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A homological approach to ⊕-supplemented modules
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Abstract. ⊕-supplemented modules as a famous generalization of
lifting (projective supplemented) modules were widely studied in the
last decades. In this paper, we peruse a homological approach to ⊕-
supplemented modules. Let R be a ring, M a right R-module and
S = EndR(M). We say that M is endomorphism ⊕-supplemented
(briefly, E-⊕-supplemented) provided that for every f ∈ S, there exists a
direct summand D of M such that Imf+D = M and Imf∩D � D. We
investigate some general properties of E-⊕-supplemented modules and
try to consider their relation with some known classes of modules such
as dual Rickart modules, H-supplemented modules and ⊕-supplemented
modules.
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1. Introduction

Recently, after the introduction of dual Rickart modules in [10], generaliza-
tions of dual Rickart modules seem to be interesting for researchers in Ring and
Module Theory. In particular, making a connection between the ring of endo-
morphisms of a module M and the concepts of lifting modules, H-supplemented
modules and others may help us describe their structures better. Let M be a
module. Then M is called dual Rickart, if the image in M of any single element
of S is generated by an idempotent of S, equivalently, for any f ∈ S, Imf is a
direct summand of M . In [1], the author studied a new generalization of both
lifting and dual Rickart modules namely I-lifting modules. A module M is
called I-lifting provided that for every nonzero endomorphism f of M , there
exists a direct summand D of M such that Imf/D is small in M/D (recall
that a submodule N of a module M is small in M , denoted by N �M in case
N +K = M implies K = M). In [1], some properties of I-lifting modules were
investigated.
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In [12], the authors introduced a new proper generalization of both I-lifting
modules and H-supplemented modules via homomorphisms which they called
E-H-supplemented modules. A module M is called E-H-supplemented pro-
vided that for every f ∈ EndR(M), there is a direct summand D of M such
that Imf + X = M if and only if D + X = M for every X ≤ M . E-H-
supplemented modules from various points of view were studied in [12]. The
authors investigated the relation of E-H-supplemented modules with the fa-
mous classes of modules such as dual Rickart modules, I-lifting modules and
H-supplemented modules.

Inspired by [1] and [12], it is natural to define ⊕-supplemented modules
using homomorphisms. So in this work we call a module M endomorphism ⊕-
supplemented in the case when for every nonzero endomorphism f of M , there is
a direct summand D of M such that M = Imf+D and Imf ∩D � D. In Sec-
tion 2, we investigate some properties of endomorphism ⊕-supplemented mod-
ules. We observe that endomorphism ⊕-supplemented modules generalize the
dual Rickart modules. This relation makes the endomorphism ⊕-supplemented
property more impressive. We also present conditions under which these two
concepts coincide.

In what follows, J(R) denotes the Jacobson radical of a ring R and Rad(M)
stands for the radical of a module M . Also, S denotes the endomorphism ring
EndR(M) of an R-module M . For any unexplained terminologies we refer to
[2, 11, 17].

2. E-⊕-supplemented modules

We shall list some basic definitions which we use freely throughout the
paper.

Definition 2.1. Let M be a module. Then M is called:

(1) lifting in the case when for every submodule N of M there is a direct
summand D of M contained in N such that N/D �M/D.

(2) H-supplemented provided that for every submodule N of M there exists
a direct summand D of M such that M = N + X if and only if M = D + X
for every submodule X of M .

(3) ⊕-supplemented if for every submodule N of M there exists a direct
summand K of M such that M = N +K and N ∩K � K.

(4) dual Rickart in the case when for every endomorphism f of M , Imf is
a direct summand of M .

(5) I-lifting if the image of any endomorphism f of M contains a direct
summand D of M such that Imf/D �M/D.

(6) E-H-supplemented provided that for every ϕ ∈ EndR(M), there exists
a direct summand D of M such that M = Imϕ+X if and only if M = D+X
for every submodule X of M .

