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On split equality monotone Yosida variational inclusion
and fixed point problems for countable infinite families of

certain nonlinear mappings in Hilbert spaces
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Abstract. In this article, we introduce a split equality monotone
Yosida variational inclusion problem which is more general than the
split equality monotone variational inclusion problem, split equality vari-
ational inclusion problem and Yosida inclusion problem. We develop an
iterative algorithm for approximating a common solution of split equality
monotone Yosida variational inclusion problem and split equality fixed
point problems for infinite family of generalized k-strictly pseudocon-
tractive multivalued mappings and infinite family of L-Lipschitzian and
quasi-pseudocontractive mappings in the settings of infinite-dimensional
Hilbert spaces. Using our iterative algorithm, we state and prove a strong
convergence theorem for approximating an element in the intersection of
the solution set of the aforementioned problems. Our iterative algorithm
is designed in such a way that it does not require prior knowledge of
the operator norm. We apply our result to solve a variational inequality
problem. Our result extends and complements some related results in
the literature.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H
endowed with inner product 〈., .〉 and induced norm ||.||, with R the set of real
numbers and Dom(T ) the domain of T .

A point x ∈ H is called a fixed point of a mapping T : H → H, if Tx = x.
However, if T : H → 2H is a multi-valued mapping, then a point x ∈ H is
called a fixed point of T if x ∈ Tx. We denote by Fix(T ), the collection of all
fixed points of T .

Definition 1.1. A mapping T : H → H is called
(i) nonexpansive, if

||Tx− Ty|| ≤ ||x− y||, ∀ x, y ∈ H;

(ii) strongly nonexpansive, if T is nonexpansive and

lim
n→∞

||(xn − yn)− (Txn − Tyn)|| = 0;

whenever {xn} and {yn} are bounded sequences in H and

lim
n→∞

(||xn − yn|| − ||(Txn − Tyn)||) = 0;

(iii) averaged nonexpansive if it can be written as T = (1 − α)I + αS, where
α ∈ (0, 1), I is the identity mapping on H, and S : H → H is a nonexpansive
mapping;
(iv) k-strictly pseudo-contractive, if there exists a constant k ∈ (0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2, ∀ x, y ∈ H;

(v) pseudo-contractive, if k = 1 in (iv);
(vi) quasi-pseudo-contractive [11], if Fix(T ) 6= ∅ and

||Tx− x∗||2 ≤ ||x− x∗||2 + ||Tx− x||2, ∀ x ∈ H and x∗ ∈ F (T ).

Given a real Hilbert space H, we denote by CB(H) the family of nonempty,
closed and bounded subsets of H. It is well known that the Hausdorff distance
defined by

D(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

is a metric on this family CB(H), where d(a,B) = infb∈B d(a, b).
The pioneer work on fixed points of multi-valued mappings using the appli-

cation of Hausdorff metric was done by Markin [30] in 1973, where he studied
the fixed point of a nonexpansive multi-valued mapping. Since then, there have
been many results in literature which have found applications in the field of
pure and applied sciences. Using the concept of Hausdorff metric, Chidume et.
al. [13] introduced a new class of mapping called k-strictly pseudocontractive
mapping, which is defined as follows:
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Definition 1.2. Let H be a real Hilbert space and C be a nonempty, open
and convex subset of H. Let T : C̄ → CB(C̄) be a mapping. Then, T is called
a multi-valued k-strictly pseudocontractive mapping if there exists k ∈ (0, 1)
such that for all x, y ∈ C(T ), we have

D2(Tx, Ty) ≤ ||x− y||2 + k||(x− u)− (y − v)||2,

for all u ∈ Tx, v ∈ Ty.

Recently, Chidume and Okpala [14] introduced a different class of multi-
valued strictly pseudocontractive mappings which is a superset of the class
introduced in [13], as follows:

Definition 1.3. Let H be a real Hilbert space and C be a nonempty subset
of H. Let T : C → CB(C) be a multi-valued mapping. Then T is called a
generalized k-strictly pseudocontractive multi-valued mapping if there exists
k ∈ (0, 1) such that for all x, y ∈ C(T ), the following inequality holds:

D2(Tx, Ty) ≤ ||x− y||2 + kD2(Ax,Ay),

where A := I − T and I is the identity operator on C.

They proved the following theorem using this class of mappings:

Theorem 1.4. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let T : C → CB(C) be a generalized k-strictly pseudocontractive
multi-valued mapping such that Fix(T ) 6= ∅. Assume Tp = {p}, ∀ p ∈ Fix(T ).
Define a sequence {xn} by x0 ∈ C,

xn+1 = (1− λ)xn + λyn,(1.1)

for yn ∈ Un and λ ∈ (0, 1− k). Then d(xn, Txn)→ 0 as n→∞, where

Un :=
{
yn ∈ Txn : D2(xn, Txn) ≤ ||xn − yn||2 +

1

n2

}
.

Definition 1.5. [16] Let H be a real Hilbert space and T be a multi-valued
mapping. T is said to be strongly demiclosed at 0, if for any sequence {xn} ⊂
Dom(T ) such that xn → p and {d(xn, Txn)} converges strongly to 0, then
d(p, Tp) = 0. If T is a single valued mapping, then we have conclude that
||p− Tp|| = 0.

Let A : H → 2H be a multi-valued mapping, then the Variational Inclu-
sion Problem (VIP) is to find x ∈ H such that 0 ∈ Ax. The study of this
problem has been given reasonable attention by many researchers due to its
wide applications. For instance, many problems in physics, economics, man-
agement sciences and operation research can be formulated as VIP. It also
covers other optimization problems such as equilibrium problem, variational
inequalities, minimization or maximization problems to mention a few (see
[2, 3, 1, 6, 7, 19, 20, 21, 23, 24, 25, 26, 27, 28, 31, 36, 40, 42, 46] and the
references contained in them).
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Let A : H → 2H be a multi-valued mapping with graph G(A) := {(x, y) :
y ∈ A(x)}. Then, A is called monotone if for all (x, u) and (y, v) ∈ G(A), the
following inequality holds:

〈x− y, u− v〉 ≥ 0.

The monotone mapping A is said to be maximal if its graph G(A) is not
properly contained in the graph of any other monotone mapping. A single-
valued mapping A : H → H is called α-inverse strongly monotone if there
exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α||Tx− Ty||2,∀ x, y ∈ H.

It is well known that monotone operators on real Hilbert spaces can be reg-
ularized into single-valued Lipschitzian monotone operators through a process
known as the Yosida approximation (see [5]).

This class of monotone operators was introduced by Zarantonello [45] and
Minty [32] and since then many authors have shown significant interest in it
due to its firm relation with the following evolution equation:{

dx
dt +A(x) = 0;

x(0) = x0;
(1.2)

which is a model for many physical problems of practical applications. If the
function A in (1.2) is not continuous, then it will be very difficult to solve these
types of models. To solve this problem, Yosida introduced a natural step,
which is to find a sequence of Lipschitz functions that approximate A in some
sense. It is well known that two quite useful single-valued Lipschitz continuous
operators can be associated with a monotone operator, namely its resolvent
operator and its Yosida approximation operator. The Yosida approximation
operators are useful to approximate solutions of VIP using resolvent operators.
Recently, many authors engaged the Yosida approximation operators to study
some VIP using different techniques, (see [4, 9, 18]).

