Defining some new n-tuple sequence spaces related to l_p space with the help of Orlicz function

Ruqaiyya Fatma¹ and Sabiha Tabassum²³

Abstract. In this paper, we introduce and study the n-sequence space $l_{\infty}^{n}(M,q)$ and $m^{n}(M,\phi,q)$ by using the Orlicz function M. We show that the spaces are seminormed and $m^{n}(M,\phi,q)$ is complete. The inclusion relations involving the spaces have also been obtained. Further, we relate the space $m^{n}(M,\phi,q)$ to p-summable spaces.

AMS Mathematics Subject Classification (2010): 40H05; 14B05; 46E30 Key words and phrases: n-sequence; Orlicz function; seminormed space

1. Introduction

The Banach space gave birth to many useful concept in mathematics, Orlicz space is no different. After the development of Lebesgue theory of integration, Z. W Birnbaum and W. Orlicz introduces Orlicz space as the generalization of L^p , $1 [2]. In the definition of <math>L^p$, they replaced x^p by a more general convex function ϕ . Later Orlicz used this idea to construct the space L^M .

The space $m(\phi)$ (along with its dual space $n(\phi)$) was introduced by Sargent [11] and several interesting properties and results were discussed. This space $m(\phi)$ is very interesting and important space as it has all $l_p, (1 \leq p \leq \infty)$ spaces as special cases depending upon the choice of the sequence ϕ . Further these two spaces $m(\phi)$ and $n(\phi)$ were studied by several authors in [1, 3, 8, 14]. Malkowsky and Mursaleen [5, 6] gave the matrix transformation between these spaces. Mursaleen [7] also studied the geometrical properties related to l^p space.

Let w be the set of all complex sequences and $\phi = \{\phi \in w : 0 < \phi_1 \le \phi_n \le \phi_{n+1} \text{ and } (n+1)\phi_n \ge n\phi_n\}$. Further let P_s denotes the class of all subsets of \mathbb{N} which do not contain more than s elements. For each $\phi \in \phi$, Sargent [14] defined the sequence space

$$m(\phi) = \left\{ (x_k) \in w : \sup_{s \ge 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty \right\}.$$

A comprehensive study of Orlicz space was done by Lindenstrauss and Tzafriri [4] as they construct the sequence space l^M ,

 $^{^1\}mathrm{Department}$ of Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, e-mail: ruqaiyyafatma@rediffmail.com

 $^{^2{\}rm Department}$ of Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, e-mail: sabiha.math08@gmail.com, sabiha.am@amu.ac.in

³Corresponding author

$$l^M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right), \text{ for some } \rho > 0 \right\},$$

and prove that it contains a subspace isomorphic to l_p ($1 \le p < \infty$). Many others like Prashar and Chaudhry [10], Mursaleen et al. [9] have introduced different classes of sequence spaces defined by Orlicz function.

In 2016, Savas [12] introduced the double sequence space $m''(M, \phi, q)$. Tripathy et al. [13] found some interesting results related to the *n*-sequence space.

In this paper, we took the idea of $m(\phi)$ and generalize the concept to the *n*-sequence space and obtain some inclusion relation involving $m^n(M, \phi, q)$. Savas [12] proved that the result holds for the space of double sequences, here we show that it is, in fact, true for all $n \in \mathbb{N}$.

2. Definition and preliminaries

An Orlicz function is a function $M:[0,\infty)\longrightarrow [0,\infty)$ which is continuous, non-decreasing and convex with $M(0)=0,\ M(x)>0$ for x>0 and $M(x)\longrightarrow\infty$ as $x\longrightarrow\infty$.

If convexity of M is replaced by $M(x+y) \leq M(x) + M(y)$, then it is called a modulus function. An Orlicz function M can always be represented in the integral form $M(x) = \int_0^x \eta(t)dt$, where η is known as the kernel of M, is right differentiable for $t \geq 0$, $\eta(t) > 0$, η is non-decreasing and $\eta(t) \longrightarrow \infty$ as $t \longrightarrow \infty$.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of x, if there exists a constant K > 0, such that $M(2x) \leq KM(x)$ for all $x \geq 0$.

Remark 2.1. An Orlicz function M satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

Throughout the article the set of all n-sequences will be denoted by w^n . Also whenever we say limit of n-sequence, we mean limit in Pringsheim's sense.

Definition 2.2. An *n*-sequence $x=(x_{i_1,i_2,...,i_n})$ such that $i_1,i_2,...,i_n\in\mathbb{N}$ is said to be bounded if $\sup_{i_1,i_2,...,i_n}|x_{i_1,i_2,...,i_n}|<\infty$. The space of all bounded *n*-sequences is denoted by l_{∞}^n .