By the definitions we have the following hierarchies:
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lifting ⇒ H − supplemented ⇒ ⊕− supplemented
⇓ ⇓

I − lifting ⇒ E −H − supplemented
We start this section by introducing a new class of modules which is a

proper generalization of ⊕-supplemented modules.

Definition 2.2. A module M is called endomorphism ⊕-supplemented (E-⊕-
supplemented, for short) in the case when for every f ∈ S, there exists a direct
summand D of M such that Imf +D = M and Imf ∩D � D.

First of all, we prefer to emphasize that the class of E-⊕-supplemented
modules contains properly the class of (⊕-)supplemented modules.

Example 2.3. (1) It is obvious that every dual Rickart module is E-⊕-sup-
plemented. So, every injective module over a right hereditary ring is E-⊕-
supplemented by [10, Theorem 2.29]. Consider the Z-module M = Q(I) where
I is an arbitrary index set. Since M is injective, M is E-⊕-supplemented.
Also, it is well-known that Q is not (⊕-)supplemented, hence M is not ⊕-
supplemented. Generally, every non-supplemented injective module over a right
hereditary ring is E-⊕-supplemented but not ⊕-supplemented.

(2) Let M be any Z-module and p be an arbitrary prime number. Set
M(p) = {m ∈ M | ∃n ∈ N, pnm = 0}. Zöchinger in [18] proved that M is
supplemented if and only if M is a torsion Z-module and for any prime number
p, the Z-module M(p) is a direct sum of an Artinian module and a module with
bounded order. If M is an infinite direct sum of copies of the Prüfer p-group
Zp∞ , then M is not supplemented while M is a direct sum of supplemented
modules. Note that M is injective and M is dual Rickart by [10, Theorem
2.29]. Hence M is E-⊕-supplemented.

The following provides a rich source of E-⊕-supplemented modules.

Proposition 2.4. Every E-H-supplemented module is E-⊕-supplemented.

Proof. Let M be an E-H-supplemented module and f ∈ S. Then there is a
decomposition M = K⊕K ′ such that Imf+X = M if and only if K+X = M
for every X ≤M . Now, Imf +K ′ = M . We shall verify that Imf ∩K ′ � K ′.
To prove the last assertion, suppose that (Imf ∩ K ′) + L = K ′ for some
submodule of K ′. Then Imf + L = Imf + K ′ = M . M being an E-H-
supplemented module implies K + L = M . Hence, by the modular law we
conclude that L = K ′, as required.

Recall from [3] that a module M is called epi-retractable in the case when
every submodule of M is a homomorphic image of M . It is not hard to check
that for an epi-retractable module, the two concepts, H-supplemented and
E-H-supplemented, coincide. The same assertion holds for the concepts of ⊕-
supplemented and E-⊕-supplemented. Similarly, an epi-retractable module M
is lifting if and only if M is I-lifting.

We show that the class of E-⊕-supplemented modules contains properly the
class of I-lifting modules.
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Example 2.5. (1) Let p be a prime number. Consider the Z-moduleM1 = Zp3 .

Then by [7, Example 4.6], the Z-module M = M1 ⊕ M1

(p) ⊕
(p)
(p2) ⊕

(p2)
(0) is H-

supplemented, so that M is E-H-supplemented. Since Zp ⊕ Zp3 is isomorphic
to a direct summand of M , M is not lifting from [6, Corollary 2]. M being a
finitely generated Z-module implies that M is epi-retractable by [3, Example
2.4]. Hence M is not I-lifting. On the other hand, M is E-⊕-supplemented as
well as E-H-supplemented (Proposition 2.4).

(2) (see [14, Example 2.3]) Let I and J be two ideals of a commutative
local ring R with maximal ideal m such that I ⊂ J ⊆ m and mJ * I (e.g.,
R is a DV R with maximal ideal m, I = m4 and J = m2). We consider the
module M = R/I × R/J . From [14, Proposition 2.1] it follows that M is
H-supplemented and so M is E-⊕-supplemented, as M is E-H-supplemented.
In other words, from [14, Example 2.3], M is not lifting. M being an epi-
retractable module implies M is not I-lifting.

