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I-statistical limit points and I-statistical cluster points in
probabilistic normed spaces

Samiran Das1 and Argha Ghosh23

Abstract. In this paper, we introduce the notions of I-statistical
limit points and I-statistical cluster points for a sequence in probabilis-
tic normed spaces and study some basic properties of the sets of all
I-statistical limit points and I-statistical cluster points of a sequence in
probabilistic normed spaces including their interrelationship. Also, us-
ing the additive property of I-asymptotic density zero sets, we establish
I-statistical analogue of some previous results.
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1. Introduction

As a generalization of ordinary normed linear spaces, the notion of prob-
abilistic normed spaces (PN spaces in short) was introduced by Šerstnev [27]
considering the values of norms are probability distribution functions instead
of non-negative real numbers. The theory of probabilistic normed spaces had
gone through considerable developments before Alsina et al. [1] introduced a
new, wider accepted definition of PN spaces. A detailed study in this direction
can be seen from the book by Guillen and Harikrishnan [16] and many others.

On the other hand, the notion of statistical convergence for a sequence
of real numbers was introduced by Fast [10] and Schoenberg [24] individually,
which is a generalization of the notion of ordinary convergence for a sequence of
real numbers. And after the seminal works of Sálat [26] and Fridy[11], over the
years, a lot of studies have been done in this direction. In [12], Fridy introduced
the notions of statistical limit points and statistical cluster points of a sequence
of real numbers and studied the interrelation between them. And the notions
of statistical convergence, statistical limit points and statistical cluster points
for a sequence in a PN space was introduced and studied by Karakus [13]. For
more studies on this convergence, see [2, 3, 21, 25] and many others.

Further, the idea of statistical convergence was extended to I-convergence
by Kostyrko et al. [15]. And using this notion of ideals in N, the concepts of
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statistical limit points and statistical cluster points were naturally extended to
I-limit points and I-cluster points for a sequence of real numbers respectively
by Kostyrko et al. in [14]. And later, the notions of I-convergence, I-limit
points and I-cluster points in PN spaces were introduced by Mursaleen et
al. [18], which extend the concepts of statistical convergence, statistical limit
points and statistical cluster points in PN spaces respectively. For more works
on this convergence, see [8, 7, 14] and many others.

In 2011, Savas et al. [23] introduced the notion of I-statistical convergence,
and Mursaleen et al. [19] introduced the notion of I-statistical cluster points
for a sequence of real numbers. And in 2015, Savas et al. introduced and
studied the notion of I-statistical convergence for a sequence in PN spaces
[22]. A few more works on this convergence can be found in [5, 4, 19, 17]
and many others. The notion of I-statistical limit points for a sequence of
real numbers was introduced by Debnath et al. [6] and by Malik et al. [17]
independently. The notion of I-statistical limit points is a generalization of
the concept of statistical limit points for a sequence of real numbers. One can
find some established relationships between the notions of I-statistical limit
points and I-statistical cluster points both in [6] and [17]. Also, the study
of various methods of convergence (of sequences in PN spaces) has become
engaging lately (see [1, 9, 22]). Therefore, it seems reasonable to introdice
the notion of I-statistical limit points and I-cluster points in the theory of
probabilistic normed spaces. And here we do that.

In Section 3 of this paper, we introduce the notion of I-statistical limit
points and I-statistical cluster points for a sequence in probabilistic normed
spaces. And we also study the sets of I-statistical limit points and I-statistical
cluster points for a sequence in probabilistic normed spaces and establish some
relationship between them. Moreover, in Section 4, using Condition APIO, we
establish some theorems in probabilistic normed space analogue to the theorems
of [12], as well as [13]. Consequently, our results generalize the results of [13].

2. Basic Definitions and Notations

In this section, we now recall some definitions and notations, which are
needed forlater parts of the paper.

Definition 2.1. [1] A non-decreasing and left-continuous function f : R →
[0,∞] is said to be a distribution function if inf

t∈R
f(t) = 0, and sup

t∈R
f(t) = 1.

We write D to denote the set of all distribution functions.