Very recently, Ahmad et. al. [5] introduced the following Yosida approxi-
mation inclusion problem which is to find x ∈ X such that

0 ∈ JH (.,.)
M,λ (x) +M(x), λ > 0,(1.3)

where X is a smooth Banach space, M is an H(., .)- accretive operator with
respect to A and B, A,B : X → X are single-valued mappings, H(A,B) is
α-strongly accretive with respect to A, β-relaxed accretive with respect to B,

with α > β and J
H (.,.)
M,λ (x) is the generalized Yosida approximation operator

defined by

J
H (.,.)
M,λ (u) =

1

λ

[
I −RH (.,.)

M,λ

]
(u), ∀ u ∈ X,(1.4)
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where I is the identity mapping on X and R
H (.,.)
M,λ is the resolvent operator

associated with the mappings H(., .) and M . It was shown in [5] that the
resolvent operator

R
H (.,.)
M,λ (u) = [H(A,B) + λM ]−1(u), ∀ u ∈ X, λ > 0

and the generalized Yosida approximation operator in (1.4) are connected by
the following relation

λJ
H (.,.)
M,λ (x) ∈ [λM +H(A,B)− I](R

H (.,.)
M,λ (x)).

In order to study the strong convergence characteristics of the solutions of
Yosida inclusion (1.3), Ahmad et. al. [5] proposed the following iterative
algorithm: For x0 ∈ X, define the sequence {xn} ⊂ X by the following scheme:

xn+1 = R
H (.,.)
Mn,λ

[
H(A,B)xn − λJH (.,.)

Mn,λ
(xn)

]
.

In 2014, Moudafi [33] introduced the following Split Monotone Variational In-
clusion Problem (SMVIP) which is to find

x∗ ∈ H1 such that f(x∗) +B1(x∗) � 0,(1.5)

such that

y∗ = Ax∗ ∈ H2 solves g(y∗) +B2(y∗) � 0,(1.6)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are two multi-valued monotone
mappings on real Hilbert spaces H1 and H2, respectively, A : H1 → H2 is a
bounded linear operator, f : H1 → H1 and g : H2 → H2 are two single-valued
mappings.

Based on the work of Moudafi [33], Rahaman et. al. [38] introduced the
Split Monotone Yosida Variational Inclusion Problem (SMYVIP) which is to
find a point x∗ ∈ H1 such that

0 ∈ f1(x∗) +B1(x∗)− JB1

λ1
(x∗),(1.7)

and

y∗ = Ax∗ ∈ H2 solves 0 ∈ f2(y∗) +B2(y∗)− JB2

λ2
(y∗),(1.8)

where Bi : Hi → 2Hi , i = 1, 2 are multivalued maximal monotone mappings,
fi : Hi → Hi are single-valued mappings, JBiλi = 1

λi
(Ii − RBiλi ) are the Yosida

approximation operators of the mappings Bi, R
Bi
λi

= (Ii +λiBi)
−1 is the resol-

vent of the multivalued maximal monotone mapping Bi for λi > 0 and Ii are
the identity mappings on Hilbert spaces Hi.

Rahaman et. al. [38] presented the following Yosida approximation tech-
nique to approximate the solution of SMYVIP (1.7)-(1.8).

x0 ∈ H1;

un = T [xn + γA∗(S − I)Axn];

vn = δnun + τgn(un);

xn+1 = (1− αnE)vn + αnβf(vn);
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where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a bounded linear
operator with adjoint A∗, E is a strongly positive bounded linear operator on
H1 with coefficient r̄ > 0 and β ∈ (0, r̄k ), {gn} is a family of k-demicontractive
mappings and uniformly convergent for any x ∈ K, where K is any bounded
subset of H1, f : H1 → H1 a ξ-contraction mapping, τ > 0, {αn} and {δn} are
sequences in [0, 1). Furthermore, they proved that the sequence {xn} converges
strongly to a solution of SMYVIP (1.7)-(1.8).

Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 → H3

be two bounded linear operators. Let C and Q be nonempty, closed and convex
subsets of H1 and H2, respectively. The Split Equality Problem SEP which
was introduced by Moudafi [34] is to find

x ∈ C, y ∈ Q such that Ax = By.(1.9)

The SEP allows asymmetric and partial relations between the variable x and
y and it also covers many situations such as decomposition methods for PDEs,
applications in game theory and intensity-modulated radiation therapy, (see
[8, 7]). Since the inception of SEP, many other related optimization problems
such as split equality minimization problem, split equality equilibrium problem,
split equality fixed point problem, Split Equality Variational Inclusion Problem
(SEVIP), and Split Equality Monotone Yosida Variational Inclusion Problem
(SEMVIP) have been introduced by authors working in this direction, (see
[3, 22, 29, 35, 41] and the references contained in them).

In 2015, Guo et. al. [17] proposed two different iterative algorithms and
proved that they converge strongly to a common solution of SEVIP and fixed
point problem for a family of nonexpansive mappings, which is a unique solution
of a variational inequality problem as an optimality condition for a minimiza-
tion problem.

Very recently, Eslamian and Fakhri [15] proved the following strong con-
vergence theorem for finding an element in the zero point set of the sum of
two monotone operators and in common fixed point set of a finite family of
quasi-nonexpansive multi-valued mappings.

Theorem 1.6. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and
B : H2 → H3 be bounded linear operators with adjoints A∗ and B∗. Let
f : H1 → H1 and g : H2 → H2 be, respectively, α and β-inverse strongly
monotone operators and F, G be two maximal monotone operators on H1, H2.
For i ∈ {1, 2, ..m}, Ti : H1 → CB(H1) and Si : H2 → CB(H2) be two finite
families of quasi-nonexpansive multi-valued mappings such that Si−I and Ti−I
are demiclosed at 0, where Si and Ti satisfies the common end point condition.
Suppose Ω := {(x, y) : x ∈ ∩mi=1Fix(Ti) ∩ (f + F )−1(0), y ∈ Fix(Si) ∩ (g +
G)−1(0), Ax = By} 6= ∅. Let {(xn, yn)} be sequences generated for x0, θ ∈ H1,
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and y0, η ∈ H2 by

zn = xn − γnA∗(Axn −Byn);

un = JFλn(I − λnf)zn;

xn+1 = αnθn + βnun +
∑m
i=1 δn,ivn,i;

wn = yn + γnB
∗(Axn −Byn);

tn = JGµn(I − µng)wn;

yn+1 = αnη + βntn +
∑m
i=1 δn,isn,i ∀ n > 0,

where vn,i ∈ Tiun, sn,i ∈ Sitn and the step-size γn is chosen in such a way that

γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,(1.10)

otherwise γn = γ (γ being any nonnegative value), where the index set π = {n :
Axn − Byn 6= 0}. Let the sequences {αn}, {βn}, {δn,i}, {λn} and {µn} satisfy
the following conditions:
(i) αn + βn +

∑m
i=1 δn,i = 1 and lim infn βnδn,i > 0 for each i ∈ {1, 2, . . . ,m};

(ii) {λn} ⊂ [a, b] ⊂ (0, 2α) and {µn} ⊂ [c, d] ⊂ (0, 2β);
(iii) limn→∞ αn = 0,

∑∞
n=0 αn =∞.

Then, the sequence {(xn, yn)} converges strongly to (x∗, y∗) ∈ Ω.

