-module and
S = Endr(M). We say that M is endomorphism @-supplemented
(briefly, F-®-supplemented) provided that for every f € S, there exists a
direct summand D of M such that Imf+D = M and ImfNnD < D. We
investigate some general properties of E-@®-supplemented modules and
try to consider their relation with some known classes of modules such
as dual Rickart modules, H-supplemented modules and @-supplemented
modules.
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1. Introduction

Recently, after the introduction of dual Rickart modules in [I0], generaliza-
tions of dual Rickart modules seem to be interesting for researchers in Ring and
Module Theory. In particular, making a connection between the ring of endo-
morphisms of a module M and the concepts of lifting modules, H-supplemented
modules and others may help us describe their structures better. Let M be a
module. Then M is called dual Rickart, if the image in M of any single element
of S is generated by an idempotent of S, equivalently, for any f € S, Imf is a
direct summand of M. In [I], the author studied a new generalization of both
lifting and dual Rickart modules namely Z-lifting modules. A module M is
called Z-lifting provided that for every nonzero endomorphism f of M, there
exists a direct summand D of M such that Imf/D is small in M/D (recall
that a submodule NV of a module M is small in M, denoted by N < M in case
N+ K = M implies K = M). In [1], some properties of Z-lifting modules were
investigated.
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In [12], the authors introduced a new proper generalization of both Z-lifting
modules and H-supplemented modules via homomorphisms which they called
E-H-supplemented modules. A module M is called E-H-supplemented pro-
vided that for every f € Endg(M), there is a direct summand D of M such
that Imf + X = M if and only if D + X = M for every X < M. E-H-
supplemented modules from various points of view were studied in [12]. The
authors investigated the relation of F-H-supplemented modules with the fa-
mous classes of modules such as dual Rickart modules, Z-lifting modules and
H-supplemented modules.

Inspired by [I] and [12], it is natural to define @-supplemented modules
using homomorphisms. So in this work we call a module M endomorphism &-
supplemented in the case when for every nonzero endomorphism f of M, there is
a direct summand D of M such that M = Imf+ D and ImfND < D. In Sec-
tion 2, we investigate some properties of endomorphism @-supplemented mod-
ules. We observe that endomorphism @-supplemented modules generalize the
dual Rickart modules. This relation makes the endomorphism @-supplemented
property more impressive. We also present conditions under which these two
concepts coincide.

In what follows, J(R) denotes the Jacobson radical of a ring R and Rad(M)
stands for the radical of a module M. Also, S denotes the endomorphism ring
Endr(M) of an R-module M. For any unexplained terminologies we refer to
2, 11}, 7).

2. FE-®-supplemented modules

We shall list some basic definitions which we use freely throughout the
paper.

Definition 2.1. Let M be a module. Then M is called:

(1) lifting in the case when for every submodule N of M there is a direct
summand D of M contained in N such that N/D < M/D.

(2) H-supplemented provided that for every submodule N of M there exists
a direct summand D of M such that M = N+ X ifand only if M = D+ X
for every submodule X of M.

(3) @-supplemented if for every submodule N of M there exists a direct
summand K of M such that M = N+ K and NN K < K.

(4) dual Rickart in the case when for every endomorphism f of M, Imf is
a direct summand of M.

(5) Z-lifting if the image of any endomorphism f of M contains a direct
summand D of M such that Imf/D <« M/D.

(6) E-H-supplemented provided that for every ¢ € Endr(M), there exists
a direct summand D of M such that M = Imyp+ X ifand only if M = D+ X
for every submodule X of M.

By the definitions we have the following hierarchies:
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lifting = H — supplemented = & — supplemented

I 4
T —lifting = FE — H — supplemented

We start this section by introducing a new class of modules which is a
proper generalization of @-supplemented modules.

Definition 2.2. A module M is called endomorphism @®-supplemented (E-®-
supplemented, for short) in the case when for every f € S, there exists a direct
summand D of M such that Imf+ D =M and ImfND < D.

First of all, we prefer to emphasize that the class of E-@®-supplemented
modules contains properly the class of (®-)supplemented modules.