Definition 2.3. Consider an n-sequence $x = (x_{i_1,i_2,...,i_n})$ such that $i_1, i_2,...,i_n \in \mathbb{N}$. If for a given $\epsilon > 0$, $\exists n_0 = n_0(\epsilon) \in \mathbb{N}$ such that

$$|x_{i_1,i_2,...,i_n} - L| < \epsilon, \quad \forall \ i_1, i_2,...,i_n > n_0,$$

then L is called the limit of $(x_{i_1,i_2,...,i_n})$ in Pringsheim's sense and we say that n-sequence x is convergent in Pringshiem's sense to the limit L and we write $P-\lim_{i_1,i_2,...,i_n}x=L$.

Definition 2.4. An n-sequence $x = (x_{i_1,i_2,...,i_n})$ is said to be a Cauchy sequence if for a given $\epsilon > 0$ there exists $n_0(\epsilon) \in \mathbb{N}$ such that

$$|x_{m_1,m_2,...,m_n} - x_{i_1,i_2,...,i_n}| < \epsilon, \quad m_j \ge i_j \ge n_0 \ (1 \le j \le n).$$

3. Main Result

In this section, we introduce the sequence space $l_{\infty}^{n}(M,q)$ and $m^{n}(M,\phi,q)$ and prove some results about them.

The space of all convergent n-sequences in Pringsheim sense is denoted by c^n . Let P_{r_1,r_2,\ldots,r_n} denote the class of all subsets of \mathbb{N}^n that do not contain more than $r_1 \cdot r_2 \cdot \ldots \cdot r_n$ elements. We take $\{\phi_{m_1,m_2,\ldots,m_n}\}$ as a non-decreasing n-sequence of positive real numbers such that

$$(m_1, m_2, ..., m_n)\phi_{m_1+1, m_2+1, ..., m_n+1} \le (m_1+1, m_2+1, ..., m_n+1)\phi_{m_1, m_2, ..., m_n},$$

for all $(m_1, m_2, ..., m_n) \in \mathbb{N}^n$.

 $w^n(X)$ and $l_{\infty}^n(X)$ denote the space of all *n*-sequences and bounded *n*-sequences, respectively, with elements in X, where (X,q) is a seminormed space. The zero sequence is denoted by $\bar{\theta} = (\theta, \theta, \theta, ...)$, where θ is the zero element of X.

We first define the following spaces:

$$l_{\infty}^{n}(M,q) = \left\{ (x_{i_{1},i_{2},...,i_{n}}) \in w^{n}(X) : \sup_{i_{1},i_{2},...,i_{n} \ge 1} M\left(q\left(\frac{x_{i_{1},i_{2},...,i_{n}}}{\rho}\right)\right) < \infty, \text{ for some } \rho > 0 \right\},$$

$$\begin{split} m^n(M,\phi,q) &= \bigg\{ (x_{i_1,i_2,...,i_n}) \in w^n(X): & \sup_{\substack{r_1,r_2,...,r_n \\ \sigma \in P_{r_1,r_2,...,r_n}}} \\ & \frac{1}{\phi_{r_1,r_2,...,r_n}} \sup_{i_1,i_2,...,i_n \geq 1} M\bigg(q\bigg(\frac{x_{i_1,i_2,...,i_n}}{\rho}\bigg)\bigg) < \infty, \text{ for some } \rho > 0 \bigg\}. \end{split}$$

Theorem 3.1. $m^n(M, \phi, q)$ and $l_{\infty}^n(M, q)$ are linear spaces.

Proof. Let $(x_{i_1,i_2,...,i_n}), (y_{i_1,i_2,...,i_n}) \in m^n(M,\phi,q)$ and $\alpha,\beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_r, r_2 \dots r}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho_1}\right)\right) < \infty$$

and

$$\sup_{\substack{r_1,r_2,\ldots,r_n \\ \sigma \in P_{r_1,r_2,\ldots,r_n}}} \frac{1}{\phi_{r_1,r_2,\ldots,r_n}} \sum_{i_1,i_2,\ldots,i_n \in \sigma} M\bigg(q\bigg(\frac{y_{i_1,i_2,\ldots,i_n}}{\rho_2}\bigg)\bigg) < \infty.$$

Let $\rho_3 = max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since q is a semi-norm and M is a non-decreasing convex function, we have

$$\begin{split} &\sum_{i_1,i_2,\dots,i_n\in\sigma} M\bigg(q\bigg(\frac{\alpha x_{i_1,i_2,\dots,i_n}+\beta y_{i_1,i_2,\dots,i_n}}{\rho_3}\bigg)\bigg) \\ &\leq &\sum_{i_1,i_2,\dots,i_n\in\sigma} M\bigg(q\bigg(\frac{\alpha x_{i_1,i_2,\dots,i_n}}{\rho_3}\bigg)+q\bigg(\frac{\beta y_{i_1,i_2,\dots,i_n}}{\rho_3}\bigg)\bigg) \\ &\leq &\sum_{i_1,i_2,\dots,i_n\in\sigma} M\bigg(q\bigg(\frac{x_{i_1,i_2,\dots,i_n}}{\rho_1}\bigg)\bigg)+\sum_{i_1,i_2,\dots,i_n\in\sigma} M\bigg(q\bigg(\frac{y_{i_1,i_2,\dots,i_n}}{\rho_2}\bigg)\bigg). \end{split}$$

Hence.