Motivated by the works of Rahaman et. al. [38], Guo et. al. [17], Eslamian
and Fakhri [15] and other related works in this direction, we introduce the Split
Equality Monotone Yosida Variational Inclusion Problem (SEMYVIP), which
is defined as follows:

Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 → H3

be bounded linear operators. Let F : H1 → 2H1 and G : H2 → 2H2 be multi-
valued maximal monotone mappings with nonempty values and let f : H1 →
H1 and g : H2 → H2 be nonlinear mappings. The SEMYVIP is to find x ∈ H1

such that

x ∈ (f + F − JFλ )−1(0);(1.11)

and y ∈ H2, solves

y ∈ (g +G− JGµ )−1(0) with Ax = By;(1.12)

where JFλ = 1
λ (I − RFλ ) and JGµ = 1

µ (I − RGµ ) are the Yosida approximation

operators of the mappings F and G, RFλ = (I + λF )−1 and RGλ = (I + µG)−1

are the resolvent operators of the mappings F and G for λ, µ > 0, and I
is the identity mapping. Furthermore, we introduce an iterative algorithm
to approximate a common solution of problem (1.11)-(1.12) which is also a
common fixed point of a countable infinite families of quasi-pseudo-contractive
mappings and generalized strictly pseudocontractive mappings in real Hilbert
spaces. Using our iterative scheme, we prove a strong convergence theorem for
approximating a common solution of the aforementioned problem. We apply
our result to solve a variational inequality problem. Our result extends and
complements the results of [15], [17] and other related results in the literature.
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2. Preliminaries

We state some known and useful results which will be needed in the proof
of our main results.

Lemma 2.1. [12] Let H be a real Hilbert space. Then the following results
hold for all x, y ∈ H and λ ∈ [0, 1]

(i) ||λx+ (1− λ)y||2 = λ||x||2 + (1− λ)||y||2 − λ(1− λ)||x− y||2.
(ii) 2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2.

Lemma 2.2. [10] Let E be a uniformly convex real Banach space. For arbitrary
r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, for any given sequence {xi}∞i=1 ⊂
Br(0) and for any given sequence {λi}∞i=1 in (0, 1) with

∑∞
i=1 λi = 1, there

exists a continuously strictly increasing convex function

g : [0, 2r]→ R with g(0) = 0,

such that for any positive integers i, j with i < j, the following inequality holds

||
∞∑
i=1

λixi||2 =

∞∑
i=1

λi||x||2 − λiλjg(||xi − xj ||).

Lemma 2.3. [14] Let H be a real Hilbert space, T : H → H be a L-Lipschitzian
mapping with L ≥ 1. Denote K := (1− θ)I + θT ((1− η)I + ηT ).

If 0 < θ < η <
1

1 +
√

1 + L2
, then the following conclusion holds:

(i) Fix(T ) = Fix((1− θ)I + θT ((1− η)I + ηI)) = Fix(K).

(ii) If T is demiclosed at 0, then K is demiclosed at 0.

(iii) In addition, if T : H → H is quasi-pseudocontractive, then the mapping
K is quasi-nonexpansive, that is

||Kx− x∗|| ≤ ||x− x∗||

for all x ∈ H and x∗ ∈ Fix(T ) = Fix(K).

Lemma 2.4. [14] Let H be a real Hilbert space and {xi}i∈N be a bounded
sequence in H. For δi ∈ (0, 1) such that

∑∞
i=1 δ1 = 1, the following identity

holds: ∣∣| ∞∑
i=1

δixi
∣∣|2 =

∞∑
i=1

δi||xi||2 −
∑

1≤i<j<∞

δiδj ||xi − xj ||2.

Lemma 2.5. [14] Let E be a normed linear space, B1, B2 ∈ CB(E) and x, y ∈
E arbitrary. Then, the following hold:

(a) D(B1, B2) = D(x+B1, x+B2).
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(b) D(B1, B2) = D(−B1,−B2).

(c) D(x+B1, y +B2) ≤ ||x− y||+D(B1, B2).

(d) D({x}, B1) = sup
b1∈B1

||x− b1||.

(e) D({x}, B1) = D(0, x−B1).

Lemma 2.6. [14] Let C be a nonempty and close subset of a real Hilbert space
H and let T : C → CB(C) be a generalized k-strictly pseudocontractive multi-
valued mapping. Then, (I − T ) is strongly demiclosed at zero.

Lemma 2.7. (Demiclosedness principle) [37] Let C be a nonempty, closed
and convex subset of a real Hilbert space H and T : C → C be a nonexpansive
operator with Fix(T ) 6= ∅. If the sequence {xn} ⊆ C converges weakly to x
and the sequence {(I − T )xn} converges strongly to y, then (I − T )x = y. In
particular, if y = 0 then x ∈ Fix(T ).

Lemma 2.8. [44] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + αnδn, ∀ n ≥ 0,

where {αn} is a sequence in (0,1) and {δn} is a sequence such that

(i)

∞∑
n=1

αn =∞, (ii) lim sup
n→∞

δn ≤ 0 or

∞∑
n=1

|αnδn| <∞.

Then, lim
n→∞

sn = 0.

Given a countably infinite family {Ti}i≥1 of generalized ki-strictly pseudo-
contractive multivalued mappings and an arbitrary sequence {xn} ⊂ C, we
denote by U in the set of inexact distal points of xn with respect to the set Tixn,
that is

U in := {uin ∈ Tixn : D2({xn}, Tixn) ≤ ||xn − uin||2 +
1

n2
}, (see [14]).(2.1)

3. Main Results

In this section, we state and prove our main results.

Lemma 3.1. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and
B : H2 → H3 be two bounded linear operators with adjoints A∗ and B∗, re-
spectively. For i, j = 1, 2, · · · , let Ti : H1 → H1 be a countable infinite family
of L-Lipschitizian and quasi-pseudocontractive mappings with L ≥ 1 and let
Sj : H2 → CB(H2) be a countable infinite family of generalized kj-strictly pseu-
docontractive multi-valued mappings such that for some k ∈ (0, 1), kj ∈ (0, k].
Let F : H1 → 2H1 and G : H2 → 2H2 be two multivalued maximal monotone
mappings with nonempty values, f : H1 → H1 and g : H2 → H2 be two inverse
strongly monotone mappings. Assume that Γ := {(p, q) : p ∈ ∩∞i=1Fix(Ti) ∩
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(f +F − JFλ )−1(0), q ∈ ∩∞j=1Fix(Sj)∩ (g+G− JGµ )−1(0), Ap = Bq} 6= ∅. Let
{(xn, yn)} be the sequence generated for x0, u ∈ H1 and y0, v ∈ H2 by

(3.1)



un = xn − γnA∗(Axn −Byn);

zn = RFλ [I + λ(JFλ − f)]un;

xn+1 = αnu+ βnxn + δn(σn,0zn

+ (
∞∑
i=1

σn,i(1− θ)I + θTi((1− η)I + ηTi))zn);

vn = yn + γnB
∗(Axn −Byn);

wn = RGµ [I + µ(JGµ − g)]vn;

yn+1 = αnv + βnyn + δn(tn,0wn + (
∞∑
j=1

tn,j)g
j
n); gjn ∈ Sjwn,

where the step-size γn is chosen in such a way that

(3.2) γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,

otherwise γn = γ ( γ being any nonnegative value), where the index set π = {n :
Axn−Byn 6= 0}. Let λ, µ be positive parameters and let {αn}, {βn}, {δn}, {σn,i}
and {tn,j} be sequences in (0, 1) satisfying

(i) αn + βn + δn = 1;

(ii)
∞∑
i=0

σn,i = 1 =
∞∑
j=0

tn,j , with tn,0 ∈ (kj , 1);

(iii) 0 < θ < η < 1
1+
√

1+L2
.

Then the sequence {(xn, yn)} is bounded.

