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On a class of Humbert-Hermite polynomials

Waseem A. Khan1 and M. A. Pathan23

Abstract. A unified presentation of a class of Humbert’s polynomials
in two variables which generalizes the well known class of Gegenbauer,
Humbert, Legendre, Chebycheff, Pincherle, Horadam, Kinnsy, Horadam-
Pethe, Djordjević, Gould, Milovanović and Djordjević, Pathan and Khan
polynomials and many not so called ’named’ polynomials has inspired the
present paper and the authors define here generalized Humbert-Hermite
polynomials of two variables. Several expansions of Humbert-Hermite
polynomials, Hermite-Gegenbaurer (or ultraspherical) polynomials and
Hermite-Chebyshev polynomials are proved.
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1. Introduction

The 2-variable Kampé de Fériet generalization of the Hermite polynomials[3]
and [5] is defined as

(1.1) Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
.

These polynomials are usually defined by the generating function

(1.2) ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!
,

and reduce to the ordinary Hermite polynomials Hn(x) (see[1]) when y = −1
and x is replaced by 2x.

Next, we recall the definition of N-variable generalized Hermite polynomials
Hn({x}N1 ) defined by Dattoli et al. [6, p.602] :

(1.3) exp

N∑
s=1

xst
s =

∞∑
n=0

Hn({x}N1 )
tn

n!
,
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where {x}N1 = x1, x2, ..., xN .
Generalized Hermite polynomials Hn({x}N1 ) for N = 3 also belong to the

Bell type as shown in [7, p.403(26)]. The Gould-Hooper polynomials gmn (x, y)
(see [4] and [10]) are a special case of (1.3). The notation Hm

n (x, y) or gmn (x, y)
was given by Dattoli et al. [4]. These are specified by

(1.4) ext+yt
m

=

∞∑
n=0

Hm
n (x, y)

tn

n!
.

Another generalization of Hermite polynomials which we wish to consider
in this paper is given by Hn,m,ν(x, y) in the form of the generating function
(see [16])

(1.5) eν(x+y)t−(xy+1)tm =

∞∑
n=0

Hn,m,ν(x, y)
tn

n!
,

which reduces to the ordinary Hermite polynomials Hn(x) when ν = 2, x = 0
or ν = 2, y = 0.

We draw attention to familiar generating relations given by

(1.6) (1− 2xt+ t2)−
1
2 =

∞∑
n=0

Pn(x)tn,

where Pn(x) is Legendre’s polynomial of the first kind.

(1.7) (1− 2xt+ t2)−1 =

∞∑
n=0

Un(x)tn,

where Un(x) is the Chebychev polynomial of the second kind.

(1.8) (1− 2xt+ t2)−ν =

∞∑
n=0

Cνn(x)tn,

where Cνn(x) is Gegenbauer’s polynomial.

(1.9) (1−mxt+ tm)−ν =

∞∑
n=0

hνn,m(x)tn,

hνn,m(x) =

[ n
m ]∑
k=0

(−1)k(ν)n+(1−m)k(mx)n−mk

k!(n−mk)!
,

where hνn,m(x) is the Humbert polynomial and m is a positive integer. The
Pochammer symbol (a)n is defined by

(a)n =
Γ(a+ n)

Γ(a)
=

[
1 if n = 0
a(a+ 1)(a+ 2) · · · (a+ n− 1) if n = 1, 2, 3 · · ·
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In 1965, Gould [11] gave the following generating relation

(1.10) (c−mxt+ ytm)p =

∞∑
n=0

Pn(m,x, y, p, c)tn,

where m is a positive integer and other parameters are unrestricted in general.
Pn(m,x, y, p, c) is defined explicitly by [11, p.699]:
(1.11)

Pn(m,x, y, p, c) =

[ n
m ]∑
k=0

(
p
k

)(
p− k
n−mk

)
cp−n+(m−1)kyk(−mx)n−mk.