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{\alpha x_{i_1, i_2, \dots, i_n} + \beta y_{i_1, i_2, \dots, i_n}}{\rho_3}\right)\right)$$

$$\leq \sup_{\substack{r_1,r_2,\ldots,r_n \\ \sigma \in P_{r_1,r_2,\ldots,r_n}}} \frac{1}{\phi_{r_1,r_2,\ldots,r_n}} \sum_{i_1,i_2,\ldots,i_n \in \sigma} M\bigg(q\bigg(\frac{x_{i_1,i_2,\ldots,i_n}}{\rho_1}\bigg)\bigg)$$

$$+ \sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{y_{i_1, i_2, \dots, i_n}}{\rho_2}\right)\right)$$

Hence, $m^n(M, \phi, q)$ is a linear space. The proof of $l_{\infty}^n(M, q)$ can be done in a similar way.

Theorem 3.2. The space $m^n(M, \phi, q)$ is a seminormed space, seminormed by

$$\begin{split} f(x_{i_1,i_2,\dots,i_n}) &= \inf\bigg\{\rho > o: \\ \sup_{\substack{r_1,r_2,\dots,r_n \\ \sigma \in P_{r_1,r_2,\dots,r_n}}} \frac{1}{\phi_{r_1,r_2,\dots,r_n}} \sum_{i_1,i_2,\dots,i_n \in \sigma} M\bigg(q\bigg(\frac{x_{i_1,i_2,\dots,i_n}}{\rho}\bigg)\bigg) \leq 1\bigg\}. \end{split}$$

Proof. Let $(x_{i_1,i_2,...,i_n})$ and $(y_{i_1,i_2,...,i_n}) \in m^n(M,\phi,q)$. Obviously, $f(x_{i_1,i_2,...,i_n}) \geq 0$, for all $x_{i_1,i_2,...,i_n} \in m^n(M,\phi,q)$ and $f(\bar{\theta}) = 0$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\sup_{\substack{r_1,r_2,\ldots,r_n \\ \sigma \in P_{r_1,r_2,\ldots,r_n}}} \frac{1}{\phi_{r_1,r_2,\ldots,r_n}} \sum_{i_1,i_2,\ldots,i_n \in \sigma} M\bigg(q\bigg(\frac{x_{i_1,i_2,\ldots,i_n}}{\rho_1}\bigg)\bigg) \leq 1$$

and

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{y_{i_1, i_2, \dots, i_n}}{\rho_2}\right)\right) \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then we have

$$\begin{split} \sup_{r_1, r_2, \dots, r_n \, \geq \, 1} \, \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M \bigg(q \bigg(\frac{x_{i_1, i_2, \dots, i_n} + y_{i_1, i_2, \dots, i_n}}{\rho} \bigg) \bigg) \\ &\sigma \in P_{r_1, r_2, \dots, r_n} \\ &= \sup_{r_1, r_2, \dots, r_n \, \geq \, 1} \, \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M \bigg(q \bigg(\frac{x_{i_1, i_2, \dots, i_n} + y_{i_1, i_2, \dots, i_n}}{\rho_1 + \rho_2} \bigg) \bigg) \\ &\leq \sup_{r_1, r_2, \dots, r_n \, \geq \, 1} \, \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} \bigg\{ \frac{\rho_1}{\rho_1 + \rho_2} M \bigg(q \bigg(\frac{x_{i_1, i_2, \dots, i_n}}{\rho_1} \bigg) \bigg) \bigg\} \bigg\} \\ &+ \bigg\{ \frac{\rho_2}{\rho_1 + \rho_2} M \bigg(q \bigg(\frac{y_{i_1, i_2, \dots, i_n}}{\rho_2} \bigg) \bigg) \bigg\} \bigg\} \bigg\} \\ &\leq \frac{\rho_1}{\rho_1 + \rho_2} \sup_{r_1, r_2, \dots, r_n \, \geq \, 1} \, \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M \bigg(q \bigg(\frac{x_{i_1, i_2, \dots, i_n}}{\rho_1} \bigg) \bigg) \bigg) \\ &+ \frac{\rho_2}{\rho_1 + \rho_2} \sup_{r_1, r_2, \dots, r_n \, \geq \, 1} \, \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M \bigg(q \bigg(\frac{y_{i_1, i_2, \dots, i_n}}{\rho_1} \bigg) \bigg) \bigg) \\ &= 0 \\ &\leq 1. \end{split}$$