Example 2.3. (1) It is obvious that every dual Rickart module is E-®-sup-
plemented. So, every injective module over a right hereditary ring is E-®-
supplemented by [10, Theorem 2.29]. Consider the Z-module M = QWY where
I is an arbitrary index set. Since M is injective, M is E-@-supplemented.
Also, it is well-known that Q is not (@-)supplemented, hence M is not @-
supplemented. Generally, every non-supplemented injective module over a right
hereditary ring is F-®-supplemented but not @-supplemented.

(2) Let M be any Z-module and p be an arbitrary prime number. Set
M(p) = {m € M | 3n € N,p"m = 0}. Zochinger in [I8] proved that M is
supplemented if and only if M is a torsion Z-module and for any prime number
p, the Z-module M (p) is a direct sum of an Artinian module and a module with
bounded order. If M is an infinite direct sum of copies of the Priifer p-group
Zpe<, then M is not supplemented while M is a direct sum of supplemented
modules. Note that M is injective and M is dual Rickart by [10, Theorem
2.29]. Hence M is E-®-supplemented.

The following provides a rich source of E-@®-supplemented modules.
Proposition 2.4. Fvery E-H-supplemented module is E-®-supplemented.

Proof. Let M be an E-H-supplemented module and f € S. Then there is a
decomposition M = K ® K’ such that Imf+X = M ifand only if K+ X = M
for every X < M. Now, Imf + K’ = M. We shall verify that ImfNK’' <« K'.
To prove the last assertion, suppose that (Imf N K') + L = K’ for some
submodule of K’. Then Imf + L = Imf + K' = M. M being an E-H-
supplemented module implies K + L = M. Hence, by the modular law we
conclude that L = K’, as required. O

Recall from [3] that a module M is called epi-retractable in the case when
every submodule of M is a homomorphic image of M. It is not hard to check
that for an epi-retractable module, the two concepts, H-supplemented and
FE-H-supplemented, coincide. The same assertion holds for the concepts of ®-
supplemented and E-®-supplemented. Similarly, an epi-retractable module M
is lifting if and only if M is Z-lifting.

We show that the class of E-@®-supplemented modules contains properly the
class of Z-lifting modules.
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Example 2.5. (1) Let p be a prime number. Consider the Z-module M; = Z,s.

Then by [, Example 4.6], the Z-module M = M, & M ¢ B g &) is 1.
supplemented, so that M is E-H-supplemented. Since Zj, @® Zys is isomorphic
to a direct summand of M, M is not lifting from [6l Corollary 2]. M being a
finitely generated Z-module implies that M is epi-retractable by [3, Example
2.4]. Hence M is not Z-lifting. On the other hand, M is E-@-supplemented as
well as E-H-supplemented (Proposition 2.4).

(2) (see [14, Example 2.3]) Let I and J be two ideals of a commutative
local ring R with maximal ideal m such that I € J C m and mJ ¢ I (e.g.,
R is a DV R with maximal ideal m, I = m* and J = m?). We consider the
module M = R/I x R/J. From [I4, Proposition 2.1] it follows that M is
H-supplemented and so M is E-®-supplemented, as M is E-H-supplemented.
In other words, from [I4] Example 2.3], M is not lifting. M being an epi-
retractable module implies M is not Z-lifting.

The converse of Proposition 2.4 does not hold in general.

Example 2.6. Let R be a discrete valuation ring and let I1,..., I, be some
ideals of R. Consider the R-module M = R/I; x --- x R/I,. By [1I, Lemma
A.4], M is @-supplemented and hence M is E-@®-supplemented. If I; C --- C
I, C R, then M is H-supplemented by [I4] Proposition 2.1]. Otherwise, i.e.,
if the condition Iy C --- C I, C R does not hold, M is not H-supplemented.
Note also that M is an epi-retractable R-module by [3, Example 2.4(3)]. It
means that in this case M is not E-H-supplemented.

We provide an assumption under which the @-supplemented and E-&-sup-
plemented properties coincide.

Recall from [I2, Definition 2.19] that a module M is s-retractable in the
case when for every submodule N of M, there exists a nonzero homomorphism
f: M — N such that N/Imf <« M/Imf. By definition, every s-retractable
module is retractable. In other words, every retractable hollow module is s-
retractable. In particular, every local ring R over itself is an s-retractable
module.

Proposition 2.7. In each of the following cases a module M is &-supplemented
if and only if M is E-®-supplemented.

(1) M is epi-retractable.

(2) M is s-retractable.