Proof. It is well known that RFλ is firmly nonexpansive and hence averaged.
Since the composition of averaged mappings is average, therefore RFλ (I+λ(JFλ −
f)) is averaged and hence nonexpansive. It follows that RFλ (I + λ(JFλ − f)) is
strongly nonexpansive. Similarly, RGµ (I + µ(JGµ − g)) is also strongly non-

expansive. Take (p, q) ∈ Γ and define an := σn,0zn + (
∞∑
i=1

Ki)zn), Ki =

(1 − θ)I + θTi((1 − η)I + ηTi)) and bn := tn,0wn + (
∞∑
j=1

tn,j)g
j
n. It is obvi-

ous that RFλ (I + λ(JFλ − f))p = p, then we have from (3.1) that

||an − p||2 = ||σn,0zn +

∞∑
i=1

σn,iKizn − p||2

≤ σn,0||zn − p||2 +

∞∑
i=1

σn,i||Kizn − p||2

− σn,0σn,ig(||zn −Kizn||)
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= ||zn − p||2 − σn,0σn,ig(||zn −Kizn||)
≤ ||zn − p||2.(3.3)

Also by using Lemma 2.4, 2.5(e) and equation (2.1), we obtain

||bn − q||2 =||tn,0(wn − q) +

∞∑
j=1

tn,j(g
j
n − q)||2

=tn,0||wn − q||2 +

∞∑
j=1

tn,j ||gjn − q||

−
∞∑
i=1

tn,0tn,j ||wn − gjn||2

−
∑

1≤j<m<n

tn,jtn,m||gjn − gmn ||2

≤tn,0||wn − q||2 +

∞∑
j=1

tn,jD
2(Sjwn, Sjq)

−
∞∑
j=1

tn,0tn,j ||wn − gjn||2

≤tn,0||wn − q||2

+

∞∑
j=1

tn,j(||wn − q||2 + kjD
2({0}, wn − Sjwn))

−
∞∑
j=1

tn,0tn,j ||wn − gjn||2

≤
∞∑
j=0

tn,j ||wn − q||2

+

∞∑
j=1

tn,jkjD
2({wn}, Sjwn)

−
∞∑
j=1

tn,0tn,j ||wn − gjn||2

≤
∞∑
j=0

tn,j ||wn − q||2

+

∞∑
j=1

tn,jkj(||wn − gjn||+
1

n2
)

−
∞∑
j=1

tn,0tn,j ||wn − gjn||2
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≤||wn − q||2 +
k

n2
−
∞∑
j=1

tn,j(tn,0 − k)||wn − gjn||2

≤||wn − q||2 +
k

n2
.(3.4)

Adding (3.3) and (3.4), we have

||an − p||2 + ||bn − q||2 ≤ ||zn − p||2 + ||wn − q||+
k

n2
.(3.5)

Now,

||zn − p||2 = ||RFλ (I + λ(JFλ − f))un −RFλ (I + λ(JFλ − f))p||2

≤ ||un − p||2

= ||xn − p− γnA∗(Axn −Byn)||2

= ||xn − p||2 − 2γn〈xn − p,A∗(Axn −Byn)〉
+ γ2

n||A∗(Axn −Byn)||2

= ||xn − p||2 + γ2
n||A∗(Axn −Byn)||2

− γn||Axn −Ap||2 − γn||Axn −Byn||2 + γn||Byn −Ap||2.(3.6)

Following a similar approach to the proof of (3.6), we have

||wn − q||2 = ||yn − q||2 + γ2
n||B∗(Axn −Byn)||2 − γn||Byn −Bq||2

−γn||Axn −Byn||2 + γn||Byn −Ap||2.(3.7)

Adding (3.6) and (3.7) and using (3.2) with Ap = Bq, we obtain

||zn − p||2 + ||wn − q||2 = ||xn − p||2 + ||yn − q||2

− γn(2||Axn −Byn||2

− γn(||A∗(Axn −Byn)||2

+ ||B∗(Axn −Byn)||2)||
≤ ||xn − p||2 + ||yn − q||2.(3.8)

Substituting (3.8) into (3.5), we get

||an − p||2 + ||bn − q||2 ≤ ||xn − p||2 + ||yn − q||2 +
k

n2
.(3.9)

Observe from (3.1) and Lemma 2.4, that

||xn+1 − p||2 = ||αnu+ βnxn + δnan − p||2

≤ αn||u− p||2 + βn||xn − p||2 + δn||an − p||2.(3.10)

Similarly,

||yn+1 − q||2 ≤ αn||v − q||2 + βn||yn − q||2 + δn||bn − q||2.(3.11)
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Adding (3.10) and (3.11) and using (3.9), we obtain

||xn+1 − xn||2 + ||yn+1 − yn||2

≤ αn[||u− p||2 + ||v − q||2]

+ βn[||xn − p||2 + ||yn − q||2]

+δn[||an − p||2 + ||bn − q||2]

≤ αn[||u− p||2 + ||v − q||2]

+ βn[||xn − p||2 + ||yn − q||2]

+δn[||xn − p||2 + ||yn − q||2 +
k

n2
]

= αn[||u− p||2 + ||v − q||2]

+ (1− αn)[||xn − p||2 + ||yn − q||2] +
δnk

n2

≤ max{[||u− p||2 + ||v − q||2],

[||xn − p||2 + ||yn − q||2]}+
δnk

n2

...

≤ max{[||u− p||2 + ||v − q||2],

[||x0 − p||2 + ||y0 − q||2]}+
δnk

n2
, n > 0.

Therefore, {||xn− p||2 + ||yn− q||2} is bounded. Thus, the sequences {xn} and
{yn} are bounded. Consequently, the sequences {un}, {vn}, {wn} and {zn} are
all bounded.

Theorem 3.2. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3

and B : H2 → H3 be two bounded linear operators with adjoints A∗ and B∗,
respectively. For i, j = 1, 2, · · · , let Ti : H1 → H1 be a countable infinite family
of L-Lipschitizian and quasi-pseudocontractive mappings with L ≥ 1 such that
Ti is demiclosed at 0, and let Sj : H2 → CB(H2) be a countable infinite family
of generalized kj-strictly pseudocontractive multi-valued mappings such that for
some k ∈ (0, 1), kj ∈ (0, k]. Let F : H1 → 2H1 and G : H2 → 2H2 be two
multi-valued maximal monotone mappings with nonempty values, f : H1 → H1

and g : H2 → H2 be two inverse strongly monotone mappings. Assume that
Γ := {(p, q) : p ∈ ∩∞i=1Fix(Ti)∩(f+F −JFλ )−1(0), q ∈ ∩∞j=1Fix(Sj)∩(g+G−
JGµ )−1(0), Ap = Bq} 6= ∅. Let {(xn, yn)} be the sequence generated by (3.1),
where the step-size γn is chosen in such a way that

γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,(3.12)

otherwise γn = γ ( γ being any nonnegative value), where the index set π =
{n : Axn − Byn 6= 0}. Let λ, µ be positive parameters, {αn}, {βn}, {δn} be
sequences in (0, 1) such that αn + βn + δn = 1, {σn,i} and {tn,j} be sequences
in (0, 1), with the following conditions satisfied:
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(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii)
∞∑
i=0

σn,i = 1 =
∞∑
j=0

tn,j , with tn,0 ∈ (kj , 1);

(iii) 0 < θ < η < 1
1+
√

1+L2
;

(iv) 0 < a ≤ βnδn ≤ b < 1;

(v) lim
n→∞

1
n2αn

= 0.

Then the sequence {(xn, yn)} converges strongly to (x̄, ȳ) ∈ Γ.