Since, the ρ 's are non-negative, so we have

$$f(x_{i_{1},i_{2},...,i_{n}} + y_{i_{1},i_{2},...,i_{n}}) = \inf \left\{ \rho > o : \sup_{\substack{r_{1},r_{2},...,r_{n} \geq 1 \\ \sigma \in P_{r_{1},r_{2},...,r_{n}}}} \frac{1}{\sigma \in P_{r_{1},r_{2},...,r_{n}}} \sum_{\substack{i_{1},i_{2},...,i_{n} \in \sigma}} M\left(q\left(\frac{x_{i_{1},i_{2},...,i_{n}} + y_{i_{1},i_{2},...,i_{n}}}{\rho}\right)\right) \leq 1\right\}$$

$$\leq \inf \left\{ \rho_{1} > o : \sup_{\substack{r_{1},r_{2},...,r_{n} \\ \sigma \in P_{r_{1},r_{2},...,r_{n}}}} \frac{1}{\phi_{r_{1},r_{2},...,r_{n}}} \sum_{\substack{i_{1},i_{2},...,i_{n} \in \sigma}} M\left(q\left(\frac{x_{i_{1},i_{2},...,i_{n}}}{\rho_{1}}\right)\right) \leq 1\right\}$$

$$+ \inf \left\{ \rho_{2} > o : \sup_{\substack{r_{1},r_{2},...,r_{n} \\ \sigma \in P_{r_{1},r_{2},...,r_{n}}}} \frac{1}{\phi_{r_{1},r_{2},...,r_{n}}} \sum_{\substack{i_{1},i_{2},...,i_{n} \in \sigma}} M\left(q\left(\frac{y_{i_{1},i_{2},...,i_{n}}}{\rho_{2}}\right)\right) \leq 1\right\}$$

$$= f(x_{i_{1},i_{2},...,i_{n}}) + f(y_{i_{1},i_{2},...,i_{n}}).$$

Now for $\lambda \in \mathbb{C}$, without loss of generality, let $\lambda \neq 0$, then

$$\begin{split} f(\lambda(x_{i_{1},i_{2},...,i_{n}})) &= \inf \left\{ \rho > o : \sup_{\substack{r_{1},r_{2},...,r_{n} \\ \sigma \in P_{r_{1},r_{2},...,r_{n}}}} \frac{1}{\phi_{r_{1},r_{2},...,r_{n}}} \sum_{i_{1},i_{2},...,i_{n} \in \sigma} M\bigg(q\bigg(\frac{\lambda x_{i_{1},i_{2},...,i_{n}}}{\rho}\bigg)\bigg) \leq 1 \right\} \\ &= \inf \left\{ |\lambda| \ r > o : \sup_{\substack{r_{1},r_{2},...,r_{n} \\ \sigma \in P_{r_{1},r_{2},...,r_{n}}}} \frac{1}{\phi_{r_{1},r_{2},...,r_{n}}} \sum_{i_{1},i_{2},...,i_{n} \in \sigma} M\bigg(q\bigg(\frac{\lambda x_{i_{1},i_{2},...,i_{n}}}{r}\bigg)\bigg)\right) \\ &= |\lambda| \inf \left\{ r > o : \sup_{\substack{r_{1},r_{2},...,r_{n} \\ \sigma \in P_{r_{1},r_{2},...,r_{n}}}} \frac{1}{\phi_{r_{1},r_{2},...,r_{n}}} \sum_{i_{1},i_{2},...,i_{n} \in \sigma} M\bigg(q\bigg(\frac{\lambda x_{i_{1},i_{2},...,i_{n}}}{r}\bigg)\bigg) \leq 1 \right\} \\ &= |\lambda| f(x_{i_{1},i_{2},...,i_{n}}). \end{split}$$

This shows that $m^n(M, \phi, q)$ is a seminormed space.

Proposition 3.3. The space $l_{\infty}^{n}(M,q)$ is a seminormed space, seminormed by

$$g((x_{i_1,i_2,...,i_n})) = \inf \left\{ \rho > o : \sup_{i_1,i_2,...,i_n \ge 1} M\left(q\left(\frac{x_{i_1,i_2,...,i_n}}{\rho}\right)\right) \le 1 \right\}.$$

Phospitalis Silnifaq) to This (New 312, if and easily pifed. $\sup_{r_1,r_2,...,r_n \geq 1} \frac{\phi_{r_1,r_2,...,r_n}}{\psi_{r_1,r_2,...,r_n}}$

$$<\infty.$$
 Proof. Let
$$\sup_{r_1,r_2,\dots,r_n\geq 1}\frac{\phi_{r_1,r_2,\dots,r_n}}{\psi_{r_1,r_2,\dots,r_n}}<\infty \text{ and } (x_{i_1,i_2,\dots,i_n})\in m^n(M,\phi,q). \text{ Then }$$

$$\sup_{r_1,r_2,\dots,r_n\geq 1}\frac{1}{\phi_{r_1,r_2,\dots,r_n}}\sum_{i_1,i_2,\dots,i_n\in\sigma}M\bigg(q\bigg(\frac{x_{i_1,i_2,\dots,i_n}}{\rho}\bigg)\bigg)<\infty, \text{ for some }$$