In 1989, Sinha [19] gave the following generating relation

(1.12)
[
1− 2xt+ t2(2x− 1)

]−ν
=

∞∑
n=0

Sνn(x)tn,

where

(1.13) Sνn(x) =

[n2 ]∑
k=0

(−1)k(ν)n−k(2x)n−2k(2x− 1)k

k!(n− 2k)!
,

Sνn(x) is the generalization of Shrestha polynomial Sn(x) ( see [16]).
In 1991, Milovanović and Djordjević [14] (see also [15]) gave the following

generating relation

(1.14) (1− 2xt+ tm)−λ =

∞∑
n=0

pλn,m(x)tn,

where m ∈ N and λ > − 1
2 and

(1.15) pλn,m(x) =

[ n
m ]∑
k=0

(−1)k(λ)n−(m−1)k(2x)n−mk

k!(n−mk)!
.

It is to be noted that the polynomials represented by pλn,1(x), pλn,2(x) and

pλn,3(x) are known as Horadam polynomials [12], Gegenbauer polynomials and
Horadam-Pethe polynomials [13], respectively.

Many interesting generalizations of these polynomials appeared in the lit-
erature. In particular in 1997, Pathan and Khan [16, p.54] generalized these
polynomials and gave the following generating relation

[c− axt+ btm(2x− 1)d]−ν =

∞∑
n=0

pνn,m,a,b,c,d(x)tn(1.16)

=

∞∑
n=0

Θn(x)tn,
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where

(1.17) Θn(x) =

[ n
m ]∑
k=0

(−1)kc−ν−n+(m−1)k(ν)n+(1−m)k(ax)n−mk[b(2x− 1)d]k

k!(n−mk)!
.

Djordjević [9] provided a generalization of various polynomials of two vari-
ables in the form

(1.18) [1− 2(x+ y)t+ tm(2xy + 1)]−α =

∞∑
n=0

Gα,mn (x, y)tn,

where

(1.19) Gα,mn (x, y) =

[ n
m ]∑
k=0

(−1)k(α)n−(m−1)k(2x+ 2y)n−mk(2xy + 1)k

k! (n−mk)!
.

Note that G1,m
n (x, y) = Cmn (x, y) and G

1/2,m
n (x, y) = Pmn (x, y) where

Cmn (x, y) and Umn (x, y) are Chebyshev and Legendre polynomials of two vari-
ables, respectively.

For m = 2, Gα,mn (x, y) reduces to a polynomial studied by Dave [8]. For
m = 2 and y = 0, Gα,mn (x, y) reduces to a Gegenbauer polynomial and for
m = 3 and y = 0, Gα,mn (x, y) are Horadam-Pethe polynomials [13]. Further,
for y = 0, Gα,mn (x, y) reduces to a polynomial pαn,m(x) studied by Milovanović
and Djordjević ([14] and [15]).

A generalization and unification of various polynomials mentioned above is
provided by the definition of generalized Humbert polynomials in two variables
given recently by Pathan and Khan [17] which has the generating function
(1.20)

[a− (bx+ cy)t+ dtm(exy − 1)g]−h =

∞∑
n=0

Qa,b,c,d,en,m,g,h (x, y)tn =

∞∑
n=0

Qn(x, y)tn,

where m ∈ N, h > 0 and the other parameters are unrestricted in general.
In (1.20), if we put a = 1, b = c = 2, d = −1, e = −2 and g = 1, then we

get a generating relation (1.18) studied by Djordjević [9]. For y = 1, e = 2 and
c = 0, we get a generating relation (1.16) studied by Pathan and Khan [16]. For
a = 1, b = 2, c = 0, d = 1 and g = 0, we get a generating relation (1.14) studied
by Milovanović -Djordjević [15]. For a = 1, b = 2, m = 2, y = 1, e = 2 and
g = 1, we get a polynomial defined by Sinha [19] and for c = 0, g = 0, d = y
and h = −p, we get a generating relation (1.4) given by Gould [11]. Some
more interesting special cases which are recorded by G.B. Djordjević and G.V.
Milovanović in [10] can be established similarly.