The converse of Proposition 2.4 does not hold in general.

Example 2.6. Let R be a discrete valuation ring and let I1, . . . , In be some
ideals of R. Consider the R-module M ∼= R/I1 × · · · × R/In. By [11, Lemma
A.4], M is ⊕-supplemented and hence M is E-⊕-supplemented. If I1 ⊆ · · · ⊆
In ⊂ R, then M is H-supplemented by [14, Proposition 2.1]. Otherwise, i.e.,
if the condition I1 ⊆ · · · ⊆ In ⊂ R does not hold, M is not H-supplemented.
Note also that M is an epi-retractable R-module by [3, Example 2.4(3)]. It
means that in this case M is not E-H-supplemented.

We provide an assumption under which the ⊕-supplemented and E-⊕-sup-
plemented properties coincide.

Recall from [12, Definition 2.19] that a module M is s-retractable in the
case when for every submodule N of M , there exists a nonzero homomorphism
f : M → N such that N/Imf � M/Imf . By definition, every s-retractable
module is retractable. In other words, every retractable hollow module is s-
retractable. In particular, every local ring R over itself is an s-retractable
module.

Proposition 2.7. In each of the following cases a module M is ⊕-supplemented
if and only if M is E-⊕-supplemented.

(1) M is epi-retractable.
(2) M is s-retractable.

Proof. (1) It is clear by definitions.
(2) The necessity is clear. For the converse, let N be a submodule of M . M

being an s-retractable module implies that there is an endomorphism f of M
with Imf ⊆ N and N/Imf � M/Imf . Since M is E-⊕-supplemented, there
is a direct summand K of M such that Imf + K = M and Imf ∩ K � K.
Now, N + K = M . It remains to show that N ∩ K � K. To verify this
assertion, suppose that (N ∩K) + L = K for some submodule L of K. Then
N + L = N + K = M . It follows that N/Imf + (L + Imf)/Imf = M/Imf ,
which implies that L + Imf = M as N/Imf � M/Imf . By modularity, we
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conclude that L+ (Imf ∩K) = K. Hence L = K, since K is a supplement of
Imf in M . This completes the proof.

We next show that for a projective s-retractable module, the concepts of
H-supplemented, E-H-supplemented, ⊕-supplemented and E-⊕-supplemented
module coincide.

Corollary 2.8. Let M be an s-retractable module. Consider the following:
(1) M is H-supplemented;
(2) M is E-H-supplemented;
(3) M is E-⊕-supplemented;
(4) M is ⊕-supplemented.
Then (1) ⇔ (2) ⇒ (3) ⇔ (4). They are equivalent in the case when M is

self-projective.

Proof. (1)⇔ (2) By [12, Proposition 2.20].
(2)⇒ (3) It follows from Proposition 2.4.
(3)⇔ (4) Follows by Proposition 2.7.
(4) ⇒ (1) This follows from the assumption that M is self-projective and

[9, Proposition 2.6].

Let M be a module. Then by [15], M is called (non)cosingular if (Z(M) =
M) Z(M) = 0, in which Z(M) = ∩{Kerf | f : M → L,L ∈ U} where U
denotes the class of all small right R-modules. If we consider M = RR, then
Z(RR) is a two-sided ideal of R.

Proposition 2.9. Let R be a commutative ring and M a torsion-free E-⊕-
supplemented R-module with Z(M) 6= M . Then Z(R) � R. In addition, if
J(R) = 0, then R is a cosingular ring.

Proof. Let 0 6= a ∈ Z(R). Consider the homomorphism f : M →M defined by
f(m) = ma for every m ∈M . Then Imf = Ma. Now by the assumption there
is a direct summand K of M such that Ma+K = M and Ma∩K � K. As K is
a summand of M , we have Ma∩K = Ka� K (note that if M is noncosingular,
then Ma is noncosingular as a homomorphic image of M . Therefore, Ka as
a direct summand of Ma must be both cosingular and noncosingular, which
implies that a = 0). So that Ka ⊆ Rad(M). From [16, Proposition 2.1],
Rad(M)Z(R) = 0. It follows that Ka2 = 0. Since M is torsion-free, we have
a2 = 0. Therefore, a ∈ J(R). This implies that Z(R) ⊆ J(R). This completes
the proof.