Definition 2.2. [1] A triangular norm (t-norm in short) is a continuous map-
ping ◦ : [0, 1]× [0, 1]→ [0, 1] which satisfies the following conditions:

1. a ◦ 1 = a ∀a ∈ [0, 1];

2. a ◦ b = b ◦ a ∀a, b ∈ [0, 1];

3. c ◦ d ≥ a ◦ b if c ≥ a and d ≥ b ∀a, b, c, d ∈ [0, 1];
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4. (a ◦ b) ◦ c = a ◦ (b ◦ c) ∀a, b, c ∈ [0, 1].

Definition 2.3. [13] A probabilistic normed space (PN space in short) is a
triplet (X,N , ◦), where X is a vector space over the field R, N is a function
from X into D and ◦ is a t-norm such that the following conditions hold:

1. Nx(0) = 0;

2. Nx(t) = 1 ∀t > 0 iff x = 0;

3. Nβx(t) = Nx( t
|β| ) ∀β ∈ R/{0};

4. Nx+y(u+ t) ≥ Nx(u) ◦ Ny(t) ∀x, y ∈ X and ∀u, t ∈ [0,∞].

Here we write Nx to denote N (x) and Nx(t) to denote the value of Nx at
t ∈ R. And in this case, N is said to be the probabilistic norm of the PN space
(X,N , ◦).

Now we give an example of a probabilistic normed space.

Example 2.4. Consider the linear space R of all real numbers. Let us define
a◦b = min{a, b} for all a, b ∈ R and Nx = ε∞ for x 6= 0 and Nx = ε0 for x = 0,
where

ε0(t) = 0, −∞ ≤ t ≤ 0

= 1, 0 < t ≤ ∞;

ε∞(t) = 0, −∞ ≤ t <∞
= 1, t =∞.

We show that (R,N , ◦) is a PN space. Let x = 0. Then Nx = ε0, and so
Nx(0) = ε0(0) = 0. Again let x 6= 0. Then Nx = ε∞, and so Nx(0) = ε∞(0) =
0. Therefore for all x ∈ R, we haveNx(0) = 0. Now for x = 0, we haveNx = ε0.
Thus for all t > 0, N0(t) = ε0(t) = 1 (by the definition of ε0). Let Nx(t) = 1 for
all t > 0. We will show that x = 0. If possible, let x 6= 0. Then Nx = ε∞. And
ε∞(t) = 0 whenever 0 < t <∞ (by the definition of ε∞), which contradicts the
fact that Nx(t) = 1 for all t > 0. Thus x = 0. Hence Nx(t) = 1 for all t > 0
if and only if x = 0. Clearly, for all β ∈ R \ {0}, we have Nβx(t) = Nx( t

|β| ).

Also, Nx+y(u + t) ≥ Nx(u) ◦ Ny(t) ∀x, y ∈ R and ∀u, t ∈ [0,∞] (by using the
definitions of ε∞ and ε0). Hence (R,N , ◦) is a PN space.

Definition 2.5. [13] Let (X,N , ◦) be a PN space. Then a sequence {xk}k∈N
in X is said to be convergent to ξ ∈ X with respect to the probabilistic norm N
if for every ε > 0 and λ ∈ (0, 1) there exists k0 ∈ N such that Nxk−ξ(ε) > 1−λ
whenever k ≥ k0.

In this case, we write lim
k→∞

N (xk) = ξ.
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Definition 2.6. [13] Let (X,N , ◦) be a PN space. Then a sequence {xk}k∈N
in X is said to be a Cauchy sequence with respect to the probabilistic norm N
if for every ε > 0 and λ ∈ (0, 1) there exists k0 ∈ N such that Nxj−xk

(ε) > 1−λ
whenever j, k ≥ k0.

Definition 2.7. [13] Let (X,N , ◦) be a PN space and x be an element in X.
Then for ε > 0 the ball centered at x and having radius λ ∈ (0, 1) is denoted
by B(x, λ, ε) and is defined by B(x, λ, ε) = {u ∈ X : Nx−u(ε) > 1− λ}.

Definition 2.8. [13] Let (X,N , ◦) be a PN space. Then ξ ∈ X is said to be
a limit point of the sequence {xk}k∈N in X with respect to the probabilistic
norm N if there is a subsequence of the sequence {xk}k∈N which converges to
l with respect to the probabilistic norm N .

