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Relation theoretic fixed point results for multivalued
mappings in rectangular b-metrics spaces

Mohammad Imdad1 and Atiya Perveen23

Abstract. In this paper, we introduce the concepts of R-completeness
and weak R6=-preserving mapping and employ them to prove some fixed
point results for multi-valued mappings satisfying an implicit relation in
rectangular b-metric spaces. We also deduce a fixed point result for the
same in rectangular b-metric spaces endowed with graph G. Furthermore,
we adopt some examples to exhibit the utility of our definitions and re-
sults.
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1. Introduction

Fixed point theory is one of rapidly growing and flourishing fields in analysis
due to its capacious applications in game theory, mathematical economics and
engineering etc. The concept of metric space has been investigated by many
researchers in different directions by varying the metric conditions leading to
the evolution of various types of generalized metric spaces, e.g., partial metric
spaces by Matthews [19], quasi metric spaces by Wilson [29], b-metric spaces
by Bakhtin [8] and Czerwik [11], rectangular metric spaces by Branciari [9],
rectangular b-metric spaces by George et al. [12], G-metric space by Mustafa
and Sims [24] and JS-metric spaces by Jleli and Samet [14] etc.

Specifically, Bakhtin [8] defined the b-metric spaces by changing the trian-
gular inequality as follows:

Definition 1.1. [8] Let M be a non-empty set. Then a mapping ρ : M×M →
[0,∞) is called a b-metric if for all x, y, z ∈M and b ≥ 1 it satisfies the following
conditions:

(a) ρ(x, y) = 0 if and only if x = y;

(b) ρ(x, y) = ρ(y, x);

(c) ρ(x, y) ≤ b[ρ(x, z) + ρ(z, y)].
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The space (M,ρ) is known as b-metric space.

It can be noticed that each metric space is a b-metric space with b = 1.
On the other hand, the notion of rectangular metric spaces was introduced by
Branciari [9].

Definition 1.2. [9] Let M be a non-empty set. Then a mapping ρ : M×M →
[0,∞) is called a rectangular metric if for all x, y ∈M , it satisfies the following
conditions:

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x);

(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, w) + ρ(w, y), for all distinct z, w ∈M\{x, y}.

The space (M,ρ) is known as rectangular metric space.

Thereafter, inspired by these, R. George et. al. [12] came out with rectan-
gular b-metric spaces and proved an analogue of Banach contraction principle
which was later modified by Z. D. Mitrovic [20].

Definition 1.3. [12] Let M be a non-empty set. Then a mapping ρ : M×M →
[0,∞) is called a rectangular b-metric if, for all x, y ∈M and b ≥ 1, it satisfies
the following conditions:

(a) ρb(x, y) = 0 if and only if x = y;

(b) ρb(x, y) = d(y, x);

(c) ρb(x, y) ≤ b[ρb(x, z)+ρb(z, w)+ρb(w, y)], for all distinct z, w ∈M\{x, y}.

The space (M,ρb) is known as a rectangular b-metric space.

Remark 1.1. Every metric space is a rectangular metric space and every rect-
angular metric space is a rectangular b-metric space with coefficient b = 1.

In a rectangular b-metric space, the open ball with center z ∈M and radius
r is defined as:

Br(z) = {w ∈M : ρb(z, w) < r}.

The open ball in rectangular b-metric space is not necessarily open. The col-
lection Tρb of all subsets A ⊆M with the condition that for every z ∈ A there
exists r > 0 such that Br(z) ⊆ A forms a topology for (M,ρb). For more
details, we refer the reader to [12].

Let 2M denote the set of all non-empty subsets of M . Suppose that the
closure of A ∈ 2M is denoted by A. Let us take an element z ∈M , then z ∈ A
if and only if ρb(z,A) = 0. Moreover, A is said to be closed if and only if
A = A.

Definition 1.4. [12] Let (M,ρb) be a rectangular b-metric space and {zn} a
sequence in M . Then
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(a) {zn} is said to be convergent to z ∈ M if for every ε > 0 there exists
N ∈ N such that ρb(zn, z) < ε, for all n > N .

(b) {zn} is said to be Cauchy in (M,ρb) if for every ε > 0 there exists N ∈ N
such that ρb(zn, zm) < ε, for all distinct m,n > N .