In [8], the module M is called T -noncosingular if for any f ∈ S, Imf
is small in M implies f = 0. Note that a noncosingular module is clearly T -
noncosingular. Recall that a module M satisfies D2 in the case when M/N ∼= D
with D a direct summand of M , implies N is a direct summand of M .

Proposition 2.10. Let R be a commutative ring and M an E-⊕-supplemented
module. If M is T -noncosingular, then for each 0 6= a ∈ R, aM is a direct
summand of M . If, in addition, M satisfies D2 then for each a ∈ R, rM (a) is
a direct summand of M .
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Proof. Let 0 6= a ∈ R. Consider the homomorphism f : M →M with f(m) =
am. Then there is a direct summand K of M such that aM + K = M and
aM∩K = aK � K. Now the image of joπof : M →M is aK, which is a small
submodule of M . As M is T -noncosingular, aK = 0. Hence, aM ⊕K = M .
Now, suppose that M satisfies D2. Since M/rM (a) ∼= aM and aM is a direct
summand of M , then rM (a) is a direct summand of M .

Proposition 2.11. Let M be a module with Rad(M) = 0. Then the following
are equivalent:

(1) M is E-H-supplemented;
(2) M is E-⊕-supplemented;
(3) M is dual Rickart;
(4) M is I-lifting.

Proof. (1)⇒ (2) It follows from Proposition 2.4.
(2) ⇒ (3) Let M be E-⊕-supplemented and f ∈ S. Then Imf + K = M

and Imf ∩K � K, where K is a direct summand of M . Then Imf ∩K = 0,
as Rad(M) = 0, which shows that M is dual Rickart.

(3)⇒ (4) and (4)⇒ (1) are straightforward.

Let R be a ring. Then R is called a right V -ring in the case when every
simple right R-module is injective. It is well-known that R is a right V -ring
if and only if Rad(M) = 0 for every right R-module M . It follows from [15,
Proposition 2.5 and Corollary 2.6] that all modules over a right V -ring R are
noncosingular.

Corollary 2.12. The following statements are equivalent for a module M over
a V -ring R:

(1) M is E-H-supplemented;
(2) M is E-⊕-supplemented;
(3) M is dual Rickart;
(4) M is I-lifting.

It follows from [8, Corollary 2.7] that a ring R is right (left) T -noncosingular
if and only if J(R) = 0. Now from this fact and Propositions 2.10 and 2.11 we
have the following:

Corollary 2.13. Let R be a commutative ring with J(R) = 0. Then the
following conditions are equivalent:

(1) R is E-H-supplemented;
(2) R is E-⊕-supplemented;
(3) R is a von Neumann regular ring.

Proof. (1)⇔ (2) Follows from Proposition 2.11.
(1)⇔ (3) It is proved in [12, Corollary 2.5].

Let M be a module. Following [1], M is called I-supplemented provided
that the image of every endomorphism of M has a supplement in M , i.e. for
every f ∈ S, there is a submodule N of M such that M = Imf + N and
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Imf ∩ N � N . Also, the module M is called amply I-supplemented in the
case that whenever M = Imf+B, then B contains a supplement of Imf in M .
By definitions, every amply I-supplemented module is I-supplemented. It is
clear by definitions that every E-⊕-supplemented module is I-supplemented.
The following is an analogue of [5, Lemma 1.1] for E-⊕-supplemented (the
techniques of the proof are the same as [5, Lemma 1.1]).

Proposition 2.14. Let R be a commutative prime ring and M a torsion-
free injective R-module. Then M is I-supplemented if and only if M is E-⊕-
supplemented.