Proof. (1) It is clear by definitions.

(2) The necessity is clear. For the converse, let N be a submodule of M. M
being an s-retractable module implies that there is an endomorphism f of M
with Imf C N and N/Imf < M/Imf. Since M is E-®-supplemented, there
is a direct summand K of M such that Imf + K = M and Imf N K < K.
Now, N + K = M. It remains to show that N N K <« K. To verify this
assertion, suppose that (N N K) + L = K for some submodule L of K. Then
N+ L=N+ K =M. Tt follows that N/Imf + (L + Imf)/Imf = M/Imf,
which implies that L + Imf = M as N/Imf < M/Imf. By modularity, we
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conclude that L + (Imf NK) = K. Hence L = K, since K is a supplement of
Imf in M. This completes the proof. O

We next show that for a projective s-retractable module, the concepts of
H-supplemented, E-H-supplemented, ®-supplemented and E-®-supplemented
module coincide.

Corollary 2.8. Let M be an s-retractable module. Consider the following:
(1) M is H-supplemented;
(2) M is E-H-supplemented;
(3) M is E-@-supplemented;
(4) M is ®-supplemented.
Then (1) & (2) = (3) & (4). They are equivalent in the case when M is
self-projective.

Proof. (1) < (2) By [12] Proposition 2.20].

(2) = (3) It follows from Proposition 2.4.

(3) & (4) Follows by Proposition

(4) = (1) This follows from the assumption that M is self-projective and
[9, Proposition 2.6]. O

Let M be a module. Then by [I5], M is called (non)cosingular if (Z(M) =
M) Z(M) = 0, in which Z(M) = "{Kerf | f: M — L,L € U} where U
denotes the class of all small right R-modules. If we consider M = Rp, then
Z(RpR) is a two-sided ideal of R.

Proposition 2.9. Let R be a commutative ring and M a torsion-free E-©-
supplemented R-module with Z(M) # M. Then Z(R) < R. In addition, if
J(R) =0, then R is a cosingular ring.

Proof. Let 0 # a € Z(R). Consider the homomorphism f : M — M defined by
f(m) = ma for every m € M. Then Imf = Ma. Now by the assumption there
is a direct summand K of M such that Ma+ K = M and MaNK < K. As K is
a summand of M, we have MaNK = Ka < K (note that if M is noncosingular,
then Ma is noncosingular as a homomorphic image of M. Therefore, Ka as
a direct summand of Ma must be both cosingular and noncosingular, which
implies that @ = 0). So that Ka C Rad(M). From [16, Proposition 2.1],
Rad(M)Z(R) = 0. It follows that Ka? = 0. Since M is torsion-free, we have
a? = 0. Therefore, a € J(R). This implies that Z(R) C J(R). This completes
the proof. O

In [8], the module M is called T-noncosingular if for any f € S, Imf
is small in M implies f = 0. Note that a noncosingular module is clearly 7T-
noncosingular. Recall that a module M satisfies D5 in the case when M /N = D
with D a direct summand of M, implies N is a direct summand of M.

Proposition 2.10. Let R be a commutative ring and M an E-®-supplemented
module. If M is T-noncosingular, then for each 0 # a € R, aM is a direct
summand of M. If, in addition, M satisfies Dy then for each a € R, rar(a) is
a direct summand of M.
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Proof. Let 0 # a € R. Consider the homomorphism f : M — M with f(m) =
am. Then there is a direct summand K of M such that aM + K = M and
aMNK = aK < K. Now the image of jorof : M — M is aK, which is a small
submodule of M. As M is T-noncosingular, a K = 0. Hence, aM & K = M.
Now, suppose that M satisfies Dy. Since M/rpr(a) =2 aM and aM is a direct
summand of M, then rjs(a) is a direct summand of M. O

Proposition 2.11. Let M be a module with Rad(M) = 0. Then the following
are equivalent:

(1) M is E-H-supplemented;

(2) M is E-®-supplemented;

(3) M is dual Rickart;

(4) M is Z-lifting.

Proof. (1) = (2) It follows from Proposition 2.4.

(2) = (3) Let M be E-@-supplemented and f € S. Then Imf + K =M
and Imf N K < K, where K is a direct summand of M. Then Imf NK = 0,
as Rad(M) = 0, which shows that M is dual Rickart.