(c) (M,ρb) is said to be complete rectangular b-metric space if every Cauchy
sequence in M converges to some z ∈M .

For more details, we refer readers to [12, 26, 20]. Many mathematicians
did excellent works in the area of these generalized metric spaces in the recent
past (see [16, 2, 22, 23, 6, 21] and others). For a non-empty set M , a point
z ∈ M is said to be a fixed point of a multi-valued mapping S : M → 2M if
z ∈ Sz. Nadler [25] was the first to introduce fixed point theory for multi-valued
mappings.

Recently, several authors extended the branch of fixed point theory by in-
troducing different type of binary relations and proved relation theoretic fixed
point results for single-valued and multi-valued mappings in metric and gener-
alized metric spaces. In this direction, Sintunavarat et. al. [27] gave the idea
of a multi-valued mapping to be preserved under a binary relation.

In this paper, employing the above idea, we introduce the concept of weak
R6=-preserving mappings and present a fixed point result for such mappings in
rectangular b-metric spaces. We furnish an example in support of our result
and some consequences. As an application of our main result, we derive fixed
point result for multi-valued mappings on a rectangular b-metric space endowed
with a graph.

Throughout the paper, all notations are used in their natural meaning.

2. Preliminaries

In order to prove our results, the following definitions, notions and results
are used. In the sequel, M is a non-empty set and S : M → 2M a multi-valued
mapping.

Let (M,ρ) be a metric space, CL(M) and CB(M) denote the family of
all non-empty closed and closed and bounded subsets of (M,ρ), respectively.
Then, for z ∈M and A,B ∈ CB(M), we have

H(A,B) = max{δ(A,B), δ(B,A)},

where ρ(z,A) = inf{ρ(z, a) : a ∈ A} and δ(A,B) = sup{ρ(a,B) : a ∈ A}.

Lemma 2.1. [25] Let (M,ρ) be a metric space and A,B ∈ CL(M). Then for
each ε > 0 and a ∈ A there exists b ∈ B such that ρ(a, b) ≤ H(A,B) + ε.

Definition 2.1. [10] Let (M,ρ) be a b-metric space with b ≥ 1. Then

(a) a multi-valued mapping S : M → CL(M) is continuous iff for each z ∈M
and {zn} ⊆M with {zn} → z, we have limn→∞H(Szn, Sz) = 0.
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(b) a multi-valued mapping S : M → CL(M) is h-upper semi-continuous iff
for each z ∈M and {zn} ⊆M with {zn} → z, we have

lim
n→∞

δ(Szn, Sz) = 0.

(c) a function f : M → [0,∞) is said to be upper semi-continuous iff for each
z ∈M and {zn} ⊆M with {zn} → z, we have

lim sup
n→∞

fzn ≤ fz.

(d) a function f : M → [0,∞) is said to be lower semi-continuous iff for each
z ∈M and {zn} ⊆M with {zn} → z, we have

lim inf
n→∞

fzn ≥ fz.

Remark 2.1. Let (M,ρ) be a complete b-metric space and S : M → CL(M) a
multi-valued map. If S is continuous, then it is h-upper semi-continuous.

Let M be a non-empty set. A binary relationR on M is a non-empty subset
of M×M . We write (z1, z2) ∈ R (sometimes z1Rz2), if z1 is related to z2 under
R and (z1, z2) ∈ R6=, whenever (z1, z2) ∈ R with z1 6= z2. It can be very easily
seen that R6= is also a binary relation on M . R is the inverse/transpose/dual
relation of R defined by R−1 = {(z1, z2) ∈ M ×M : (z2, z1) ∈ R} and Rs is
the symmetric closure of R defined by Rs = R∪R−1.

Definition 2.2. [5] Let M be a non-empty set and R a binary relation on
M . A sequence {zn} ⊆ M is said to be R-preserving if (zn, zn+1) ∈ R, for all
n ∈ N.

Definition 2.3. [18] For z1, z2 ∈ M , a path of length l ∈ N in R from z1
to z2 is a finite sequence {p0, p1, ..., pl} ⊆ M such that p0 = z1, pl = z2 and
(pi, pi+1) ∈ R, for each 0 ≤ i ≤ l − 1.

Definition 2.4. [4] A subset A of M is said to be R-connected if for each
z1, z2 ∈ A, there exists a path in R from z1 to z2.