Proof. Let M be I-supplemented and f ∈ S. Suppose that L is a supplement
of Imf in M . Therefore, Imf + L = M and Imf ∩ L � L. Let c be a non-
zero element of R. Since M is injective, it will be divisible by [4, Proposition
6.12]. Hence M = Mc = (Imf)c + Lc which is equal to Imf + Lc since
(Imf)c = f(M)c = f(Mc) = f(M) = Imf . It follows that M = Imf + Lc.
By the modular law, L = Imf ∩ L + Lc. As Imf ∩ L � L, we conclude
that L = Lc. Now, the fact that L = Lc holds for every nonzero element c
of R implies that L is a divisible R-module by [4, Theorem 6.4]. Hence by
[4, Proposition 6.12], L is an injective R-module and therefore L is a direct
summand of M . This completes the proof. The converse is obvious.

The proof of the following which consider the relation of I-supplemented
modules with dual Rickart modules and amply I-supplemented modules follows
from [11, Proposition 4.39] and the definitions.

Theorem 2.15. Let M be a projective module. Consider the following:

(1) M is dual Rickart;

(2) M is I-supplemented;

(3) M is amply I-supplemented.

Then (1) ⇒ (2) ⇔ (3). They are equivalent if, for each f ∈ S, Imf is a
supplement submodule in M .

Proof. (1)⇒ (2) It is clear by definitions.

(2) ⇒ (1) With a similar strategy to the second part of the proof of [11,
Proposition 4.39], it can be shown that for every f ∈ S, Imf is a direct
summand of M .

(2)⇒ (3) Follows from the proof of [17, 41.15].

(3)⇒ (2) By definitions, every amply I-supplemented module is I-supple-
mented.

Corollary 2.16. Let M be a projective module such that Imf is a supplement
in M for every f ∈ S. Then the following statements are equivalent:

(1) M is dual Rickart;

(2) M is I-supplemented;

(3) M is E-⊕-supplemented.
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Proposition 2.17. Let M be an indecomposable module. Then the following
are equivalent:

(1) M is E-⊕-supplemented;
(2) For every f ∈ S, Imf �M or f is an epimorphism;
(3) M is E-H-supplemented.

Proof. (1) ⇒ (2) Let f ∈ S be nonzero. By (1), there is a direct summand K
of M , such that M = Imf +K and K ∩ Imf � K. M being indecomposable
implies that K = 0 or K = M . If K = M , then Imf is a small submodule of
M , otherwise f is epimorphism.

(2)⇒ (3) Suppose that f is an arbitrary endomorphism ofM . If Imf �M ,
pick the summand D := 0 and if Imf = M pick the summand D := M . Now
for any X ≤M , Imf +X = M if and only if D +X = M .

(3)⇒ (1) It follows from Proposition 2.4.

Recall that a module M is coHopfian if every monomorphism f ∈ S is
an isomorphism. Following the last result, if M is indecomposable, E-⊕-
supplemented and T -noncosingular, then M is coHopfian.

In [13], a module is called duo (resp. weak duo) if every submodule (resp.
direct summand) of M is fully invariant in M .

Theorem 2.18. For a module M consider the following:
(1) M is dual Rickart;
(2) M is E-⊕-supplemented and T -noncosingular.
Then (1)⇒ (2). The converse holds if M is a weak duo module.

Proof. (1) ⇒ (2) It is clear by definitions.
(2) ⇒ (1) Let M be T -noncosingular and E-⊕-supplemented. Suppose that
f ∈ End(M). Now there is a direct summand K of M such that Imf+K = M
and Imf ∩ K � K. Set K ⊕ K ′ = M . Consider the R-homomorphism
πK : M → K such that πK(x + x′) = x for every x ∈ K and x′ ∈ K ′. Now
joπKof : M → M is a homomorphism where j : K → M is the inclusion.
So joπKof(M) = Imf ∩ K � M as M is a weak duo module. Since M is
T -noncosingular, joπKof = 0. It follows that Imf ∩K = 0. This completes
the proof.