(3) = (4) and (4) = (1) are straightforward. O

Let R be a ring. Then R is called a right V-ring in the case when every
simple right R-module is injective. It is well-known that R is a right V-ring
if and only if Rad(M) = 0 for every right R-module M. It follows from [I5]
Proposition 2.5 and Corollary 2.6] that all modules over a right V-ring R are
noncosingular.

Corollary 2.12. The following statements are equivalent for a module M over
aV-ring R:

(1) M is E-H-supplemented;

(2) M is E-®-supplemented;

(3) M is dual Rickart;

(4) M is Z-lifting.

It follows from [8, Corollary 2.7] that a ring R is right (left) 7T-noncosingular
if and only if J(R) = 0. Now from this fact and Propositions 2.10 and 2.11 we
have the following:

Corollary 2.13. Let R be a commutative ring with J(R) = 0. Then the
following conditions are equivalent:

(1) R is E-H-supplemented;

(2) R is E-®-supplemented;

(3) R is a von Neumann regular ring.

Proof. (1) < (2) Follows from Proposition [2.11]
(1) & (3) It is proved in [12, Corollary 2.5]. O

Let M be a module. Following [I], M is called Z-supplemented provided
that the image of every endomorphism of M has a supplement in M, i.e. for
every f € S, there is a submodule N of M such that M = Imf + N and



A homological approach to @-supplemented modules 137

Imf NN < N. Also, the module M is called amply Z-supplemented in the
case that whenever M = I'mf+ B, then B contains a supplement of Imf in M.
By definitions, every amply Z-supplemented module is Z-supplemented. It is
clear by definitions that every FE-@®-supplemented module is Z-supplemented.
The following is an analogue of [5, Lemma 1.1] for E-@®-supplemented (the
techniques of the proof are the same as [0, Lemma 1.1]).

Proposition 2.14. Let R be a commutative prime ring and M a torsion-
free injective R-module. Then M is L-supplemented if and only if M is E-®-
supplemented.

Proof. Let M be Z-supplemented and f € S. Suppose that L is a supplement
of Imf in M. Therefore, Imf + L = M and Imf N L < L. Let ¢ be a non-
zero element of R. Since M is injective, it will be divisible by [4, Proposition
6.12]. Hence M = Mc = (Imf)c + Lc which is equal to Imf + Lc since
Imf)e= f(M)c = f(Mc) = f(M) = Imf. It follows that M = Imf + Le.
By the modular law, L = Imf N L+ Le. As Imf N L < L, we conclude
that L = Lc. Now, the fact that L = Lc holds for every nonzero element c
of R implies that L is a divisible R-module by [4, Theorem 6.4]. Hence by
[4, Proposition 6.12], L is an injective R-module and therefore L is a direct
summand of M. This completes the proof. The converse is obvious. O

The proof of the following which consider the relation of Z-supplemented
modules with dual Rickart modules and amply Z-supplemented modules follows
from [l Proposition 4.39] and the definitions.

Theorem 2.15. Let M be a projective module. Consider the following:

(1) M is dual Rickart;

(2) M is Z-supplemented;

(3) M is amply Z-supplemented.

Then (1) = (2) < (3). They are equivalent if, for each f € S, Imf is a
supplement submodule in M.

Proof. (1) = (2) It is clear by definitions.

(2) = (1) With a similar strategy to the second part of the proof of [I1]
Proposition 4.39], it can be shown that for every f € S, Imf is a direct
summand of M.

(2) = (3) Follows from the proof of [I7) 41.15].

(3) = (2) By definitions, every amply Z-supplemented module is Z-supple-
mented. O

Corollary 2.16. Let M be a projective module such that Imf is a supplement
in M for every f € S. Then the following statements are equivalent:

(1) M is dual Rickart;

(2) M is Z-supplemented;

(3) M is E-®-supplemented.
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Proposition 2.17. Let M be an indecomposable module. Then the following
are equivalent:

(1) M is E-®-supplemented;

(2) For every f € S, Imf < M or f is an epimorphism;

(3) M is E-H-supplemented.

Proof. (1) = (2) Let f € S be nonzero. By (1), there is a direct summand K
of M, such that M = Imf + K and KN Imf < K. M being indecomposable
implies that K =0or K = M. If K = M, then Imf is a small submodule of
M, otherwise f is epimorphism.