We write LNx to denote the set of all such limit points of the sequence {xk}k∈N.

Definition 2.9. [13] Let (X,N , ◦) be a PN space. Then a subset A of X is
said to be closed in X if A contains all its limit points with respect to the
probabilistic norm N .

Definition 2.10. [20] A subset M of N is said to have natural density or
asymptotic density d(M) if

d(M) = lim
n→∞

|M(n)|
n

exists, where M(n) = {j ∈M : j ≤ n} and |M(n)| represents the number of
elements in M(n).

Definition 2.11. [12] A sequence x = {xk}k∈N of real numbers is said to be
statistically convergent to l if for every ε > 0 d(Aε) = 0, where Aε = {k ∈ N :
|xk − l| ≥ ε}.

Let (X,N , ◦) be a PN space. If {xkj}j∈N is a subsequence of a sequence
x = {xk}k∈N in X and A = {kj : j ∈ N}, then we abbreviate {xkj}j∈N by {x}A.
In the case d(A) = 0, {x}A is called a subsequence of natural density zero or
a thin subsequence of x. On the other hand, {x}A is a non-thin subsequence
of x if d(A) does not have natural density zero i. e., either d(A) is a positive
number or A fails to have natural density.

Definition 2.12. [13] Let (X,N , ◦) be a PN space. A sequence x = {xk}k∈N in
X is said to be statistically convergent to ξ ∈ X with respect to the probabilistic
norm N if for every ε > 0 and λ ∈ (0, 1)

d({k ∈ N : Nxk−ξ(ε) ≤ 1− λ}) = 0.

In this case, we write st- lim
k→∞

N (xk) = ξ.

Definition 2.13. [13] Let (X,N , ◦) be a PN space. Then ξ ∈ X is said to be
a statistical limit point of a sequence x = {xk}k∈N in X with respect to the
probabilistic norm N , if there exists a nonthin subsequence of x that converges
to ξ with respect to the probabilistic norm N .
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Similarly, ξ ∈ X is an ordinary limit point of the sequence x with respect
to the probabilistic norm N if there is a subsequence of x that converges to
ξ. And the set of all ordinary limit points and statistical limit points of the
sequence x with respect to the probabilistic norm N in X are denoted by LNx
and ΛNx , respectively. Clearly, ΛNx ⊂ LNx .

Definition 2.14. [13] Let (X,N , ◦) be a PN space. Then ξ ∈ X is said to
be a statistical cluster point of a sequence x = {xk}k∈N in X with respect to
the probabilistic norm N , if for every ε > 0 and λ ∈ (0, 1) the set {k ∈ N :
Nxj−ξ(ε) > 1− λ} does not have natural density zero.

The set of all such statistical cluster points of x is denoted by ΓNx . Clearly,
ΓNx ⊂ LNx .

We now recall definitions of an ideal and an filter in a non-empty set X.

Definition 2.15. [15] Let X 6= ∅. A class I of subsets of X is said to be an
ideal in X, provided I satisfies the conditions:
(i) ∅ ∈ I,
(ii) A,B ∈ I ⇒ A ∪B ∈ I,
(iii) A ∈ I, B ⊂ A⇒ B ∈ I.

An ideal I in a non-empty set X is said to be non-trivial if X /∈ I and
I 6= {∅}.

Definition 2.16. [15] Let X 6= ∅. A non-empty class F of subsets of X is said
to be a filter in X, provided F satisfies the following conditions:
(i) ∅ /∈ F ,
(ii) A,B ∈ F ⇒ A ∩B ∈ F ,
(iii) A ∈ F , A ⊂ B ⇒ B ∈ F .

Definition 2.17. [15] Let I be a non-trivial ideal in a non-empty set X. Then
the class F(I)= {M ⊂ X : ∃N ∈ I such that M = X \N} is a filter in X.
This filter F(I) is called the filter associated with the ideal I.

A non-trivial ideal I in X(6= ∅) is called admissible if {x} ∈ I for each
x ∈ X.

From now on rest of the paper, we take I as a non-trivial admissible ideal
in N unless otherwise mentioned.