Proposition 2.19. Let M be an E-⊕-supplemented module and N a direct
summand of M . Suppose that for every direct summand D of M with M =
N +D, N ∩D is also a direct summand of M . Then N is E-⊕-supplemented.

Proof. Let f : N → N be an endomorphism of N . Set N ⊕ N ′ = M for a
submodule N ′ of M . It is clear that g = jofoπN : M →M is an endomorphism
of M where πN : M → N is projection of M onto N and j : N → M is the
inclusion. It is not hard to see that Img = Imf . M being E-⊕-supplemented
implies that there is a direct summand D of M such that Imf +D = M and
Imf ∩ D � D. By the assumption N ∩ D is a direct summand of M . Set
(N∩D)⊕K = M , for a summand K of M . Consider an arbitrary d in D. Then
d = n+k for some n ∈ (N∩D) and k ∈ K. However, k = d−n implies k ∈ D, so
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k ∈ K ∩D. Hence D = (N ∩D)⊕ (K ∩D). Now, Imf + (N ∩D) + (K ∩D) =
M . The modular law implies that Imf + (N ∩ D) = N . It also clear that
Imf ∩ (N ∩D)� (N ∩D) since N ∩D is a direct summand of D.

A module M has D3 if for any direct summands M1 and M2 of M with
M = M1 + M2, M1 ∩M2 is a direct summand of M . A module M is said to
have the SIP (Summand Intersection Property) if the intersection of two direct
summands of M is again a direct summand of M .

Theorem 2.20. Let M be an E-⊕-supplemented module with D3 or having
the SIP. Then every direct summand of M is E-⊕-supplemented. In particular,
every direct summand of an E-⊕-supplemented weak duo module inherits the
property.

Proof. It follows immediately from Proposition 2.19. The last statement follows
from [13, Corollary 2.2] and the first part.

Condition D3 is not necessary in Theorem 2.20, as the following example
shows.

Example 2.21. ([14, Example 3.9]) Let I and J be two ideals of a commutative
local ring R with maximal ideal m such that I ⊂ J ⊆ m (e.g. R is a discrete
valuation ring with maximal ideal m, I = m3 and J = m2). We consider
the module M = R

I ×
R
J and its submodules A = R(1̄, 0̄), B = R(1̄, 1̄) and

C = R(0̄, 1̄). Note that M = A + B = A ⊕ C = B ⊕ C. On the other
hand, we have A ∩ B = J/I × 0. Hence A ∩ B ⊆ Rad(M) and A ∩ B � M .
Therefore 0 6= A∩B is not a direct summand of M . So M does not satisfy D3.
Moreover, every direct summand of M is H-supplemented by [14, Proposition
2.1] and therefore is ⊕-supplemented. Hence every direct summand of M is
E-⊕-supplemented.

We next show that under an assumption, a finite direct sum of E-⊕-
supplemented modules is E-⊕-supplemented.

Proposition 2.22. Let M = M1 ⊕M2 be a weak duo module. Then M1 and
M2 are E-⊕-supplemented if and only if M is E-⊕-supplemented.

Proof. Let f ∈ EndR(M). Consider the R-homomorphisms ti : Mi → M and
πi : M → Mi for i = 1, 2. Then gi = πifti ∈ EndR(Mi) for i = 1, 2. As Mi

for i = 1, 2 is E-⊕-supplemented, there exists a direct summand Ki of Mi, for
i = 1, 2, such that Imgi +Ki = Mi and Imgi ∩Ki � Ki. Set Ki ⊕K ′