(2) = (3) Suppose that f is an arbitrary endomorphism of M. If Imf < M,
pick the summand D := 0 and if Imf = M pick the summand D := M. Now
forany X < M, Imf+ X =M if and only if D+ X = M.

(3) = (1) It follows from Proposition 2.4. O

Recall that a module M is coHopfian if every monomorphism f € S is
an isomorphism. Following the last result, if M is indecomposable, FE-@®-
supplemented and 7T -noncosingular, then M is coHopfian.

In [13], a module is called duo (resp. weak duo) if every submodule (resp.
direct summand) of M is fully invariant in M.

Theorem 2.18. For a module M consider the following:
(1) M is dual Rickart;
(2) M is E-®-supplemented and T -noncosingular.
Then (1) = (2). The converse holds if M is a weak duo module.

Proof (1) = (2) It is clear by definitions.

(2) = (1) Let M be T-noncosingular and E-®-supplemented. Suppose that
f € End(M). Now there is a direct summand K of M such that Imf+ K = M
and Imf N K <« K. Set K@® K' = M. Consider the R-homomorphism
7k : M — K such that mx(x + 2') = x for every x € K and 2’ € K'. Now
jorxof : M — M is a homomorphism where j : K — M is the inclusion.
So jorgof(M) = ImfNK < M as M is a weak duo module. Since M is
T-noncosingular, jorgof = 0. It follows that Imf N K = 0. This completes
the proof. O

Proposition 2.19. Let M be an E-®-supplemented module and N a direct
summand of M. Suppose that for every direct summand D of M with M =
N+ D, NN D is also a direct summand of M. Then N is E-®-supplemented.

Proof. Let f: N — N be an endomorphism of N. Set N ® N’ = M for a
submodule N’ of M. It is clear that g = joforn: M — M is an endomorphism
of M where wny: M — N is projection of M onto N and j: N — M is the
inclusion. It is not hard to see that Img = Imf. M being E-®-supplemented
implies that there is a direct summand D of M such that Imf + D = M and
ImfND < D. By the assumption N N D is a direct summand of M. Set
(NND)® K = M, for asummand K of M. Consider an arbitrary d in D. Then
d = n+k for somen € (NND) and k € K. However, k = d—n implies k € D, so
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ke KND. Hence D = (NND)®(KND). Now, Imf+(NND)+(KND)=
M. The modular law implies that Imf + (N N D) = N. It also clear that
ImfN(NND) < (NND)since NND is a direct summand of D. O

A module M has Dj if for any direct summands M; and My of M with
M = My + My, My N My is a direct summand of M. A module M is said to
have the SIP (Summand Intersection Property) if the intersection of two direct
summands of M is again a direct summand of M.

Theorem 2.20. Let M be an E-®-supplemented module with D3 or having
the SIP. Then every direct summand of M is E-®-supplemented. In particular,
every direct summand of an E-®-supplemented weak duo module inherits the
property.

Proof. 1t follows immediately from Proposition[2.19] The last statement follows
from [I3 Corollary 2.2] and the first part. O

Condition D3 is not necessary in Theorem [2.20] as the following example
shows.

Example 2.21. ([I4, Example 3.9]) Let I and J be two ideals of a commutative
local ring R with maximal ideal m such that I C J C m (e.g. R is a discrete
valuation ring with maximal ideal m, I = m?® and J = m?). We consider
the module M = £ x & and its submodules A = R(1,0), B = R(1,1) and
C = R(0,1). Note that M = A+ B = A® C = B® C. On the other
hand, we have AN B = J/I x 0. Hence AN B C Rad(M) and ANB < M.
Therefore 0 # AN B is not a direct summand of M. So M does not satisfy Ds.
Moreover, every direct summand of M is H-supplemented by [14, Proposition
2.1] and therefore is @-supplemented. Hence every direct summand of M is
FE-®-supplemented.

We next show that under an assumption, a finite direct sum of E-&®-
supplemented modules is E-@®-supplemented.

Proposition 2.22. Let M = M, ® My be a weak duo module. Then My and
Ms are E-®-supplemented if and only if M is E-®-supplemented.