Definition 2.18. [15] A sequence x = {xk}k∈N of real numbers is said to be
I-convergent to l if for any ε > 0

{k ∈ N : |xk − l| ≥ ε} ∈ I.

Definition 2.19. [4] A subset M of N is said to have I-natural density dI(M)
if

dI(M) = I − lim
n→∞

|M(n)|
n

exists, where M(n) = {j ∈M : j ≤ n} and |M(n)| represents the number of
elements in M(n).
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Note 2.20. From Definition 2.19, for any nontrivial admissible ideal I in N,
d(M) = r implies dI(M) = r.

Definition 2.21. [17] Let x = {xk}k∈N be a sequence of real numbers. Then
in the case dI(B) = 0, {x}B is called a subsequence of I-asymptotic density
zero, or an I-thin subsequence of x. On the other hand, {x}B is an I-nonthin
subsequence of x, if B does not have I-asymptotic density zero, in other words,
either dI(B) is a positive number or B fails to have I-asymptotic density.

Definition 2.22. [23] A sequence x = {xk}k∈N of real numbers is said to be
I-statistically convergent to l if for any ε > 0, δ > 0

{n ∈ N : 1
n |{k ≤ n : |xk − l| ≥ ε}| ≥ δ} ∈ I.

Definition 2.23. [6] A real number l is said to be an I-statistical limit point
of a sequence x = {xk}k∈N of real numbers provided that for each ε > 0 there is
a set M = {m1 < m2 < ...} ⊂ N such that M /∈ I and {xmk

}k∈N is statistically
convergent to l.

Definition 2.24. [17] A real number l is said to be an I-statistical limit
point of a sequence x = {xk}k∈N of real numbers if there exists an I-nonthin
subsequence of x that converges to l.

Remark 2.25. Even though both definitions (Definition 2.23 and Definition
2.24) are the definitions of I-statistical limit points of a sequence of real num-
bers, we follow Definition 2.24 to introduce the definition of I-statistical limit
points for a sequence in a probabilistic normed space.

Definition 2.26. [19] A real number l is said to be an I-statistical cluster
point of a sequence x = {xk}k∈N of real numbers if for each ε > 0 the set
{k ∈ N : |xk − l| < ε} does not have I-asymptotic density zero.

Definition 2.27. [22] Let (X,N , ◦) be a PN space. Then a sequence x =
{xk}k∈N in X is said to be I-statistically convergent to ξ ∈ X with respect to
probabilistic norm N if for every ε > 0, δ > 0 and λ ∈ (0, 1)

{n ∈ N : 1
n |{k ≤ n : Nxj−ξ(ε) ≤ 1− λ}| ≥ δ} ∈ I.

In this case, we write I-st- lim
k→∞

N (xk) = ξ.

3. I-statistical limit points and I-statistical cluster points
in a PN space

In this section, following the line of Fridy [12] and Karakus [13], we introduce
the notion of I-statistical limit points and I-statistical cluster points for a
sequence in a PN space (X,N , ◦) with respect to the probabilistic norm N , and
we study an I-statistical analogue of a few theorems in probabilistic normed
spaces related to those papers.

Let (X,N , ◦) be a PN space and x = {xk}k∈N be a sequence in X. Then
in the case dI(B) = 0, {x}B is called a subsequence of I-asymptotic density
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zero, or an I-thin subsequence of x. On the other hand, {x}B is an I-nonthin
subsequence of x, if B does not have I-asymptotic density zero, in other words,
either dI(B) is a positive number or B fails to have I-asymptotic density.

Definition 3.1. Let (X,N , ◦) be a PN space. Then ξ ∈ X is said to be
an I-statistical limit point of a sequence x = {xk}k∈N in X with respect to
the probabilistic norm N , if there exists an I-nonthin subsequence of x that
converges to ξ.

We write ΛSx (I)N to denote the set of all such I-statistical limit points of the
sequence x.

Remark 3.2. Equivalently, the definition of I-statistical limit points of a se-
quence in a PN space can also be given in the following way.

Definition 3.3. Let (X,N , ◦) be a PN space. Then ξ ∈ X is said to be
an I-statistical limit point of a sequence x = {xk}k∈N in X with respect to
the probabilistic norm N , if there exists an I-nonthin subsequence of x that
statistically converges to ξ.