Proof. Observe from (3.1), (3.6) and Lemma 2.4, that

||xn+1 − p||2 = ||αnu+ βnxn + δnan − p||2

≤ αn||u− p||2 + βn||xn − p||2

+ δn||an − p||2 − βnδn||xn − an||2

≤ αn||u− p||2 + βn||xn − p||2

+ δn||zn − p||2 − βnδn||xn − an||2

≤ αn||u− p||2 + βn||xn − p||2

+ δn[||xn − p||2 + γ2
n||A∗(Axn −Byn)||

− γn||Axn −Ap||2

−γn||Axn −Byn||2 + γn||Byn −Ap||2]

− βnδn||xn − an||2

= αn||u− p||2 + (1− αn)||xn − p||2

+ δn[γ2
n||A∗(Axn −Byn)|| − γn||Axn −Ap||2

−γn||Axn −Byn||2 + γn||Byn −Ap||2]

− βnδn||xn − an||2.(3.13)

Similarly, we obtain by using (3.1), (3.7) and Lemma 2.4, that

||yn+1 − q||2 = αn||v − q||2 + (1− αn)||yn − q||2

+ δn[γ2
n||B∗(Axn −Byn)|| − γn||Byn −Bq||2

−γn||Axn −Byn||2 + γn||Axn −Bq||2]

− βnδn||yn − bn||2 +
δnk

n2
.(3.14)

Adding, (3.13) and (3.14), we obtain

||xn+1 − p||2 + ||yn+1 − yn||2

≤ αn[||u− p||2 + ||v − q||2]

+ (1− αn)[||xn − p||2 + ||yn − q||2])− δnγn[2||Axn −Byn||2
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− γn||A∗(Axn −Byn)|| − γn||B∗(Axn −Byn)||2]

− βnδn[||xn − an||2 + ||yn − bn||2] +
δnk

n2
.(3.15)

We now divide the rest of the proof into two cases.
Case 1: Assume that {||xn−p||2 + ||yn− q||2} is monotonically nonincreasing,
we have that {||xn − p||2 + ||yn − q||2} is convergent. Hence,

(||xn − p||2 + ||yn − q||2)− (||xn+1 − p||2 + ||yn+1 − q||2)→ 0 as n→∞.

From (3.15), we have

βnδn[||xn − an||2 + ||yn − bn||2] + δnγn[2||Axn −Byn||2

− γn||A∗(Axn −Byn)||2 − γn||B∗(Axn −Byn)||]
≤ αn[||u− p||2 + ||v − q||2] + (1− αn)[||xn − p||2 + ||yn − q||2]

− [||xn+1 − p||2 + ||yn+1 − q||2] +
k

n2
.(3.16)

By letting n→∞ in (3.16), we obtain

lim
n→∞

(||xn − an||2 + ||yn − bn||2) = 0.

That is

lim
n→∞

||xn − an|| = 0.(3.17)

and

lim
n→∞

||yn − bn|| = 0.(3.18)

Also,

lim
n→∞

(||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2) = 0.(3.19)

Note that Axn = Byn if n /∈ Ω. Thus,

lim
n→∞

||A∗(Axn −Byn)|| = lim
n→∞

||B∗(Axn −Byn)|| = 0.(3.20)

By using (3.1) and the firmly nonexpansive property of RFλ
[
I + λ

(
JFλ − f

)]
,

we get

||zn − p||2 ≤ ||un − p||2 − ||zn − un||2.(3.21)

Similarly, we get

||wn − p||2 ≤ ||vn − p||2 − ||wn − vn||2.(3.22)
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Adding inequalities (3.21) and (3.22), we have

||zn − p||2 + ||wn − q||2 ≤ ||un − p||2 + ||vn − q||2

− ||zn − un||2 − ||wn − vn||2.(3.23)

Now from (3.1), we have

||xn+1 − p||2 = ||αnu+ βnxn + δnan − p||2

≤ αn||u− p||2 + βn||xn − p||2

+ δn||an − p||2 − βnδn||xn − an||2

≤ αn||u− p||2 + βn||xn − p||2

+ δn||zn − p||2 − βnδn||xn − an||2.(3.24)

Similarly,

||yn+1 − q||2 ≤ αn||v − q||2 + βn||yn − q||2 + δn||wn − q||2

− βnδn||yn − bn||2 +
δnk

n2
.(3.25)

Adding (3.24) and (3.25), and using (3.23), we obtain

||xn+1 − p||2 + ||yn+1 − q||2

≤ αn[||u− p||2 + ||v − p||2]

+ βn[||xn − p||2 + ||yn − q||2]

+ δn[||zn − p||2 + ||wn − q||2]

− βnδn[||xn − an||2 + ||yn − bn||2] +
δnk

n2

≤ αn[||u− p||2 + ||v − q||2]

+ βn[||xn − p||2 + ||yn − q||2] + δn[||un − p||2

+ ||vn − q|| − ||zn − un||2 − ||wn − vn||2]

− βnδn[||xn − an||2 + ||yn − bn||2] +
δnk

n2

≤ αn[||u− p||2 + ||v − q||2]

+ βn[||xn − p||2 + ||yn − q||2] + δn[||xn − p||2

+ ||yn − q||]− δn[||zn − un||2 − ||wn − vn||2]

− βnδn[||xn − an||2 + ||yn − bn||2] +
δnk

n2

= αn[||u− p||2 + ||v − q||2]

+ (1− αn)[||xn − p||2 + ||yn − q||2]

− δn[||zn − un||2 + ||wn − vn||2]

− βnδn[||xn − an||2 + ||yn − bn||2] +
δnk

n2
,(3.26)

which implies that

δn[||zn − un||2 + ||wn − vn||2]
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≤ αn[||u− p||2 + ||v − q||2] + (1− αn)[||xn − p||2 + ||yn − q||2]

− [||xn+1 − xn||2 + ||yn+1−yn ||2]

− βnδn[||xn − an||2 + ||yn − bn||2] +
k

n2
.(3.27)

Taking limit of (3.27) as n→∞, we obtain

lim
n→∞

(||zn − un||2 + ||wn − vn||2) = 0.(3.28)

Hence,

lim
n→∞

||zn − un|| = ||RFλ (I + λ(JFλ − f))un − un|| = 0(3.29)

and

lim
n→∞

||wn − vn|| = ||RFµ (I + µ(JFµ − g))vn − vn|| = 0.(3.30)

From (3.1) and (3.20), we obtain

||un − xn|| = γn||A∗(Axn −Byn)|| → 0 as n→∞.(3.31)

Similarly, we obtain

||vn − yn|| = γn||B∗(Axn −Byn)|| → 0 as n→∞.(3.32)

Using (3.29) and (3.31), we have

||zn − xn|| ≤ ||zn − un||+ ||un − xn|| → 0 as n→∞.(3.33)

Also, by using (3.30) and (3.32), we obtain

||wn − yn|| ≤ ||wn − vn||+ ||vn − yn|| → 0 as n→∞.(3.34)

We also see that{
||an − zn|| ≤ ||an − xn||+ ||xn − zn|| → 0 as n→∞,
||bn − wn|| ≤ ||bn − yn||+ ||yn − wn|| → 0 as n→∞.

(3.35)

Next, we show that ||Kizn−zn|| → 0 as n→∞. Indeed, from (3.3) and (3.35),
we have

σn,0σn,ig(||zn −Kizn||)
= ||zn − p||2 − ||an − p||2

≤ ||zn − an||(||zn − p||+ ||an − p||)→ 0 as n→∞.