$$\sigma\in P_{r_1,r_2,\dots,r_n}$$

$$\rho>0.$$
 So we have

$$\sup_{\substack{r_1,r_2,\ldots,r_n \geq 1 \\ \sigma \in P_{r_1,r_2,\ldots,r_n}}} \frac{1}{\psi_{r_1,r_2,\ldots,r_n}} \sum_{i_1,i_2,\ldots,i_n \in \sigma} M\left(q\left(\frac{x_{i_1,i_2,\ldots,i_n}}{\rho}\right)\right)$$

$$\leq \left\{\sup_{\substack{r_1,r_2,\ldots,r_n \geq 1 \\ \sigma \in P_{r_1,r_2,\ldots,r_n}}} \frac{\phi_{r_1,r_2,\ldots,r_n}}{\psi_{r_1,r_2,\ldots,r_n}}\right\} \left\{\sup_{\substack{r_1,r_2,\ldots,r_n \\ \sigma \in P_{r_1,r_2,\ldots,r_n}}} \frac{1}{\phi_{r_1,r_2,\ldots,r_n}} \left\{\sum_{\substack{i_1,i_2,\ldots,i_n \in \sigma}} M\left(q\left(\frac{x_{i_1,i_2,\ldots,i_n}}{\rho}\right)\right)\right\}\right\}$$

$$\leq \infty.$$

Thus, $(x_{i_1,i_2,...,i_n}) \in m^n(M,\psi,q)$ and therefore $m^n(M,\phi,q) \subseteq m^n(M,\psi,q)$. Conversely, let $m^n(M, \phi, q) \subseteq m^n(M, \psi, q)$. Suppose that $=\infty$, then there exists a sequence of natural numbers $\{r_{k1}, r_{k2}, ..., r_{kn}\}, k \in \mathbb{N}$ such that $\lim_{k\to\infty}\frac{\phi_{r_{k1},r_{k2},\dots,r_{kn}}}{\psi_{r_{k1},r_{k2},\dots,r_{kn}}}=\infty.$ Let $(x_{i_1,i_2,\dots,i_n})\in m^n(M,\phi,q)$. Then there exists $\rho>0$ such that

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho}\right)\right) < \infty.$$

Now, we have

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1}} \frac{1}{\psi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho}\right)\right)$$

$$\sigma \in P_{r_1, r_2, \dots, r_n}$$

$$\geq \left\{\sup_{k \geq 1} \frac{\phi_{r_{k_1}, r_{k_2}, \dots, r_{k_n}}}{\psi_{r_{k_1}, r_{k_2}, \dots, r_{k_n}}}\right\}$$

$$\left\{\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_{k_1}, r_{k_2}, \dots, r_{k_n}}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M\left(q\left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho}\right)\right)\right\}$$

$$= \infty,$$

which is a contradiction.

Hence,

$$\sup_{r_1, r_2, \dots, r_n \ge 1} \frac{\phi_{r_1, r_2, \dots, r_n}}{\psi_{r_1, r_2, \dots, r_n}} < \infty.$$

Corollary 3.5. Let M be an Orlicz function. Then $m^n(M, \phi, q) = m^n(M, \psi, q)$ if and only if $\sup_{r_1,r_2,...,r_n \ge 1} \frac{\phi_{r_1,r_2,...,r_n}}{\psi_{r_1,r_2,...,r_n}} < \infty$ and $\sup_{r_1,r_2,...,r_n \ge 1} \frac{\psi_{r_1,r_2,...,r_n}}{\phi_{r_1,r_2,...,r_n}} < \infty$.

Theorem 3.6. Let M, M_1 , M_2 be Orlicz functions satisfying Δ_2 -condition. Then

- (i) $m^n(M_1, \phi, q) \subseteq m^n(M \circ M_1, \phi, q)$.
- (ii) $m^n(M_1, \phi, q) \cap m^n(M_2, \phi, q) \subseteq m^n(M_1 + M_2, \phi, q)$.

Proof. (i) Let $(x_{i_1,i_2,\ldots,i_n}) \in m^n(M_1,\phi,q)$. Then there exists $\rho > 0$ such that

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M_1\left(q\left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho}\right)\right) < \infty.$$

Let $0 < \epsilon < 1$ and $0 < \delta < 1$ such that $M(t) < \epsilon$, for all $0 \le t < \delta$.