Definition 2.5. [3] Let M be a non-empty set and S : M → M . A binary
relation R is said to be S-closed if (z1, z2) ∈ R implies that (Sz1, Sz2) ∈ R,
for all z1, z2 ∈M .

Definition 2.6. [27] Let M be a non-empty set, R a binary relation on M and
S : M → 2M a multi-valued mapping. S is said to be a preserving mapping if
for each x ∈M and y ∈ Sx with (x, y) ∈ R, we have (y, z) ∈ R, for all z ∈ Sy.

3. Implicit Relation

To depict Implicit relation, we present the following class of mappings.
Let Φ denote the class of all continuous mappings φ : [0,∞)4 → [0,∞)

satisfying the following properties:
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(φ1) φ is non-decreasing in first variable and non-increasing in third and fourth
variable;

(φ2) φ(u, v, v, u) ≤ 0 implies u ≤ λv, λ ∈ [0, 1).

Example 3.1. Let φ : [0,∞)4 → [0,∞) be defined by the following:

(i) φ(t1, t2, t3, t4) = t1 − λmax{t2, t3, t4}, where λ ∈ [0, 1);

(ii) φ(t1, t2, t3, t4) = t1 − λmax{t3, t4}, where λ ∈ [0, 1);

(iii) φ(t1, t2, t3, t4) = t1 − λmax{t2, t3+t42 }, where λ ∈ [0, 1);

(iv) φ(t1, t2, t3, t4) = t1 − (a1t2 + a2t3 + a3t4), where ai ≥ 0 for i ∈ {1, 2, 3}
and a1 + a2 + a3 < 1;

(v) φ(t1, t2, t3, t4) = t1 − a(t3 + t4), where a ∈ [0, 12 ) and

(vi) φ(t1, t2, t3, t4) = t1 − at2, where a ∈ [0, 1).

Then φ ∈ Φ.

4. Main Results

Before presenting our main result, we need the following:
Let (M,ρb) be a rectangular b-metric space, CLρb(M) and CBρb(M) the

family of all non-empty closed and closed and bounded subsets of (M,ρb),
respectively. Then for z ∈M and A,B ∈ CLρb(M), we write

ρb(z,A) = inf{ρb(z, a) : a ∈ A}, δρb(A,B) = sup{ρb(a,B) : a ∈ A}

and

Hρb(A,B) =

{
max{δρb(A,B), δρb(B,A)}, if maximum exists,

∞, otherwise.

Remark 4.1. [15] If (M,ρb) is a rectangular b-metric space, then (CBρb(M), Hρb)
need not be a rectangular b-metric space.

Lemma 4.1. Let (M,ρb) be a rectangular b-metric space and A,B ∈ CLρb(M).
Then for each ε > 0 and a ∈ A there exists b ∈ B such that ρb(a, b) ≤
Hρb(A,B) + ε.

Proof. Suppose, on the contrary, that there exists ε > 0 and a ∈ A such that,
for all b ∈ B, we have ρb(a, b) > Hρb(A,B) + ε. Then taking infb∈B , we get
ρb(a,B) ≥ Hρb(A,B) + ε, but we have Hρb(A,B) ≥ ρb(a,B). Hence, we get
ε ≤ 0, which is a contradiction.

Similarly, we can prove the following lemma.
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Lemma 4.2. Let (M,ρb) be a rectangular b-metric space, A,B ∈ CLρb(M)
and r > 1. Then for each z ∈ M and A ∈ 2M there exists a ∈ A such that
ρb(z, a) ≤ rρb(z,A).

Now, we define relation theoretic versions of some well known notions.

Definition 4.1. Let (M,ρb,R) be a rectangular b-metric space and R a binary
relation on M . Then

(a) (M,ρb,R) is R-complete if every R-preserving Cauchy sequence in M
converges (with respect to Tρb) to a point in M .

(b) (M,ρb,R) is R-regular if for a sequence {zn} in M such that (zn, zn+1) ∈
R, for all n ∈ N, and {zn} → z, for some z ∈M , then (zn, z) ∈ R, for all
n ∈ N.

Definition 4.2. Let (M,ρb,R) be a rectangular b-metric space with b ≥ 1 and
binary relation R. Then

(a) a multi-valued mapping S : M → 2M is R-continuous iff for each z ∈M
and R-preserving sequence {zn} such that {zn} → z we have

lim
n→∞

Hρb(Szn, Sz) = 0.