Since σn,0σn,i 6= 0, we obtain from the property of g that

lim
n→∞

||Kizn − zn|| = 0.(3.36)
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Similarly, from (3.4) and (3.35), we have

∞∑
j=1

tn,j(tn,0 − k)||wn − gjn|| ≤ ||wn − q||2 − ||bn − q||2 +
k

n2

≤ ||wn − bn||(||wn − q||+ ||bn − q||)

+
k

n2
→ 0 as n→∞.(3.37)

Using the fact that,
∞∑
j=1

tn,j 6= 0 and d(wn, Sjwn) ≤ ||wn − gjn||, we get that

lim
n→∞

d(wn, Sjwn) = 0.(3.38)

Furthermore, we obtain

||xn+1 − xn|| = ||αnu+ βnxn + δnan − xn||
≤ αn||u− xn||+ δn||an − xn||,

which, by condition (i) and (3.17), implies that

lim
n→∞

= ||xn+1 − xn|| = 0.(3.39)

Also, by using condition (i) and (3.18), we obtain

lim
n→∞

||yn+1 − yn|| = 0.(3.40)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ x̄. By (3.31) and (3.32), we have that unk ⇀ x̄ and znk ⇀ x̄. Using (3.36)
and the demiclosed property of Ki and Lemma 2.3, we have x̄ ∈ ∩∞i=1Fix(Ki) =
∩∞i=1Fix(Ti). Also, since {yn} is bounded, there exists a subsequence {ynk} of
{yn} such that ynk ⇀ ȳ. Using (3.38) and the fact that Sj is demiclosed at
0 for each j, we obtain ȳ ∈ ∩∞j=1F (Sj). We have from (3.29) and (3.30), that

x̄ ∈ (f + F − JFλ )−1(0) and ȳ ∈ (f + G − JGµ )−1(0), respectively. Hence, we
have that (x̄, ȳ) ∈ Γ.

Now, since A and B are bounded linear operators, we have that {Axn}
converges weakly to Ax̄ and {Byn} converges weakly to Bȳ.

Next, we show that Ax̄ = Bȳ.

||Ax̄−Bȳ||2

= 〈Ax̄−Bȳ,Ax̄−Bȳ〉
= 〈Ax̄−Bȳ,Ax̄−Bȳ +Axn −Axn +Byn −Byn〉
= 〈Ax̄−Bȳ,Ax̄−Axn〉+ 〈Ax̄−Bȳ,Axn −Byn〉
+ 〈Ax̄−Bȳ,Byn −Bȳ〉
= 〈Ax̄−Bȳ,Ax̄−Axn〉+ 〈Ax̄,Axn −Byn〉 − 〈Bȳ,Axn −Byn〉
+ 〈Ax̄−Bȳ,Byn −Bȳ〉
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= 〈Ax̄−Bȳ,Ax̄−Axn〉+ 〈x̄, A∗(Axn −Byn)〉
− 〈ȳ, B∗(Axn −Byn)〉+ 〈Ax̄−Bȳ,Byn −Bȳ〉
≤ 〈Ax̄−Bȳ,Ax̄−Axn〉+ ||x̄||||A∗(Axn −Byn)||
+ ||ȳ|| ||B∗(Axn −Byn)||
+ 〈Ax̄−Bȳ,Byn −Bȳ〉 → 0, n→∞.

This implies that ||Ax̄−Bȳ|| = 0. Hence, Ax̄ = Bȳ.
Next, we show that {(xn, yn)} converges strongly to (x̄, ȳ).
From (3.1), we have that

||xn+1 − x̄||2

= ||αnu+ βnxn + δnan − x̄||2

= ||αn(u− x̄) + βn(xn − x̄) + δn(an − x̄)||2

≤ ||βn(xn − x̄) + δn(an − x̄)||2 + 2αn〈xn+1 − x̄, u− x̄〉
≤ βn||xn − x̄||2 + δn||zn − x̄||2 + 2αn〈xn+1 − xn, u− x̄〉.(3.41)

Similarly,

||yn+1 − ȳ||2

= ||αnv + βnyn + δnbn − ȳ||2

= ||αn(v − ȳ) + βn(yn − ȳ) + δn(bn − ȳ)||2

≤ ||βn(yn − ȳ) + δn(bn − ȳ)||2 + 2αn〈yn+1 − ȳ, v − ȳ〉

≤ βn||yn − ȳ||2 + δn||wn − ȳ||2 +
δnk

n2
+ 2αn〈yn+1 − yn, v − ȳ〉.(3.42)

By adding, (3.41) and (3.42), we obtain

||xn+1 − x̄||2 + ||yn+1 − ȳ||2

= βn[||xn − x̄||2 + ||yn − ȳ||2]

+ δn[||zn − x̄||2 + ||wn − ȳ||2] +
δnk

n2

+ 2αn(〈xn+1 − x̄, u− x̄〉+ 〈yn+1 − ȳ, v − ȳ〉)
≤ βn[||xn − x̄||2 + ||yn − ȳ||2]

+ δn[||xn − x̄||2 + ||yn − ȳ||2] +
δnk

n2

+ 2αn(〈xn+1 − x̄, u− x̄〉+ 〈yn+1 − ȳ, v − ȳ〉)
≤ (1− αn)[||xn − x̄||2 + ||yn − ȳ||2]

+ 2αn

(
〈xn+1 − x̄, u− x̄〉+ 〈yn+1 − ȳ, v − ȳ〉+

k

αnn2

)
.(3.43)

Since xn ⇀ x̄ and yn ⇀ ȳ, then xn+1 ⇀ x̄ and yn+1 ⇀ ȳ. Thus, using Lemma
2.8, condition (v) and (3.43), we obtain ||xn− x̄||2 + ||yn− ȳ||2 → 0 as n→∞.
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Hence,

lim
n→∞

||xn − x̄|| = 0 = lim
n→∞

||yn − ȳ||.(3.44)

Therefore, (xn, yn)→ (x̄, ȳ) ∈ Γ.
Case 2: Assume that {||xn − p||2 + ||yn − q||2} is not monotone decreasing.
Set Υn := ||xn − p||2 + ||yn − q||2 and let τ : N→ N be a mapping defined for
n ≥ n0 (for some large n0) by

τ(n) := max{k ∈ N : k ≤ n,Υk ≤ Υk+1}.

Clearly, τ is a non-decreasing sequence such that τ(n)→∞, as n→∞ and

Υτ(n) ≤ Υτ(n)+1, n ≥ n0.

From (3.16), we have that

ε2
(
||A∗(Axτ(n) −Byτn)||2 + ||B∗(Axτn −Byτn||2

)
≤ ατ(n)

[
||u− p||2 + ||v − q||2

]
+ (1− ατ(n))[||xτ(n) − p||2

+ ||yτ(n) − q||2]− [||xτ(n)+1 − p||2 + ||yτ(n) − q||2].

Using condition (i) of (3.1), we have that

(||A∗(Axτ(n) −Byτ(n))||2 + ||B∗(Axτ(n) −Byτ(n))||2)→ 0, as n→∞.

Note Axτ(n) −Byτn = 0, if τ(n) /∈ π. Hence

lim
τ(n)→∞

||A∗(Axτ(n) −Byτn)|| = 0,(3.45)

and

lim
τ(n)→∞

||B∗(Axτ(n) −Byτ(n))|| = 0.(3.46)

Following the same argument as in Case 1, we have that ({xτ(n), {yτ(n)}})
converges weakly to (x̄, ȳ) ∈ Γ.