2. On a class of Humbert-Hermite polynomials

A generalization and unification of various polynomials mentioned above is
provided by the definition of generalized Humbert-Hermite polynomials
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HG
ν,α,m
n (x, y) in two variables which has the generating function

(2.1) [1− 2(x+ y)t+ tm(2xy+ 1)]−νeα(x+y)t−(xy+1)tm =

∞∑
n=0

HG
ν,α,m
n (x, y)tn,

where m ∈ N, α, ν > 0 and the other parameters are unrestricted in general.
This is interesting since, as will be shown, the polynomials HG

ν,α,m
n (x, y)

contain a number of known polynomials (see [4], [10], [9], [11], [12], [13], [14],
[16], [17] and [18]).

Using the definitions of Hn,m,ν(x, y) and Gα,mn (x, y) given by (1.5) and
(1.1)) in (2.1), we find the representation

(2.2) HG
ν,α,m
n (x, y) =

n∑
k=0

n!Hk,m,α(x, y)Gν,mn−k(x, y)

k!
.

Some special cases of (2.2) are

HG
ν,1,m
n (x, y) = HC

ν,m
n (x, y) =

n∑
k=0

n!Hm
k (x, y)Cν,mn−k(x, y)

k!
.

Here HC
ν,m
n (x, y) are Hermite-Gegenbaurer polynomials of two variables.

HC
1,m
n (x, y) = HU

m
n (x, y) =

n∑
k=0

n!Hm
k (x, y)Umn−k(x, y)

k!
,

where HU
m
n (x, y) are Hermite-Chebychev polynomials of two variables.

HC
1/2,m
n (x, y) = HP

m
n (x, y) =

n∑
k=0

n!Hm
k (x, y)Pmn−k(x, y)

k!
,

where HP
m
n (x, y) are Hermite-Legendre polynomials of two variables.

As a special case, let y = 0 and α = 2 be chosen in (2.1) so that gener-
alized Humbert-Hermite polynomial HG

ν,α,m
n (x, y) of two variables reduces to

Humbert-Hermite polynomial HG
ν,2,m
n (x, 0) = HG

ν,m
n (x) of one variable. Then

(2.1) yields the generating function

(2.3) [1− 2xt+ tm]−νe2xt−t
m

=

∞∑
n=0

HG
ν,m
n (x)tn.

Furthermore, the Hermite-Gegenbaurer (or ultraspherical) polynomials

HC
ν,2
n (x)= HC

ν
n(x) of one variable, for nonnegative integer ν are given by

(2.4) e2xt−t
2

(1− 2xt+ t2)−ν =

∞∑
n=0

HC
ν
n(x)

tn

n!
.

Letting ν = 1/2 and ν = 1 in (2.4) gives

(2.5) e2xt−t
2

(1− 2xt+ t2)−1/2 =

∞∑
n=0

HPn(x)
tn

n!
,
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where HPn(x) are Hermite-Legendre polynomials and

(2.6) e2xt−t
2

(1− 2xt+ t2)−1 =

∞∑
n=0

HUn(x)
tn

n!
,

where HUn(x) are Hermite-Chebyshev polynomials.

3. On expansions of Hermite-Chebyshev and Hermite-
Gegenbaurer polynomials

In this section, we prove several theorems on the expansions of Hermite-
Gegenbaurer and Hermite-Chebyshev polynomials of two variables. We will
start with (2.1), (2.3) and the special case of (2.1) for ν = 1,

(3.1) [1− 2(x+ y)t+ tm(2xy + 1)]−1eα(x+y)t−(xy+1)tm =

∞∑
n=0

HU
α,m
n (x, y)

tn

n!
,

which will be used in obtaining the corollaries of the following theorem.

Theorem 3.1. For k ∈ N and x, y ∈ C, we have

n∑
r=0

Hm
r (αk(x+ y),−k(xy + 1))Gνk,mn−r (x, y)

r!

(3.2) =
∑

n1+n2+···+nk=n

HG
ν,α,m
n1

(x, y)HG
ν,α,m
n2

(x, y) · · ·HGν,α,mnk
(x, y)

n1!n2! · · ·nk!
.