(b) a multi-valued mapping S : M → 2M is R-h-upper semi-continuous iff
for each z ∈ M and R-preserving sequence {zn} such that {zn} → z we
have

lim
n→∞

δρb(Szn, Sz) = 0.

Remark 4.2. R-continuity of S implies its R-h-upper semi-continuity.

Definition 4.3. Let M be a non-empty set, R a binary relation on M and
S : M → 2M a multi-valued mapping. We say S to be a weak R 6=-preserving
mapping if for each x ∈M and y ∈ Sx with (x, y) ∈ R6=, we have (y, z) ∈ R6=,
for all z(6= y) ∈ Sy.

Remark 4.3. Every preserving mapping is weakR 6=-preserving but the converse
need not be true in general.

Example 4.1. Let M = {0, 1, 2} with R = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 1)}.
Let S : M → 2M be defined by:

S(0) = {0}, S(1) = {2} and S(2) = {1, 2}.

Then S is a weak R 6=-preserving mapping but it is not preserving. Indeed, for
z = 1 and 2 ∈ S1, we have (1, 2) ∈ R, but there exists 2 ∈ S(2) such that
(2, 2) /∈ R.

Now, we are ready to state our main result.
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Theorem 4.1. Let (M,ρb,R) be a rectangular b-metric space with coefficient
b ≥ 1 equipped with a binary relation R such that ρb is continuous on M ×
M and S : M → CLρb(M) a multi-valued mapping satisfying the following
assertions:

(i) there exists z0 ∈M and z1 ∈ Sz0 such that (z0, z1) ∈ R6=;

(ii) S is weak R6=-preserving;

(iii) (M,ρb) is R 6=-complete;

(iv) S satisfies

(4.1) φ(Hρb(Sz, Sw), ρb(z, w), ρb(z, Sz), ρb(w, Sw)) ≤ 0,

for all z, w ∈M with (z, w) ∈ R6=;

(v) (M,ρb) is R 6=-regular.

Then S has a fixed point.

Proof. Owing to condition (i), choose z0 ∈M and z1 ∈ Sz0 such that (z0, z1) ∈
R 6=. If z1 ∈ Sz1, then z1 is a fixed point of S and we are done. Otherwise, by
(4.1), we obtain

φ(Hρb(Sz0, Sz1), ρb(z0, z1), ρb(z0, Sz0), ρb(z1, Sz1)) ≤ 0,

which by (φ1) implies that

φ(Hρb(Sz0, Sz1), ρb(z0, z1), ρb(z0, z1), Hρb(Sz0, Sz1)) ≤ 0.

Hence, by (φ2), we have

Hρb(Sz0, Sz1) ≤ λρb(z0, z1).

Now, choose ε = 1
2 (1− λ) and, by Lemma 4.1, there exists z2 ∈ Sz1 such that

ρb(z1, z2) ≤ Hρb(Sz0, Sz1) + ερb(z0, z1)

≤ λρb(z0, z1) + ερb(z0, z1)

= qρb(z0, z1),

where q = λ+ ε.
Since z0 ∈M and z1 ∈ Sz0 such that (z0, z1) ∈ R6=, so from condition (ii), we
have (z1, z2) ∈ R 6=. Similarly, if z2 ∈ Sz2, we are done. Otherwise, we choose
z3 ∈ Sz2 ((z2, z3) ∈ R6=, by condition (ii)) such that

ρb(z2, z3) ≤ Hρb(Sz1, Sz2) + ερb(z1, z2)

≤ λρb(z1, z2) + ερb(z1, z2)

= qρb(z1, z2).
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Inductively, we construct a sequence {zn} ⊆M satisfying the following:

zn−1 /∈ Szn−1, zn ∈ Szn−1, (zn−1, zn) ∈ R6=

and

(4.2) ρb(zn, zn+1) ≤ qρb(zn−1, zn),

for each n ∈ N. As ε = 1
2 (1− λ), so we get

q =
1

2
(1 + λ) < 1.

Since q < 1, we have limn→∞ qn = 0, and hence there exists N1 ∈ N such that
(for all k ≥ N1)

(4.3) 0 ≤ bqk < 1.