Lemma 3.4. [13] Let (X,N , ◦) be a PN space. If x = {xk}k∈N is a sequence
in X such that st- lim

k→∞
N (xk) = ξ, then x has a nonthin subsequence {xmk

}k∈N
such that lim

k→∞
N (xmk

) = ξ.

Remark 3.5. We now show that both of the definitions (Definition 3.1 and
Definition 3.3) are equivalent.

Theorem 3.6. Definition 3.1 and Definition 3.3 are equivalent.

Proof. We first show that Definition 3.1 implies Definition 3.3. Let ξ ∈ X be
an I-statistical limit point of a sequence x = {xk}k∈N in X with respect to
the probabilistic norm N . Then there exists a set M = {m1 < m2 < ...} ⊂ N
and dI(M) 6= 0 such that lim

k→∞
N (xmk

) = ξ. Now since every convergent

sequence is statistically convergent to the same limit in X with respect to the
probabilistic norm N (see [13]). Thus st- lim

k→∞
N (xmk

) = ξ. Hence, Definition

3.3 holds.
Conversely, we assume that Definition 3.3 holds, we show that Definition

3.1 holds. Let ξ ∈ X be an I-statistical limit point of a sequence x = {xk}k∈N
in X with respect to the probabilistic norm N . Then there exists a set M =
{m1 < m2 < ...} ⊂ N and dI(M) 6= 0 such that st- lim

k→∞
N (xmk

) = ξ. Then

by above Lemma 3.4 there exists a set L = {mn1
< mn2

< ...} ⊂ M and
d(L) 6= 0 such that lim

k→∞
N (xmnk

) = ξ. Now since I is an admissible ideal and

d(L) 6= 0, dI(L) 6= 0. Thus {xmnk
}k∈N is an I-nonthin subsequence of x. Also,

lim
k→∞

N (xmnk
) = ξ. Hence, Definition 3.1 holds.

Now we give an example of an I-statistical limit point in a PN space.
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Example 3.7. Let I be an admissible ideal in N. Consider the PN space
(R,N , ◦) from Example 2.4. We define a sequence x = {xk}k∈N as follows:

xk = 1, if k is odd

= 0, if k is even.

Let B be the set of all odd numbers. Then d(B) = 1
2 . Since I is an admissible

ideal, dI(B) = 1
2 . Thus {x}B is an I-nonthin subsequence of x which converges

to 1 with respect to the norm N . Hence 1 is an I-statistical limit point of x.

Definition 3.8. Let (X,N , ◦) be a PN space. Then ξ ∈ X is said to be an
I-statistical cluster point of a sequence x = {xk}k∈N in X with respect to
the probabilistic norm N , if for every ε > 0 and λ ∈ (0, 1) the set {k ∈ N :
Nxk−ξ(ε) > 1− λ} does not have I-asymptotic density zero.

We write ΓSx (I)N to denote the set of all such I-statistical cluster points of the
sequence x.

Now we give an example of an I-statistical cluster point in a PN space.

Example 3.9. Let I be an admissible in N. Consider the PN space (R,N , ◦)
from Example 2.4. We define a sequence x = {xk}k∈N as follows:

xk = 1, if k is a perfect square

= 0, otherwise.

Let B be the set of all perfect squares. Then d(B) = 0. Since I is an admissible
ideal, thus dI(B) = 0. Now {k ∈ N : Nxk−0(ε) > 1−λ} = N\B for every ε > 0
and λ ∈ (0, 1). Since dI(N \B) = 1, thus dI({k ∈ N : Nxk−0(ε) > 1− λ}) 6= 0.
Hence 0 is an I-statistical cluster point of x.

Note 3.10. Let (X,N , ◦) be a PN space. If I = Ifin = {A ⊂ N : |A| < ∞}
then the notions of I-statistical limit points and I-statistical cluster points in X
with respect to the probabilistic norm N coincide with the notions of statistical
limit points and statistical cluster points in X with respect to the probabilistic
norm N respectively. Thus in a PN space, the notions of I-statistical cluster
points and I-statistical limit points generalize the notions of statistical cluster
points and statistical limit points respectively.