Proof. The definition of HG
ν,α,m
n (x, y) given in (2.1) can be written as[

[1− 2(x+ y)t+ tm(2xy + 1)]−νeα(x+y)t−(xy+1)tm
]k

= [1− 2(x+ y)t+ tm(2xy + 1)]−νkeαk(x+y)t−k(xy+1)tm

=

[ ∞∑
n=0

HG
ν,α,m
n (x, y)

tn

n!

]k
.

Using (1.4), we can write

eαk(x+y)t−k(xy+1)tm =

∞∑
r=0

Hm
r (αk(x+ y),−k(xy + 1))

tr

r!
.

Thus it follows that the above result is essentially equivalent to

∞∑
n=0

Gνk,mn (x, y)tn
∞∑
r=0

Hm
r (αk(x+ y),−k(xy + 1))

tr

r!

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
ν,α,m
n1

(x, y)HG
ν,α,m
n2

(x, y) · · ·HGν,α,mnk
(x, y)

n1!n2! · · ·nk!
tn.
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A manipulation of this series yields

∞∑
n=0

n∑
r=0

Hm
r (αk(x+ y),−k(xy + 1))Gνk,mn−r (x, y)

r!
tn

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
ν,α,m
n1

(x, y)HG
ν,α,m
n2

(x, y) · · ·HGν,α,mnk
(x, y)

n1!n2! · · ·nk!
tn.

Now equating coefficients of tn on both sides of the resulting equation will
give the required result.

Remark 3.2. Setting ν = 1 in Theorem 3.1, the result reduces to

Corollary 3.3. For k ∈ N and x, y ∈ C, we have

n∑
r=0

Hm
r (αk(x+ y),−k(xy + 1))Ck,mn−r(x, y)

r!

(3.3) =
∑

n1+n2+···+nk=n

HU
α,m
n1

(x, y)HU
α,m
n2

(x, y) · · ·HUα,mnk
(x, y)

n1!n2! · · ·nk!
.

Remark 3.4. Setting ν = 0 in Theorem 3.1, the result reduces to

Corollary 3.5. For k ∈ N and x, y ∈ C, we have

Hm
n (αk(x+ y),−k(xy + 1))

n!

(3.4) =
∑

n1+n2+···+nk=n

Hα,m
n1

(x, y)Hα,m
n2

(x, y) · · ·Hα,m
nk

(x, y)

n1!n2! · · ·nk!
.

Remark 3.6. Setting α = m = 2, ν, y = 0 in Theorem 3.1, the result reduces
to a known result of Batahan and Shehata [2, p.50.,Eq.(2.1)].

Corollary 3.7. For k ∈ N and x ∈ C, we have

(3.5)

[n2 ]∑
r=0

(−k)r(2kx)n−2r

(n− 2r)r!
=

∑
n1+n2+···+nk=n

Hn1
(x)Hn2

(x) · · ·Hnk
(x)

n1!n2! · · ·nk!
.

Theorem 3.8. For k ∈ N and X,Y ∈ C, we have

n∑
r=0

Hm
r (αk(X + Y ),−k(XY + 1))Gνk,mn−r (X,Y )

r!

(3.6) =
∑

n1+n2+···+nk=n

HG
ν,α,m
n1

(X,Y )HG
ν,α,m
n2

(X,Y ) · · ·HGν,α,mnk
(X,Y )

n1!n2! · · ·nk!
,

where X =
k∑
i=0

xi and Y =
k∑
j=0

yj.
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Proof. The definition of HG
ν,α,m
n (x, y) can be written as[

[1− 2(X + Y )t+ tm(2XY + 1)]
−ν
eα(X+Y )t−(XY+1)tm

]k
= [1− 2(X + Y )t+ tm(2XY + 1)]

−νk
eαk(X+Y )t−k(XY+1)tm

=

[ ∞∑
n=0

HG
ν,α,m
n (x1 + x2 + · · ·+ xk, y1 + y2 + · · ·+ yk)

tn

n!

]k
.

Using (1.4), we can write

eαk(X+Y )t−k(XY+1)tm =

∞∑
r=0

Hm
n (αk(X + Y ),−k(XY + 1))

tr

r!
.

Thus it follows that the above result is essentially equivalent to

∞∑
n=0

Gνk,mn (X,Y )tn
∞∑
r=0

Hm
n (αk(X + Y ),−k(XY + 1))

tr

r!