We also have zn 6= zn+k, for all k ≥ 1 and n ∈ N0. By using the condition that
if zn = zn+k, for some k ≥ 1 and n ∈ N0, then from Szn = Szn+k and (4.2),
we get

ρb(zn, Szn) = ρb(zn+k, Szn+k)

≤ ρb(zn+k, zn+k+1)

≤ qkρb(zn, zn+1)

< qkrρb(zn, Szn)), for some r > 1 (by lemma 4.2).

As in (4.3), there exists some N2 ∈ N such that

0 ≤ rqk < 1, for all k ≥ N2.

So, for k ≥ N2, we get

ρb(zn, Szn) < ρb(zn, Szn),

a contradiction. Thus, we have zn 6= zm, for all distinct m,n ∈ N0.
Now, for all distinct m,n ∈ N0 and k ≥ max{N1, N2}, using condition (iii) of
rectangular b-metric spaces and (4.2), we obtain

ρb(zm, zn) ≤ b[ρb(zm, zm+k) + ρb(zm+k, zn+k) + ρb(zn+k, zn)]

≤ b[qmρb(z0, zk) + qkρb(zm, zn) + qnρb(z0, zk)].

This implies
(1− bqk)ρb(zm, zn) ≤ b(qm + qn)ρb(z0, zk),

yielding thereby

ρb(zm, zn) ≤ b(qm + qn)

1− bqk
ρb(z0, zk)

−→ 0, as m,n→∞.
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Therefore, {zn} is a Cauchy sequence which is R6=-preserving. By R6=-comple-
teness of M , there exists z∗ ∈M such that

(4.4) lim
n→∞

zn = z∗.

Next, we prove that z∗ is the fixed point of S. Firstly, employing condition
(v), we obtain (zn, z) ∈ R, for all n ∈ N. Therefore (4.1) gives

φ(Hρb(Szn, Sz
∗), ρb(zn, z

∗), ρb(zn, Szn), ρb(z
∗, Sz∗)) ≤ 0.

Now, by condition (φ1), we get

(4.5) φ(ρb(zn+1, Sz
∗), ρb(zn, z

∗), ρb(zn, zn+1), ρb(z
∗, Sz∗)) ≤ 0.

Taking limit in (4.5) and using continuity of ρb, we obtain

φ(ρb(z
∗, Sz∗), 0, 0, ρb(z

∗, Sz∗)) ≤ 0,

which on applying (φ2) yields

ρb(z
∗, Sz∗) ≤ 0.

Therefore, z∗ ∈ Sz∗ (as Sz∗ is closed) and hence, S has a fixed point.

We give the following example to support our result.

Example 4.2. Let M = {1, 2, 3, 4, 5} equipped with the binary relation

R = {(2, 3), (3, 4), (4, 5), (5, 1), (5, 2), (5, 4)}

and define ρb : M ×M → [0,∞) by:

ρb(z, z) = 0, for all z ∈M,

ρb(z, w) = ρb(w, z), for all z, w ∈M,

ρb(1, 2) = ρb(2, 4) = α, ρb(1, 3) = ρb(3, 5) = 2α,

ρb(1, 4) = ρb(2, 5) = 3α, ρb(1, 5) = ρb(2, 3) = ρb(3, 4) = 20α,

where α > 0. Then (M,ρb) is a rectangular b-metric space with b = 4. Let us
consider a multi-valued mapping S : M → CLρb(M) defined by:

Sz =

{
{z, z + 1}, if z ∈ {1, 2, 3, 4};
{1, 2, 4}, if z = 5.

Then S is a weak R6=-preserving mapping. We show that the contraction
condition of Theorem 4.1 is also satisfied. We consider all the cases when
(z, y) ∈ R6= and see that

Hρb(Sz, Sw) ≤ λmax{ρb(z, w), ρb(z, Sz), ρb(w, Sw)},for all z, w ∈M with

(z, w) ∈ R6=,

for all λ ∈ [ 3
20 , 1). Thus, all conditions of Theorem 4.1 with φ(t1, t2, t3, t4) =

t1 − λmax{t2, t3, t4}, where λ ∈ [0, 1), are satisfied and hence S has a fixed
point.
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For a mapping S : M → 2M , let ρSb : M → [0,∞) be the mapping defined
by: ρSb (z) = ρb(z, Sz). We give another variant of Theorem 4.1 by replacing
condition (v) with (v)∗ as follows:

Theorem 4.2. Let (M,ρb,R) be a rectangular b-metric space with coefficient
b ≥ 1 and binary relation R and S : M → CLρb(M) a multi-valued mapping.
If we replace condition (v) of Theorem 4.1 (with all others remaining the same)
by the following:

(v)* either S is R 6=-h-upper semi-continuous or ρSb is lower semi-continuous.