Suppose
$$y_{i_1,i_2,...,i_n} = M_1\left(q\left(\frac{x_{i_1,i_2,...,i_n}}{\rho}\right)\right)$$
 and for any $\sigma \in P_{r_1,r_2,...,r_n}$, let

$$\begin{split} \sum_{i_1,i_2,...,i_n \in \sigma} & M(y_{i_1,i_2,...,i_n}) \\ &= \sum_{y_{i_1,i_2,...,i_n} \le \delta} & M(y_{i_1,i_2,...,i_n}) + \sum_{y_{i_1,i_2,...,i_n} > \delta} & M(y_{i_1,i_2,...,i_n}). \end{split}$$

By Remark 2.1, we have

$$(3.1) \sum_{y_{i_1,i_2,...,i_n} \le \delta} M(y_{i_1,i_2,...,i_n})$$

$$\leq M(1) \sum_{y_{i_1,i_2,...,i_n} \le \delta} (y_{i_1,i_2,...,i_n}) + M(2) \sum_{y_{i_1,i_2,...,i_n} > \delta} (y_{i_1,i_2,...,i_n}).$$

For $y_{i_1, i_2, ..., i_n} > \delta$,

$$y_{i_1,i_2,\dots,i_n} < \frac{y_{i_1,i_2,\dots,i_n}}{\delta} \le 1 + \frac{y_{i_1,i_2,\dots,i_n}}{\delta}.$$

Since M is a non-decreasing and convex, so

$$M(y_{i_1,i_2,...,i_n}) < M\left(1 + \frac{y_{i_1,i_2,...,i_n}}{\delta}\right) < \frac{1}{2}M(2) + \frac{1}{2}M\left(\frac{2y_{i_1,i_2,...,i_n}}{\delta}\right).$$

Since M satisfies Δ_2 -condition, so

$$M(y_{i_1,i_2,...,i_n}) < \frac{1}{2} K \frac{y_{i_1,i_2,...,i_n}}{\delta} M(2) + \frac{1}{2} K \frac{y_{i_1,i_2,...,i_n}}{\delta} M(2)$$

= $K \frac{y_{i_1,i_2,...,i_n}}{\delta} M(2)$.

Therefore,

(3.2)

$$\sum_{y_{i_1,i_2,\ldots,i_n}>\delta} M(y_{i_1,i_2,\ldots,i_n}) \le \max\left(1,K\delta^{-1}M(2)\right) \sum_{y_{i_1,i_2,\ldots,i_n}>\delta} (y_{i_1,i_2,\ldots,i_n}).$$

Now, from (3.1) and (3.2) one can say that $(x_{i_1,i_2,...,i_n}) \in m^n(M \ o \ M_1,\phi,q)$ and hence

$$m^n(M_1, \phi, q) \subseteq m^n(M \ o \ M_1, \phi, q).$$

(ii) Let $(x_{i_1,i_2,...,i_n}) \in m^n(M_1,\phi,q) \cap m^n(M_2,\phi,q)$, then there exists $\rho_1,\rho_2 > 0$ such that

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M_1\left(q\left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho_1}\right)\right) < \infty$$

and

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \frac{1}{\phi_{r_1, r_2, \dots, r_n}} \sum_{i_1, i_2, \dots, i_n \in \sigma} M_2\left(q\left(\frac{y_{i_1, i_2, \dots, i_n}}{\rho_2}\right)\right) < \infty.$$

П

Let $\rho = \max\{\rho_1, \rho_2\}$. Then

$$\sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \sum_{\substack{i_1, i_2, \dots, i_n \in \sigma}} (M_1 + M_2) \left(q \left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho} \right) \right)$$

$$\leq \sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P_{r_1, r_2, \dots, r_n}}} \sum_{\substack{i_1, i_2, \dots, i_n \in \sigma}} M_1 \left(q \left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho_1} \right) \right)$$

$$+ \sup_{\substack{r_1, r_2, \dots, r_n \geq 1 \\ \sigma \in P}} \sum_{\substack{i_1, i_2, \dots, i_n \in \sigma}} M_2 \left(q \left(\frac{x_{i_1, i_2, \dots, i_n}}{\rho_2} \right) \right).$$

Hence the theorem is proved.

Corollary 3.7. Let M be an Orlicz function satisfying Δ_2 -condition. Then $m^n(\phi,q) \subseteq m^n(M,\phi,q)$

Proof. The result follows from Theorem 3.6-(i) by taking $M_1(x) = x$ in it. \square

Corollary 3.8. Let M be an Orlicz function satisfying the Δ_2 -condition. Then $m^n(\phi,q) \subseteq m^n(M,\phi,q)$ if and only if $\sup_{\substack{r_1,r_2,\ldots,r_n \geq 1 \\ \psi_{r_1,r_2,\ldots,r_n}}} \frac{\phi_{r_1,r_2,\ldots,r_n}}{\psi_{r_1,r_2,\ldots,r_n}} < \infty$.