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
ν,α,m
n1

(X,Y )HG
ν,α,m
n2

(X,Y ) . . .HG
ν,α,m
nk

(X,Y )

n1!n2! · · ·nk!
tn.

A manipulation of this series yields

∞∑
n=0

n∑
r=0

Hm
r (αk(X + Y ),−k(XY + 1))Gνk,mn−r (X,Y )

r!
tn

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
ν,α,m
n1

(X,Y )HG
ν,α,m
n2

(X,Y · · ·HGν,α,mnk
(X,Y )

n1!n2! · · ·nk!
tn.

Now equating coefficients of tn on both sides of the resulting equation will
give the required result.

Remark 3.9. Setting ν = 1 in Theorem 3.8, the result reduces to

Corollary 3.10. For k ∈ N and x, y ∈ C, we have

n∑
r=0

Hm
r (αk(X + Y ),−k(XY + 1))Ck,mn−r(X,Y )

r!

(3.7) =
∑

n1+n2+···+nk=n

HU
α,m
n1

(X,Y )HU
α,m
n2

(X,Y ) · · ·HUα,mnk
(X,Y )

n1!n2! · · ·nk!
.

Remark 3.11. Setting ν = 0 in Theorem 3.8, the result reduces to
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Corollary 3.12. For k ∈ N and X,Y ∈ C, we have

Hm
n (αk(X + Y ),−k(XY + 1))

n!

(3.8) =
∑

n1+n2+···+nk=n

Hα,m
n1

(X,Y )Hα,m
n2

(X,Y ) · · ·Hα,m
nk

(X,Y )

n1!n2! · · ·nk!
.

Remark 3.13. Setting α = m = 2, ν = 0, x2 = · · ·xk = 0, y1 = · · · yk = 0
and replacing x1 by x in Theorem 3.8, the result reduces to a known result of
Batahan and Shehata [2, p.51., Eq.(2.4)].

Corollary 3.14. For k ∈ N and x ∈ C, we have

(3.9)

[n2 ]∑
r=0

(−k)r(2kx)n−2r

(n− 2r)r!
=

∑
n1+n2+···+nk=n

Hn1
(x)Hn2

(x) · · ·Hnk
(x)

n1!n2! · · ·nk!
.

Theorem 3.15. For k ∈ N and x, y ∈ C, we have

[ n
m ]∑
s=0

(−1)s(νk)n−(m−1)s(2x+ 2y)n−ms(2xy + 1)s

s! (n−ms)!

(3.10) =
∑

n1+n2+···+nk=n

Gν,mn1
(x, y)Gν,mn2

(x, y) · · ·Gν,mnk
(x, y).

Proof. Using the power series of [1 − 2(x + y)t + tm(2xy + 1)]−k and making
the necessary series arrangements gives

[1− 2(x+ y)t+ tm(2xy + 1)]−νk

=

∞∑
n=0

[ n
m ]∑
s=0

(−1)s(νk)n−(m−1)s(2x+ 2y)n−ms(2xy + 1)s

s! (n−ms)!
tn.

In addition to this, we can write

[1− 2(x+ y)t+ tm(2xy + 1)]−k =
[
[1− 2(x+ y)t+ tm(2xy + 1)]−ν

]k
=

[ ∞∑
n=0

Gν,mn (x, y)tn

]k

=

∞∑
n=0

∑
n1+n2+···+nk=n

Gν,mn1
(x, y)Gν,mn2

(x, y) · · ·Gν,mnk
(x, y)tn.

Now equating coefficients of tn on both sides of the resulting equation will
give the required result.
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Remark 3.16. For ν = 1 in Theorem 3.15, the result reduces to

Corollary 3.17. For k ∈ N and x, y ∈ C, we have

[ n
m ]∑
s=0

(−1)s(k)n−(m−1)s(2x+ 2y)n−ms(2xy + 1)s

s! (n−ms)!

(3.11) =
∑

n1+n2+···+nk=n

Umn1
(x, y)Umn2

(x, y) · · ·Umnk
(x, y).
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