Then S has a fixed point.

Proof. The proof runs along the same lines as that of Theorem 4.1 upto (4.4).
Next, to prove that z∗ is a fixed point, we use condition (v)* and have

ρb(z
∗, Sz∗) ≤ b[ρb(z∗, zn) + ρb(zn, zn+1) + ρb(zn+1, Sz

∗)]

≤ b[ρb(z∗, zn) + ρb(zn, zn+1) + δ(Szn, Sz
∗)].

Letting n→∞ and using R6=-h-upper semi-continuity of S, we obtain
ρb(z

∗, Sz∗) = 0, i.e., z∗ ∈ Sz∗.
Further, if ρSb is lower semi-continuous, then we have
ρSb (z∗) ≤ lim inf

n→∞
ρSb (zn), i.e.,

ρb(z
∗, Sz∗) ≤ lim inf

n→∞
ρb(zn, Szn)

≤ lim
n→∞

ρb(zn, zn+1) = 0.

Hence, ρb(z
∗, Sz∗) = 0 and z∗ is a fixed point of S.

Now, we deduce the following corollaries in order to present the utility and
unifiedness of our result.

Corollary 4.1. Let (M,ρb,R) be a rectangular b-metric space with coefficient
b ≥ 1 equipped with binary relation R such that ρb is continuous on M×M and
S : M → CLρb(M) a multi-valued mapping satisfying the following assertions:

(i) there exists z0 ∈M and z1 ∈ Sz0 such that (z0, z1) ∈ R6=;

(ii) S is weak R6=-preserving;

(iii) (M,ρb) is R 6=-complete;

(iv) for all z, w ∈M with (z, w) ∈ R6=, S satisfies anyone of the following:

(A) Hρb(Sz, Sw) ≤ λmax{ρb(z, w), ρb(z, Sz), ρb(w, Sw)},
where λ ∈ [0, 1);

(B) Hρb(Sz, Sw) ≤ λmax{ρb(z, Sz), ρb(w, Sw)},
where λ ∈ [0, 1);
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(C) Hρb(Sz, Sw) ≤ λmax{ρb(z, w), ρb(z,Sz)+ρb(w,Sw)
2 },

where λ ∈ [0, 1);

(D) Hρb(Sz, Sw) ≤ a1ρb(z, w) + a2ρb(z, Sz) + a3ρb(w, Sw),
where ai ≥ 0, for all i = 1, 2, 3, where a1 + a2 + a3 < 1;

(E) Hρb(Sz, Sw) ≤ λ[ρb(z, Sz) + ρb(w, Sw)],
where λ ∈ [0, 12 );

(F) Hρb(Sz, Sw) ≤ λρb(z, w),
where λ ∈ [0, 1);

(v) (M,d) is R 6=-regular
or

(v)* either S is R6=-h-upper semi-continuous or ρSb is lower semi-continuous.

Then S has a fixed point.

Proof. The result follows immediately from Theorem 4.1, 4.2 and Example
3.1.

Next, we deduce the following result for single-valued mappings from Corol-
lary 4.1.

Corollary 4.2. Let (M,ρb,R) be a rectangular b-metric space with coefficient
b ≥ 1 equipped with binary relation R such that ρb is continuous on M ×M
and S : M →M a mapping satisfying the following assertions:

(i) there exists z0 ∈M such that (z0, Sz0) ∈ R6=;

(ii) R is S-closed;

(iii) (M,ρb) is R 6=-complete;

(iv) S satisfies
(4.6)
ρb(Sz, Sw) ≤ λρb(z, w), for all z, w ∈M with (z, w) ∈ R6= and λ ∈ [0, 1);

(v) (M,ρb) is R 6=-regular.

Then S has a fixed point. Moreover, the fixed point is unique if the following
condition is satisfied:

(vi) Fix(S) is Rs-connected.