Now, for all n ≥ n0,

0 ≤ [||xτ(n)+1 − x̄||2 + ||yτ(n)+1 − ȳ||2]− [||xτ(n) − x̄||2 + ||yτ(n) − x̄||2]

≤ (1− ατ(n))[||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2]

− 2ατ(n)

(
〈xτ(n)+1 − x̄, u− x̄〉+ 〈yτ(n)+1 − ȳ, v − ȳ〉+

k

ατ(n)n2

)
− [||xτ(n)

− x̄||2 + ||yτ(n)
− ȳ||2],

which implies

ατ(n)[||xτ(n)−x̄||+ ||yτ(n)
− ȳ||2]
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≤ 2ατ(n)

(
〈xτ(n)

− x̄, u− x̄〉+ 〈yτ(n)
− ȳ, v − ȳ〉+

k

ατ(n)n2

)
.(3.47)

Now, we note that ατ(n) > 0, and hence we get

lim
n→∞

(
||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2

)
= 0.

Therefore,

lim
n→∞

Υτ(n) = lim
n→∞

Υτ(n)+1 = 0.

For n ≥ n0, it is clear that Υτ(n) ≤ Υτ(n)+1 if n 6= τ(n) (that is τ(n) < n)
because Υj > Υj+1 for τ(n) + 1 ≤ j ≤ n.
Consequently, for all n ≥ n0

0 < Υn ≤ max{Υτ(n),Υτn+1} = Υτn+1.

Hence, limn→∞Υn = 0. Therefore, we conclude that {(xn, yn)} converges
strongly to (x̄, ȳ).

Corollary 3.3. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3

and B : H2 → H3 be two bounded linear operators with adjoints A∗ and B∗,
respectively. Let F : H1 → 2H1 and G : H2 → 2H2 be two multi-valued maximal
monotone mappings with nonempty values, f : H1 → H1 and g : H2 → H2 be
two inverse strongly monotone mappings. Assume that Γ := {(p, q) : p ∈
(f + F − JFλ )−1(0), q ∈ (g + G − JGµ )−1(0), Ap = Bq} 6= ∅. Let {(xn, yn)} be
the sequence generated for x0, u ∈ H1 and y0, v ∈ H2, by

un = xn − γnA∗(Axn −Byn);

zn = RFλ [I + λ(JFλ − f)]un;

xn+1 = αnu+ βnxn + δnzn;

vn = yn + γnB
∗(Axn −Byn);

wn = RGµ [I + µ(JGµ − g)]vn;

yn+1 = αnv + βnyn + δnwn,

(3.48)

where the step-size γn is chosen in such a way that

(3.49) γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,

otherwise γn = γ ( γ being any nonnegative value), where the index set π = {n :
Axn−Byn 6= 0}. Let λ, µ be positive parameters, {αn}, {βn}, {δn} be sequences
in (0, 1) such that αn + βn + δn = 1 satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii) 0 < a ≤ βnδn ≤ b < 1;
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(iii) lim
n→∞

1
n2αn

= 0.

Then the sequence {(xn, yn)} converges strongly to {(x̄, ȳ)} ∈ Γ.

Corollary 3.4. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3

and B : H2 → H3 be two bounded linear operators with adjoints A∗ and B∗,
respectively. For i, j = 1, 2, · · · , let Ti : H1 → H1 be a countable infinite family
of L-Lipschitizian and quasi-pseudocontractive mappings with L ≥ 1 such that
Ti is demiclosed at 0 and let Sj : H2 → CB(H2) be a countable infinite family
of generalized kj-strictly pseudocontractive multi-valued mappings such that for
some k ∈ (0, 1), kj ∈ (0, k]. Let F : H1 → 2H1 and G : H2 → 2H2 be two multi-
valued maximal monotone mappings with nonempty values. Assume that Γ :=
{(p.q) : p ∈ ∩∞i=1Fix(Ti) ∩ F−1(0), q ∈ ∩∞j=1F (Sj) ∩ G−1(0) : Ap = Bq} 6= ∅.
Let {(xn, yn)} be the sequences generated by x0, u ∈ H1 and y0, v ∈ H2 defined
by

(3.50)



un = xn − γnA∗(Axn −Byn);

zn = (I + λF )−1un;

xn+1 = αnu+ βnxn + δn(σn,0zn

+ (
∞∑
i=1

(1− θ)I + θTi((1− η)I + ηTi))zn);

vn = yn + γnB
∗(Axn −Byn);

wn = (I + µG)−1vn;

yn+1 = αnv + βnyn + δn(tn,0wn + (
∞∑
j=1

tn,j)g
j
n); gjn ∈ Sjwn,

where the step-size γn is chosen in such a way that

(3.51) γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,

otherwise γn = γ ( γ being any nonnegative value), where the index set π =
{n : Axn − Byn 6= 0}. Let λ, µ be positive parameters, {αn}, {βn}, {δn} be
sequences in (0, 1) such that αn + βn + δn = 1, {σn,i} and {tn,j} be sequences
in (0, 1) with the following conditions satisfied

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii)
∞∑
i=0

σn,i = 1 =
∞∑
j=0

tn,j , with tn,0 ∈ (kj , 1);

(iii) 0 < θ < η < 1
1+
√

1+L2
;

(iv) 0 < a ≤ βnδn ≤ b < 1;

(v) lim
n→∞

1
n2αn

= 0.

Then the sequence {(xn, yn)} converges strongly to {(x̄, ȳ)} ∈ Γ.
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4. Application and Numerical Example

4.1. Variational Inequality Problem

The variational inequality problem is defined as:

Find x ∈ C such that 〈Ax, y − x〉 ≥ 0, ∀ y ∈ C,(4.1)

where A : C → H is a nonlinear operator- We denote the set of solutions of
VIP (4.1) by V I(C,A).

Let H be a real Hilbert space and h be a proper, convex and lower semi-
continuous function of H into R. Then the subdifferential δh of h is defined as
follows:

δh(x) = {z ∈ H : h(x) + 〈z, u− x〉 ≤ h(u),∀ u ∈ H},(4.2)

for all x ∈ H. We know that δh is a maximal monotone operator (see [39]).
Let C be a nonempty, closed and convex subset of H and ιC be the indicator
function of C which is defined by

ιC =

{
0, if x ∈ C,
+∞, if x /∈ C.

Then, ιC is a proper, convex and lower semicontinuous function on H. So, we

can define the resolvent operator as R
διC
λ of διC for λ > 0, i.e.

R
διC
λ (x) = (I + λδιC )−1(x), x ∈ H.

We know that R
διC
λ (x) = PC(x) for all x ∈ H and λ > 0 (see [43]). Moreover,

for a single-valued operator f : H → H, we have that

x ∈ (f + διC )−1(0)⇐⇒ x ∈ V I(C, f).

Let C be a nonempty, closed and convex subset of a real Hilbert space H.
For each x ∈ H, it is known that there exists a unique element PCx of C such
that

||x− PCx|| = inf{||x− y|| : y ∈ C},

where PC is referred to as the nearest point mapping or metric projection from
H onto C.

Now, we present an application of our main theorem.