i = Mi,
where K ′

i ≤ Mi and K = K1 ⊕ K2. Since Mi is a fully invariant submodule
of M for i = 1, 2, then f(Mi) ⊆ Mi, which implies that Imf = Img1 ⊕ Img2.
Now, Imf+K = (Img1 +K1)+(Img2 +K2) = M1 +M2 = M . Next, we show
that Imf ∩K = (Img1 ∩K1) + (Img2 ∩ k2). Suppose that x ∈ [Imf ∩K =
(Img1⊕ Img2)∩ (K1⊕K2)]. Then x = g(m1) + g(m2) = k1 +k2 for m1 ∈M1,
m2 ∈ M2, k1 ∈ K1 and k2 ∈ K2. It follows that g1(m1) = k1 and g(m2) = k2,
which implies that x = g1(m1) + g2(m2) ∈ (Img1 ∩K1) + (Img2 ∩K2). The
other inclusion is obvious. Therefore, Imf∩K = (Img1∩K1)+(Img2∩K2)�
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K1 +K2 = K. Hence Imf has a supplement in M . This completes the proof.
The converse holds by Theorem 2.20.

In the next results, we try to present some assumptions under which every
E-⊕-supplemented module is I-lifting.

Theorem 2.23. Let M be an E-⊕-supplemented module. In each of the fol-
lowing cases M is I-lifting.

(1) M is projective.
(2) M is weak duo.

Proof. (1) Let M be a projective E-⊕-supplemented module and f : M → M
be an endomorphism of M . Then there is a direct summand D of M such that
Imf + D = M and Imf ∩D � D. Set D ⊕D′ = M . Since M is projective,
there exists a decomposition T⊕D = M by [11, Lemma 4.47], where T ⊆ Imf .
We show that Imf/T � M/T . To prove that, let Imf/T + L/T = M/T ,
where L is a submodule of M containing T . Then Imf + L = M . Since T
is contained in Imf , modularity implies that T ⊕ (D ∩ Imf) = Imf . Now
T + (D ∩ Imf) + L = M which, combined with D ∩ Imf � M , implies that
T + L = M . Hence L = M , as T ⊆ L.

(2) Let M be a weak duo E-⊕-supplemented module and f ∈ S. Then there
exists a direct summand D of M such that Imf +D = M and Imf ∩D � D.
Suppose that D ⊕ D′ = M such that D′ ≤ M . Then Imf = f(D) ⊕ f(D′).
It follows that f(D) + f(D′) + D = M . Since M is weak duo, f(D) ⊆ D.
So, f(D′) ⊕ D = M . By the modular law we conclude that f(D′) = D′,
which implies that D′ ⊆ Imf . Now, since Imf ∩ D � D, we conclude that
Imf/D′ �M/D′. Therefore, M is I-lifting.

We end this manuscript by presenting a new characterization of f -semiperfect
rings in terms of the E-⊕-supplemented rings.

Recall from [17] that a ring R is f -semiperfect in the case when for every
finitely generated right ideal I of R, the R-module R/I has a projective cover.

Corollary 2.24. Let R be a ring. Then the following are equivalent:
(1) RR is E-⊕-supplemented;
(2) RR is I-lifting;
(3) Every cyclic right ideal of R lies above a direct summand of RR;
(4) R is f -semiperfect.

Proof. (1)⇒ (2) It follows from Theorem 2.23.
(2)⇒ (3) This follows from the fact that the image of every endomorphism

of RR is a cyclic right ideal of R.
(3) ⇒ (1) Let g : R → R be an endomorphism. Then Img is a cyclic right

ideal of R which lies above a direct summand of RR by assumption. The rest
is clear.

(2)⇔ (4) It is proved in [1, Theorem 2.7].

The following example introduces an E-⊕-supplemented ring which is not
semiperfect.
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Example 2.25. Let Q =
∏∞

i=1 Fi, where Fi = Z2 for all i ∈ N and R denotes
the subring of Q generated by

⊕∞
i=1 Fi and 1Q. It is well-known that R is a

von Neumann regular V -ring and hence J(R) = 0. Therefore, R can not be
semiperfect while R is I-lifting and hence E-⊕-supplemented.

We shall provide a condition under which the two concepts, E-⊕-supple-
mented and semiperfect, are equivalent for rings.

Proposition 2.26. Let R be a principal ideal domain. Then RR is E-⊕-
supplemented if and only if R is semiperfect.

Proof. Clear.
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