Proof. The existence part follows directly from Corollary 4.1 by taking into
consideration the contraction condition (F) in assertion (iv). For the uniqueness
of fixed point, suppose that z∗, z̄ ∈ Fix(S) such that z∗ 6= z̄. Then by condition
(vi), there exists a path in Rs, say {u0, u1, u2, ..., uk} ⊆ Fix(S) of some finite
length k from z∗ to z̄ satisfying

u0 = z∗, uk = z̄ and [ui, ui+1] ∈ R, for all 0 ≤ i ≤ k − 1.
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If ui = ui+1, for each i, then z∗ = z̄, a contradiction. Thus, if up 6= up+1, for
some p ∈ {0, 1, 2, ..., k − 1}, then Sup = up and Sup+1 = up+1, so (4.6) yields
(with z = up and w = up+1)

ρb(Sup, Sup+1) ≤ λρb(up, up+1), λ ∈ [0, 1),

which implies
ρb(up, up+1) ≤ λρb(up, up+1), λ ∈ [0, 1),

a contradiction. Hence, we arrive at the conclusion.

In the below example, we demonstrate that Corollary 4.2 is a more gener-
alized version of Theorem 2.1 of [20].

Example 4.3. Let M = A∪B, where A =
{

0, 13 ,
1
5 ,

1
7

}
and B = [3, 4]. Define

a mapping ρb : M ×M → [0,∞) as:
ρb
(
0, 13
)

= ρb
(
1
3 ,

1
5

)
= ρb

(
0, 17
)

= 1;

ρb
(
0, 15
)

= ρb
(
1
3 ,

1
7

)
= 4;

ρb
(
1
5 ,

1
7

)
= 3;

ρb(z, z) = 0, for all z ∈ A and
ρb(z, w) = |z − w|, for all z, w ∈ B and z ∈ A, w ∈ B.
Then the above metric is clearly a rectangular b-metric with s = 4

3 . Now, define
a mapping S : M →M by:

Sz =


1
5 , if z ∈ [3, 4] ∪ { 13};
0, if z ∈ {0, 17};
1
7 , if z = 1

5

and a binary relation R by: R = {(0, 0), ( 1
5 ,

1
5 ), ( 1

7 ,
1
7 ), (0, 15 ), (0, 17 ), ( 1

5 ,
1
7 )} ∪

{(z, w) : z, w ∈ B}. Then we have ρb(Sz, Sw) ≤ λρb(Sz, Sw), for all λ ∈ [ 13 , 1)
and z, w ∈ M with (z, w) ∈ R 6=. Hence, all the requirements of Corollary 4.2
are fulfilled. Thus, S has a unique fixed point. But for z = 1

3 and w = 1
5 , we

obtain

3 = ρb

(
1

5
,

1

7

)
= ρb

(
S

(
1

3

)
, S

(
1

5

))
≤ λρb

(
1

3
,

1

5

)
= λ.1 = λ,

where λ ∈ [0, 1), which is a contradiction. Hence, the result (viz. Theorem 2.1)
of [20] can not be applied.

5. Results on rectangular b-metric spaces endowed with
graph

Let (M,ρb) be a rectangular b-metric space and D the diagonal of the
Cartesian product M×M . Consider a directed graph G such that the set V (G)
of all vertices of G coincides with M and the set E(G) of all edges contains all
the loops, i.e., D ⊂ E(G). We assume that G has no parallel edges and identify
G by the pair (V (G), E(G)). For details, we refer the reader to [13, 1, 7, 17]
and reference therein.
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Remark 5.1. We can say that E(G) ⊆ M ×M is a binary relation which is
reflexive.

In the sequel, we denote a rectangular b-metric space (M,ρb) endowed with
a graph G by (M,ρb,G). Also, we denote G 6= by (V (G), E 6=(G)), where E 6=(G) =
{(z, w) ∈ E(G) : z 6= w}.

We define the following notions in rectangular b-metric spaces.

Definition 5.1. Let M be a non-empty set and G a graph on M . A sequence
{zn} ⊆M is said to be G-preserving if (zn, zn+1) ∈ E(G) or (zn+1, zn) ∈ E(G),
for all n ∈ N.

Definition 5.2. Let (M,ρb,G) be a rectangular b-metric space endowed with
graph G and S a self-mapping on M . Then

(a) (M,ρb,G) is said to be G-complete if every G-preserving Cauchy sequence
{zn} in M converges in M .