Theorem 4.1. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3

and B : H2 → H3 be two bounded linear operators with adjoints A∗ and B∗,
respectively. For i, j = 1, 2, · · · , let Ti : H1 → H1 be a countable infinite
family of L-Lipschitizian and quasi-pseudocontractive mappings with L ≥ 1
such that Ti is demiclosed at 0 and let Sj : H2 → CB(H2) be a countable infinite
family of generalized kj-strictly pseudocontractive multi-valued mappings such
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that for some k ∈ (0, 1), kj ∈ (0, k]. Let f : H1 → H1 and g : H2 → H2

be φ, ϕ- inverse strongly monotone mappings. Assume that Γ := {(p, q) : p ∈
∩∞i=1Fix(Ti) ∩ V I(C, f), q ∈ ∩∞j=1Fix(Sj) ∩ V I(Q, g), Ap = Bq} 6= ∅. Let
{(xn, yn)} be the sequences generated by x0, u ∈ H1 and y0, v ∈ H2 defined by

(4.3)



un = xn − γnA∗(Axn −Byn);

zn = PC(I − λnf)un;

xn+1 = αnu+ βnxn + δn(σn,0zn

+ (
∞∑
i=1

(1− θ)I + θTi((1− η)I + ηTi))zn);

vn = yn + γnB
∗(Axn −Byn);

wn = PQ(I − µng)un; ;

yn+1 = αnv + βnyn + δn(tn,0wn + (
∞∑
j=1

tn,j)g
j
n); gjn ∈ Sjwn,

where the step-size γn is chosen in such a way that

γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,(4.4)

otherwise γn = γ ( γ being any nonnegative value), where the index set π =
{n : Axn − Byn 6= 0}. Let λ, µ be positive parameters, {αn}, {βn}, {δn} be
sequences in (0, 1) such that αn + βn + δn = 1, {σn,i} and {tn,j} be sequences
in (0, 1) with the following conditions satisfied:

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii)
∞∑
i=0

σn,i = 1 =
∞∑
j=0

tn,j , with tn,0 ∈ (kj , 1);

(iii) 0 < θ < η < 1
1+
√

1+L2
;

(iv) 0 < a ≤ βnδn ≤ b < 1;

(v) lim
n→∞

1
n2αn

= 0.

Then the sequence {(xn, yn)} converges strongly to {(x̄, ȳ)} ∈ Γ.

The following is a consequence of Theorem 4.1.

Corollary 4.2. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B :
H2 → H3 be two bounded linear operators with adjoints A∗ and B∗, respectively.
For i, j = 1, 2, · · · , let T : H1 → H1 and S : H2 → H2 be nonexpansive
mappings. Let f : H1 → H1 and g : H2 → H2 be φ, ϕ- inverse strongly
monotone mappings. Assume that Γ := {(p, q) : p ∈ Fix(T ) ∩ V I(C, f), q ∈
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Fix(S) ∩ V I(Q, g), Ap = Bq} 6= ∅. Let {(xn, yn)} be the sequences generated
by x0, u ∈ H1 and y0, v ∈ H2 and

(4.5)



un = xn − γnA∗(Axn −Byn);

zn = PC(I − λnf)un;

xn+1 = αnu+ βnxn + δnTzn;

vn = yn + γnB
∗(Axn −Byn);

wn = PQ(I − µng)un;

yn+1 = αnv + βnyn + δnSwn

where the step-size γn is chosen in such a way that

(4.6) γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,

otherwise γn = γ ( γ being any nonnegative value), where the index set π =
{n : Axn − Byn 6= 0}. Let λ, µ be positive parameters, {αn}, {βn} and {δn}
be sequences in (0, 1) such that αn + βn + δn = 1, satisfying the following
conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii) 0 < a ≤ βnδn ≤ b < 1;

(iii) lim
n→∞

1
n2αn

= 0.

Then the sequence {(xn, yn)} converges strongly to {(x̄, ȳ)} ∈ Γ.

4.2. Numerical Example

We consider a numerical example in (R2, ||.||2) (where R2 is the Euclidean
plane). Let F : R2 → R2 and G : R2 → R2 be defined by F (x1, x2) =
(2x1−x2, x1+2x2) and G(x1, x2) = (x1+x2, 2x1−x2), respectively. Clearly, F
andG are maximal monotone mappings. Also, let f : R2 → R2 and g : R2 → R2

be defined by f(x1, x2) = (x1

34 ,
x2

17 ) and g(x1, x2) = (x1

2 ,
x2

3 ), respectively, then
f and g are inverse strongly monotone mappings. Take λ = µ = 1

2 , then
we compute the resolvent operators and the Yosida approximation operator as
follows:

RFλ = (I + λF )−1 =

(
8x1

17
+

2x2

17
,

8x2

17
− 2x1

17

)
.

RGµ = (I + µG)−1 = (2x1 − 2x2, 6x2 − 4x1).

JFλ =
1

λ
(I −RFλ ) =

(
9x1

34
− x2

17
,
x1

17
+

9x2

34

)
.

JGµ =
1

µ
(I −RGµ ) =

(
x2 −

x1

2
, 2x1 −

5x2

2

)
.
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Therefore, we have that

RFλ [I + λ(JFλ − f)] =

(
9x1

17
+

61x2

578
,

156x2

289
− 2x1

17

)
and

RGµ [I + µ(JGµ − g)] =

(
x1

2
+
x2

3
, x1 −

3x2

2

)
.

Let the sequences αn = 1
3(n+3) , βn = n+1

3(n+3) , δn = 2n+7
3(n+3) and the step size γn

be chosen in such a way that for some ε > 0,

γn ∈
(
ε,

2||Axn −Byn||2

||B∗(Axn −Byn)||2 + ||A∗(Axn −Byn)||2
− ε
)
, n ∈ π,

otherwise γn = γ ( γ being any nonnegative value), where the index set π =
{n : Axn −Byn 6= 0}.

Let u, x0 ∈ R2 and v, y0 ∈ R2 be arbitrary. Then, our Algorithm (3.48)
becomes 

un = xn − γnA∗(Axn −Byn);

zn = RFλ [I + λ(JFλ − f)]un;

xn+1 = 1
3(n+3)u+ n+1

3(n+3)xn + 2n+7
3(n+3)zn;

vn = yn + γnB
∗(Axn −Byn);

wn = RGµ [I + µ(JGµ − g)]vn;

yn+1 = 1
3(n+3)v + n+1

3(n+3)yn + 2n+7
3(n+3)wn;

Furthermore, let A : R2 → R2 and B : R2 → R2 be defined by

A(x) =

(
4 −2
1 3

)(
x1

x2

)
and B(ȳ) =

(
5 8
7 4

)(
y1

y2

)
.

We now consider the following cases for our numerical experiments.

Case 1
Take x0 = (−1,−0.5)T , y0 = (−1,−0.5)T , u = (−1, 0)T and v = (−1, 0)T .

Case 2
Take x0 = (−1,−0.5)T , y0 = (−1,−0.5)T , u = (1, 2)T and v = (1, 2)T .

Case 3
Take x0 = (1, 0.5)T , y0 = (−1,−0.5)T , u = (−1, 0)T and v = (−1, 0)T .

Case 4
Take x0 = (−1,−0.5)T , y0 = (1, 0.5)T , u = (2,−3)T and v = (−2, 3)T .
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Figure 1: Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top
right); Case 3 (bottom left); Case 4 (bottom right).
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5. Conclusion

In this paper, we introduce the SEMYVIP (1.11)-(1.12) and present an
iterative algorithm to approximate a common solution of SEMYVIP (1.11)-
(1.12) and infinite families of quasi-pseudo-conctractive and multi-valued gener-
alized strictly pseudocontrative mapping in real Hilbert spaces. The SEMYVIP
(1.11)-(1.12) and the map considered in this article generalizes the ones consid-
ered in [15], [17] and [33]. Our results do not require any compactness condition
nor any prior knowledge of operator norm.
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