Proof. Let f € Endr(M). Consider the R-homomorphisms ¢, : M; — M and
mi M — M; for i = 1,2. Then g; = m; ft; € Endr(M;) for i = 1,2. As M;
for 1 = 1,2 is E-®-supplemented, there exists a direct summand K; of M;, for
i = 1,2, such that I'mg; + K; = M; and I'mg, N K; < K;. Set K; & K| = M,,
where K] < M; and K = K; ® K». Since M; is a fully invariant submodule
of M for i = 1,2, then f(M;) C M;, which implies that Imf = I'mg; ® Imgs.
Now, Imf+K = (Img1 + K1)+ (Imga+ Ko) = My + My = M. Next, we show
that Imf N K = (Img; N K1) + (Imgz N k3). Suppose that z € [ImfNK =
(Img1 ® Imgs) N (K1 ® K3)]. Then x = g(my) + g(mse) = ki + ko for my € My,
mg € My, k1 € Kq and ko € Ka. It follows that g1(m1) = k1 and g(ms) = ks,
which implies that © = g1(m1) + g2(me) € (Img1 N K1) + (Imgs N K3). The
other inclusion is obvious. Therefore, ImfNK = (ImgiNK1)+(ImgaNKs) <
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K, + Ky = K. Hence Imf has a supplement in M. This completes the proof.
The converse holds by Theorem |2.20] O

In the next results, we try to present some assumptions under which every
E-@®-supplemented module is Z-lifting.

Theorem 2.23. Let M be an E-®-supplemented module. In each of the fol-
lowing cases M is Z-lifting.

(1) M is projective.

(2) M is weak duo.

Proof. (1) Let M be a projective E-@®-supplemented module and f: M — M
be an endomorphism of M. Then there is a direct summand D of M such that
Imf+D=Mand ImfND < D. Set D& D' = M. Since M is projective,
there exists a decomposition T@ D = M by [11, Lemma 4.47], where T' C Imf.
We show that Imf/T < M/T. To prove that, let Imf/T + L/T = M/T,
where L is a submodule of M containing 7. Then Imf + L = M. Since T
is contained in I'mjf, modularity implies that T & (D N Imf) = Imf. Now
T+ (DNImf)+ L = M which, combined with D N Imf < M, implies that
T+ L=M. Hence L=M, asT C L.

(2) Let M be a weak duo E-@®-supplemented module and f € S. Then there
exists a direct summand D of M such that Imf+ D = M and ImfND < D.
Suppose that D & D’ = M such that D’ < M. Then Imf = f(D) & f(D’).
It follows that f(D)+ f(D')+ D = M. Since M is weak duo, f(D) C D.
So, f(D')® D = M. By the modular law we conclude that f(D’) = D',
which implies that D’ C Imf. Now, since Imf N D < D, we conclude that
Imf/D" < M/D’'. Therefore, M is Z-lifting. O

We end this manuscript by presenting a new characterization of f-semiperfect
rings in terms of the E-@-supplemented rings.

Recall from [I7] that a ring R is f-semiperfect in the case when for every
finitely generated right ideal I of R, the R-module R/I has a projective cover.

Corollary 2.24. Let R be a ring. Then the following are equivalent:
(1) Rg is E-®-supplemented;
(2) Rp is I-lifting;
(3) Every cyclic right ideal of R lies above a direct summand of Rg;
(4) R is f-semiperfect.

Proof. (1) = (2) It follows from Theorem [2.23]

(2) = (3) This follows from the fact that the image of every endomorphism
of Rp is a cyclic right ideal of R.

(3) = (1) Let g: R — R be an endomorphism. Then Img is a cyclic right
ideal of R which lies above a direct summand of Rr by assumption. The rest

is clear.
(2) & (4) It is proved in [IL Theorem 2.7]. O

The following example introduces an E-®-supplemented ring which is not
semiperfect.
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Example 2.25. Let Q = [[;°, F;, where F; = Z, for all i € N and R denotes
the subring of @ generated by ;- F; and 1¢. It is well-known that R is a
von Neumann regular V-ring and hence J(R) = 0. Therefore, R can not be
semiperfect while R is Z-lifting and hence E-@®-supplemented.

We shall provide a condition under which the two concepts, E-@-supple-
mented and semiperfect, are equivalent for rings.

Proposition 2.26. Let R be a principal ideal domain. Then Rp is FE-®-
supplemented if and only if R is semiperfect.

Proof. Clear. O
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