We now cite an example to show that: There exists an ideal I in N for
which there exists a sequence x = {xk}k∈N having I-statistical limit but no
statistical limit in a PN space.

Example 3.11. Let Ck = {(22k)n : n ∈ N}, k ∈ N. Let I = {B ⊂ N :
|B∩Ck| <∞ for some k}. Then I is an ideal of N. Let C = ∪∞n=1(22

n

, 2.22
n

].
Also, we consider the linear space R of all real numbers. Let us define a ◦ b =
min{a, b} for all a, b ∈ R and Nx = ε∞, for x 6= 0 and Nx = ε0 for x = 0, where

ε0(t) = 0, −∞ ≤ t ≤ 0

= 1, 0 < t ≤ ∞;
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ε∞(t) = 0, −∞ ≤ t <∞
= 1, t =∞.

Then (R,N , ◦) is a PN space (see Example 2.4).
Now we define a sequence x = {xk}k∈N in (R,N , ◦) as follows: xk = 1

if k ∈ C and xk = 0, if k /∈ C. Let t > 0 and 0 < λ < 1 be given. Let
K = {k ∈ N : Nxk

(t) ≤ 1 − λ}. Since for k /∈ C we have N0(t) = ε0(t) = 1,
thus K ⊂ C. And for k ∈ C, N1(t) = ε∞(t) = 0 we have C ⊂ K. Hence

C = K. Now for k = 2.22
n

, n ∈ N we have |C(k)|
k ≥ 1

2 and for k = 22
n

, n ∈ N
we have |(N\C)(k)|

k ≥ 1
2 . Thus d(C) does not exists. Hence x is not statistically

convergent in (R,N , ◦).
Now we show that dI(C) = 0. Let δ > 0 be given. Choose p be the smallest

natural number such that 1
22

p−1 < δ. Now if 22
n ∈ Ck for some k ∈ N then

k ≤ n and the smallest element in Ck greater than 22
n

is 22
n

.22
k

. Thus for

i = 22
n

.22
k

we have

|C(i)|
i ≤ 2.22

n

22n .22k
= 1

22k−1
.

Therefore for every i ∈ Cp we have |C(i)|
i ≤ 1

22
p−1 < δ. Thus N \ Cp ⊂ {i ∈ N :

|C(i)|
i ≥ δ}. Since N \ Cp ∈ I, thus {i ∈ N : |C(i)|

i ≥ δ} ∈ I. Hence dI(C) = 0,
and x is I-statistically convergent to 0.

Theorem 3.12. Let (X,N , ◦) be a PN space. Then for a sequence x =
{xk}k∈N in X, we have ΛSx (I)N ⊂ ΓSx (I)N ⊂ LNx .

Proof. Let ς be a arbitrary element in ΛSx (I)N . Then there exists a subsequence
{xkj}j∈N of x such that lim

j→∞
N (xkj ) = ς and dI({kj : j ∈ N}) 6= 0. Let ε > 0

and λ ∈ (0, 1) be given. Since lim
j→∞

N (xkj ) = ς, thus E = {kj : Nxkj
−ς(ε) ≤

1− λ} is a finite set. Also,

{k ∈ N : Nxk−ς(ε) > 1− λ} ⊃ {kj : j ∈ N} \ E

⇒ K = {kj : j ∈ N} ⊂ {k ∈ N : Nxk−ς(ε) > 1− λ} ∪ E.

Now if dI({k ∈ N : Nxk−ς(ε) > 1− λ}) = 0, then we have dI(K) = 0, which is
a contradiction. Thus ς is an I-statistical cluster point of x. Since ς ∈ ΛSx (I)N
is arbitrary, ΛSx (I)N ⊂ ΓSx (I)N .

Now we show that ΓSx (I)N ⊂ LNx . Let ς ∈ ΓSx (I)N . Also, let ε > 0 and
λ ∈ (0, 1) be given. Then the set J = {j ∈ N : Nxj−ς(ε) > 1 − λ} does not
have I-asymptotic density zero. Thus J is an infinite subset of N, so we can
write J = {jk : j1 < j2 < ...}. And we have a subsequence {x}J of x which
converges to ς with respect to the probabilistic norm N . Hence ς ∈ LNx .