Theorem 3.9. $l_1^n(M,q) \subseteq m^n(M,\phi,q) \subseteq l_\infty^n(M,q)$, where

$$l_1^n(M,q) = \left\{ (x_{i_1,i_2,\dots,i_n}) \in w^n(X) : \sum_{\substack{i_1,i_2,\dots,i_n \ i_1,i_2,\dots,i_n \ }}^{\infty,\infty,\dots,\infty} M\left(q\left(\frac{x_{i_1,i_2,\dots,i_n}}{\rho}\right)\right) < \infty, \text{ for some } \rho > o \right\}.$$

Proof. Let $(x_{i_1,i_2,...,i_n}) \in l_1^n(M,q)$. Then we have

$$(3.3) \qquad \sum_{i_1,i_2,\dots,i_n=1,1,\dots,1}^{\infty,\infty,\dots,\infty} M\left(q\left(\frac{x_{i_1,i_2,\dots,i_n}}{\rho}\right)\right) < \infty, \text{ for some } \rho > o.$$

Since, $(\phi_{m_1,m_2,...,m_n})$ is monotonic increasing sequence, so we have

$$\begin{split} \frac{1}{\phi_{r_{1},r_{2},...,r_{n}}} \sum_{i_{1},i_{2},...,i_{n} \in \sigma} M \bigg(q \bigg(\frac{x_{i_{1},i_{2},...,i_{n}}}{\rho} \bigg) \bigg) \\ & \leq \frac{1}{\phi_{1,1,...,1}} \sum_{i_{1},i_{2},...,i_{n} \in \sigma} M \bigg(q \bigg(\frac{x_{i_{1},i_{2},...,i_{n}}}{\rho} \bigg) \bigg) \\ & \leq \frac{1}{\phi_{1,1,...,1}} \sum_{i_{1},i_{2},...,i_{n} \in \sigma} M \bigg(q \bigg(\frac{x_{i_{1},i_{2},...,i_{n}}}{\rho} \bigg) \bigg) \\ & \leq \frac{1}{\phi_{1,1,...,1}} \sum_{i_{1},i_{2},...,i_{n} = 1,1,...,1} M \bigg(q \bigg(\frac{x_{i_{1},i_{2},...,i_{n}}}{\rho} \bigg) \bigg) \\ & < \infty. \end{split}$$

Thus,

$$\sup_{\substack{r_1,\,r_2,\,\ldots,\,r_n \,\geq\, 1\\ \sigma\,\in\, P_{r_1,r_2,\,\ldots,r_n}}} \frac{1}{\phi_{r_1,r_2,\,\ldots,r_n}} \sum_{i_1,i_2,\,\ldots,i_n \,\in\, \sigma} M\bigg(q\bigg(\frac{x_{i_1,i_2,\,\ldots,i_n}}{\rho}\bigg)\bigg) < \infty.$$

So.

$$(x_{i_1,i_2,...,i_n}) \in m^n(M,\phi,q).$$

Hence.

$$l_1^n(M,q) \subseteq m^n(M,\phi,q).$$

Now, let
$$(x_{i_1,i_2,\dots,i_n}) \in m^n(M,\phi,q)$$
. Then we have
$$\sup_{\substack{r_1,r_2,\dots,r_n \geq 1\\ \sigma \in P_{r_1,r_2,\dots,r_n}}} \frac{1}{\phi_{r_1,r_2,\dots,r_n}} \sum_{i_1,i_2,\dots,i_n \in \sigma} M\left(q\left(\frac{x_{i_1,i_2,\dots,i_n}}{\rho}\right)\right) < \infty, \text{ for some } p > 0.$$

Take cardinality of σ as 1, then

$$\sup_{\substack{i_1,i_2,\ldots,i_n\in\mathbb{N}^n\\ \Rightarrow x_{i_1,i_2,\ldots,i_n}\in\ell^n\\ }}\frac{1}{\phi_{1,1,\ldots,1}}M\bigg(q\bigg(\frac{x_{i_1,i_2,\ldots,i_n}}{\rho}\bigg)\bigg)<\infty, \text{ for some } \rho>0,$$

Therefore,

$$m^n(M, \phi, q) \subseteq l_{\infty}^n(M, q).$$

Theorem 3.10. Let (X,q) be complete. Then $m^n(M,\phi,q)$ is also complete.

Proof. If we consider a normed linear space $(X, \|.\|)$ instead of a seminormed space (X,q) in Theorem 3.2, then we will get $m^n(M,\phi,q)$ as a normed space normed by

$$\begin{aligned} &\|(x_{i_1,i_2,...,i_n})\| = \inf \bigg\{ \rho > 0 : \\ &\sup_{\substack{r_1,r_2,...,r_n \\ \sigma \in P_{r_1,r_2,...,r_n}}} \frac{1}{\phi_{r_1,r_2,...,r_n}} \sum_{i_1,i_2,...,i_n \in \sigma} M\bigg(\frac{\|(x_{i_1,i_2,...,i_n})\|}{\rho} \bigg) \le 1 \bigg\}. \end{aligned}$$

The space $m^n(M, \phi, \|.\|)$ will be a Banach space, if X is a Banach space.