(b) (M,ρb,G) is called G-regular if for each G-preserving sequence {zn} ⊆M
such that {zn} → z, for some z ∈M , we have (zn, z) ∈ E(G) or (z, zn) ∈
E(G), for all n ∈ N.

Definition 5.3. Let (M,ρb,G) be rectangular b-metric space with graph G.
Then

(a) a multi-valued mapping S : M → 2M is G-continuous iff for each z ∈ M
and R-preserving sequence {zn} such that {zn} → z, we have

lim
n→∞

Hρb(Szn, Sz) = 0.

(b) a multi-valued mapping S : M → 2M is said to be G-h-upper semicontin-
uous iff for each z ∈ M and G-preserving sequence {zn} ⊆ M such that
{zn} → z, we have

lim
n→∞

δρb(Szn, Sz) = 0.

Tiammee and Suantai [28] introduced the idea of graph preserving mappings
as follows:

Definition 5.4. [28] Let M be a non-empty set endowed with graph G. Then
a mapping S : M → 2M is called graph preserving if

(z, w) ∈ E(G) implies (u, v) ∈ E(G), for all u ∈ Sz and v ∈ Sw.

We define a slightly more generalized and weaker version of the above no-
tion, namely weak G 6=-graph preserving.

Definition 5.5. Let M be non-empty set endowed with graph G and S : M →
2M . Then we say that the mapping S is weak G 6=-graph preserving if for each
x ∈ M and y ∈ Sx with (x, y) ∈ E 6=(G), we have (y, z) ∈ E 6=(G), for all
z( 6= y) ∈ Sy.
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Remark 5.2. Every graph preserving mapping is weak G 6=-graph preserving.

The below example shows that our Definition is weaker than Definition 5.4.

Example 5.1. Let G = (N, E(G)), where E(G) = {(2n − 1, 2n) : n ∈ N} ∪
{(2n, 1) : n ∈ N} ∪ (1, 3). Define S : N→ 2N by:

Sn =

{
{2k, 2k + 1}, if n = 2k − 1, k ∈ N,
{1}, if n = 2k, k ∈ N.

S is weak G 6=-graph preserving.
Indeed, for n = 2k−1, there exists 2k ∈ S(2k−1) such that (2k−1, 2k) ∈ E 6=(G)
and we have (2k, 1) ∈ E 6=(G).
For n = 2k, there exists 1 ∈ S(2k) such that (2k, 1) ∈ E 6=(G). We have
S1 = {2, 3} and (1, 2), (1, 3) ∈ E 6=(G).
But S is not graph preserving as (1, 3) ∈ E(G), S1 = {2, 3} and S3 = {4, 5}
but (2, 4), (2, 5), (3, 5) /∈ E(G).

Now, in view of Remark 5.1, we present the main result of this section.

Theorem 5.1. Let (M,ρb,G) be a rectangular b-metric space with coefficient
b ≥ 1 endowed with graph G such that ρb is continuous on M and S : M →
CLρb(M) a multi-valued mapping satisfying the following assertions:

(i) there exists z0 ∈M and z1 ∈ Sz0 such that (z0, z1) ∈ E 6=(G);

(ii) S is weak G 6=-graph preserving;

(iii) (M,ρb,G) is G 6=-complete;

(iv) S satisfies

φ(Hρb(Sz, Sw), ρb(z, w), ρb(z, Sz), ρb(w, Sw)) ≤ 0,

for all z, w ∈M such that (z, w) ∈ E 6=(G);

(v) (M,ρb,G) is G 6=-regular.

Then S has a fixed point.

Proof. Let us define a binary relation R on M in the following way:

(z, w) ∈ R if and only if (z, w) ∈ E(G),

for all z, w ∈ M . Then clearly all the conditions of Theorem 4.1 are satisfied.
Thus, the existence of a fixed point of S is followed.

Similarly, we give an analogous result of Theorem 4.2 in the following way:

Theorem 5.2. Let (M,ρb,G) be a rectangular b-metric space with coefficient
b ≥ 1 endowed with graph G and S : M → CLρb(M) a multi-valued mapping. If
we replace condition (v) of Theorem 5.1 ((with all others remaining the same)
by the following:

(v)∗ either S is G 6=-h-upper semicontinuous or ρSb is lower semicontinuous.

Then S has a fixed point.
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