Therefore ΛSx (I)N ⊂ ΓSx (I)N ⊂ LNx .

Theorem 3.13. Let (X,N , ◦) be a PN space. Let x = {xk}k∈N and y =
{yk}k∈N be two sequences in X such that dI({k : xk 6= yk}) = 0. Then
ΛSx (I)N = ΛSy (I)N and ΓSx (I)N = ΓSy (I)N .
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Proof. Let ζ ∈ ΓSx (I)N . Also, let ε > 0 and 0 < λ < 1 be given. Then
{k ∈ N : Nxk−ζ(ε) > 1− λ} does not have I-asymptotic density zero. Let B =
{k ∈ N : xk = yk}. Then dI(B) = 1. Therefore {k ∈ N : Nxk−ζ(ε) > 1−λ}∩B
does not have I-asymptotic density zero. Consequently, ζ ∈ ΓSy (I)N . Since

ζ ∈ ΓSx (I)N is arbitrary, thus ΓSx (I)N ⊂ ΓSy (I)N . And by symmetry we have

ΓSy (I)N ⊂ ΓSx (I)N . Hence ΓSx (I)N = ΓSy (I)N .

Now we prove that ΛSx (I)N = ΛSy (I)N . Let η ∈ ΛSx (I)N . Then x has
an I-nonthin subsequence {xkj}j∈N that converges to η with respect to the
probabilistic norm N . Let K = {kj : j ∈ N}. Since dI({kj : xkj 6= ykj}) = 0,
we have dI({kj : xkj = ykj}) 6= 0. Consequently, from the later set, we have
an I-nonthin subsequence {y}K′ of {y}K that converges to η with respect to
probabilistic norm N . Thus η ∈ ΛSy (I)N . Since η ∈ ΛSx (I)N is arbitrary, thus

ΛSx (I)N ⊂ ΛSy (I)N . And by symmetry we have ΛSx (I)N ⊃ ΛSy (I)N . Hence

ΛSx (I)N = ΛSy (I)N .

Example 3.14. Let I be an admissible ideal in N. Consider the PN space
(R,N , ◦) from Example 2.4. We define sequences x = {xk}k∈N and y = {yk}k∈N
as follows:

xk = 1, if k is a perfect square

= 0, otherwise;

and

yk = 2, if k is a perfect square

= 0, otherwise.

Let B be the set of all perfect squares. Then d(B) = 0. Since I is an admissible
ideal, dI(B) = 0. Thus dI({k : xk 6= yk}) = dI(B) = 0.

Clearly, ΓSx (I)N = ΓSy (I)N = {0} and ΛSx (I)N = ΛSy (I)N = {0}.
Theorem 3.15. Let (X,N , ◦) be a PN space and x = {xk}k∈N be a sequence
in X. Then ΓSx (I)N is a closed subset of X.

Proof. If ΓSx (I)N = ∅ then there is nothing to prove. We assume ΓSx (I)N 6= ∅.
Clearly, it is sufficient to prove that ΓSx (I)N contains all its limit points. Let
ξ be a limit point of ΓSx (I)N . Also, let ε > 0 and 0 < λ < 1 be given. Choose
0 < σ < 1 such that (1−σ)◦(1−σ) > 1−λ. ThenB(ξ, σ, ε2 )∩(ΓSx (I)N \{ξ}) 6= ∅.
Choose β ∈ (ξ, σ, ε2 ) ∩ (ΓSx (I)N \ {ξ}). Since β ∈ ΓSx (I)N ,

dI({k ∈ N : Nxk−β( ε2 ) > 1− σ}) 6= 0.

Now we show that

{k ∈ N : Nxk−β( ε2 ) > 1− σ} ⊂ {k ∈ N : Nxk−ξ(ε) > 1− λ}.

Let k ∈ {k ∈ N : Nxk−β( ε2 ) > 1 − σ}. Then Nxk−β( ε2 ) > 1 − σ. Since
β ∈ (ξ, σ, ε2 ), Nξ−β( ε2 ) > 1− σ. Thus

Nxk−ξ(ε) ≥ Nxk−β( ε2 ) +Nβ−ξ( ε2 ) > (1− σ) ◦ (1− σ) = 1− λ.