l_p space: A special case of the space $m^n(M, \phi, q)$

In this section, we show how l_p space is related to our main space $m^n(M, \phi, q)$. We know that l_p spaces are a class of p-summable sequences spaces, so for nsequences we write

$$l_p = \{x_{i_1, i_2, \dots, i_n} \in w_n : \sum_{i_1, i_2, \dots, i_n} |x_{i_1, i_2, \dots, i_n}|^p < \infty \}.$$

$$\begin{split} (4.1) \\ m^n(M,\phi,q) &= \bigg\{ (x_{i_1,i_2,...,i_n}) \in w^n(X) : \sup_{\substack{r_1,r_2,...,r_n \\ \sigma \in P_{r_1,r_2,...,r_n}}} \frac{1}{\phi_{r_1,r_2,...,r_n}} \\ &\bigg\{ \sum_{\substack{i_1,i_2,...,i_n \in \sigma}} M\bigg(q\bigg(\frac{x_{i_1,i_2,...,i_n}}{\rho}\bigg)\bigg) < \infty, \text{ for some } \rho > 0 \bigg\} \bigg\}. \end{split}$$

The notations used here are same as in the third section.

For j=1 to n, take $r_j=1$. Then for the seminorm q(x)=x and Orlicz function $M(x)=x^p$, the space $m^n(M,\phi,q)$ will be an l_p space. To show this, first consider the set $P_{r_1,r_2,...,r_n}$. From the definition of $P_{r_1,r_2,...,r_n}$ in the third section,

$$\begin{split} P_{r_1,r_2,\dots,r_n} &= \cup \{A \subset \mathbb{N}^n : |A| \leq r_1 \cdot r_2 \cdot \dots \cdot r_n \}. \\ \text{Since we are taking } r_j \text{'s as } 1, \text{ we get} \\ P_{r_1,r_2,\dots,r_n} &= \cup \{A \subset \mathbb{N}^n : |A| \leq 1 \} \\ &= \mathbb{N}^n. \end{split}$$

Also.

$$\phi_{r_1, r_2, \dots, r_n} = \phi_{1, 1, \dots, 1},$$

which is a constant and hence will not affect the space. Substituting all the values in the definition of $m^n(M, \phi, q)$ (4.1), we get an l_p space.

Acknowledgement

We thank the reviewers for the careful reading of our manuscript. Their comments and suggestions have helped in improving and clarifying the manuscript.

References

- [1] ALOTAIBI, A., MURSALEEN, M., AND ALMARI, B. A. Solvability of second order linear differential equations in the sequence space $n(\phi)$. Advances in Difference Equations 2018:377, 1 (2018).
- [2] BIRNBAUM, Z., AND ORLICZ, W. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. *Studia Mathematica 3*, 1 (1931), 1–67.
- [3] Hudzik, H., Karakaya, V., Mursaleen, M., and Simsek, N. Banach-Saks type and Gurariin modulus of convexity of some Banach sequence spaces. *Abstract and Applied Analysis 2014:Article ID 427382*, (2014).
- [4] LINDENSTRAUSS, J., AND TZAFRIRI, L. On Orlicz sequence spaces. Israel Journal of Mathematics 10, 3 (1971), 379–390.
- [5] MALKOWSKY, E., AND MURSALEEN, M. Matrix transformations between FK-spaces and the sequence spaces $m(\phi)$ and $n(\phi)$. Journal of Mathematical Analysis and Applications 196, 2 (1995), 659–665.
- [6] MALKOWSKY, E., AND MURSALEEN, M. Compact matrix operators between the spaces $m(\phi)$, $n(\phi)$ and l_p . The Korean Mathematical Society 48, 5 (2011), 1093–1103.

- [7] Mursaleen, M. Some geometric properties of a sequence space related to l_p . Bulletin of the Australian Mathematical Society 67, 2 (2003), 343–347.
- [8] Mursaleen, M. Application of measure of noncompactness to infinite systems of differential equations. *Canadian Mathematical Bulletin* 56, 2 (2013), 388–394.
- [9] MURSALEEN, M., A.KHAN, M., AND QAMARUDDIN. Difference sequence spaces defined by Orlicz functions. *Demonstratio Mathematica* 32, 1 (1999), 145–150.
- [10] PARASHAR, S., AND CHOUDHARY, B. Sequence spaces defined by Orlicz functions. Indian Journal of Pure and Applied Mathematics 25 (1994), 419–428.
- [11] SARGENT, W. Some sequence spaces related to the l_p spaces. Journal of the London Mathematical Society 1, 2 (1960), 161–171.
- [12] SAVAŞ, E., AND EREN, R. S. On double sequence spaces defined by an Orlicz function on a seminormed space. Filomat 30, 3 (2016), 631–638.
- [13] TRIPATHY, B. C., AND GOSWAMI, R. Vector valued multiple sequence spaces defined by Orlicz function. *Boletim da Sociedade Paranaense de Matematica 33*, 1 (2015), 67–79.
- [14] TRIPATHY, B. C., AND SEN, M. On a new class of sequences related to the space l^p. Tamkang Journal of Mathematics 33, 2 (2002), 167–172.

Received by the editors September 11, 2019 First published online July 13, 2020