Since k ∈ {k ∈ N : Nxk−β( ε2 ) > 1− σ} is arbitrary, therefore
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{k ∈ N : Nxk−β( ε2 ) > 1− σ} ⊂ {k ∈ N : Nxk−ξ(ε) > 1− λ}.

Thus

dI({k : Nxk−ξ(ε) > 1− λ}) 6= 0.

Hence ξ ∈ ΓSx (I)N ). This completes the proof.

4. Condition APIO

In this section, using Condition APIO, we prove some theorems similar to
that of [12] and [13].

Definition 4.1. (Additive property for I-asymptotic density zero sets).
[17] The I-asymptotic density dI is said to satisfy APIO if, given any count-
able collection of mutually disjoint sets {Aj}j∈N in N with dI(Aj) = 0, for
each j ∈ N, there exists a collection of sets {Bj}j∈N in N with the properties

|Aj∆Bj | <∞ for each j ∈ N and dI(B =
∞⋃
j=1

Bj) = 0.

Theorem 4.2. Let (X,N , ◦) be a PN space and I be an ideal in N such that
dI has Property APIO. Then a sequence x = {xk}k∈N in X is I-statistically
convergent to ξ if and only if there exists a subset B of N with dI(B) = 1 and

lim
k∈B,k→∞

N (xk) = ξ.

Proof. Let x = {xk}k∈N be a sequence in X such that x is I-statistically
convergent to ξ ∈ X with respect to probabilistic norm N . Then for every
t > 0 and λ ∈ (0, 1), the set {k ∈ N : Nxk−ξ(t) ≥ 1 − λ} has I-asymptotic
density zero. Set A1 = {k ∈ N : 0 ≤ Nxk−ξ(t) <

1
2}, Aj = {k ∈ N : 1 − 1

j ≤
Nxk−ξ(t) < 1 − 1

j+1} for j ≥ 2, j ∈ N. Then {Aj}j∈N is a countable sequence

of mutually disjoint sets with dI(Aj) = 0 for all j ∈ N. Then by assumption
there exists a countable sequence of sets {Bj}j∈N with |Aj∆Bj | < ∞ and

dI(B =
∞⋃
j=1

Bj) = 0. We claim that lim
k∈N\B,k→∞

N (xk) = ξ. To establish our

claim, let t > 0 and δ ∈ (0, 1) be given. Choose i ∈ N such that 1
i+1 < δ.

Then {k ∈ N : Nxk−ξ(t) ≤ 1 − δ} ⊂
i+1⋃
j=1

Aj . Since |Aj∆Bj | < ∞ for all j =

1, 2, . . . , i+ 1, there exists n′ ∈ N such that
i+1⋃
j=1

Aj ∩ (n′,∞) =
i+1⋃
j=1

Bj ∩ (n′,∞).

Now if k /∈ B, k > n′ then k /∈
i+1⋃
j=1

Bj . And consequently, k /∈
i+1⋃
j=1

Aj , which

implies Nxk−ξ(t) > 1− δ. This completes the proof of the necessity part.
Conversely, let there exists a subset B of the set of natural number N with

dI(B) = 1 and lim
k∈B,k→∞

N (xk) = ξ. We are to show that x is I-statistically

convergent to ξ with respect to the probabilistic norm N . Since B is an infinite
set we can write B = {kj : k1 < k2 < ...}. Let t > 0 and 0 < λ < 1 be
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given. Since lim
k∈B,k→∞

N (xk) = ξ then there exists j0 ∈ N such that for all

j > j0, Nxkj
−ξ(t) > 1 − λ. Set M = {k ∈ N : Nxk−ξ(t) ≤ 1 − λ}. Then

M ⊂ N \ {kj : j > j0}. Since dI(B) = 1, dI(N \ {kj : j > j0}) = 0. Thus
dI(M) = 0. Hence x is I-statistically convergent to ξ with respect to the
probabilistic norm N .

Corollary 4.3. Let (X,N , ◦) be a PN space and x = {xk}k∈N be a sequence in
X. Let I be an ideal in N such that dI has Property APIO. If
I-st- lim

k→∞
N (xk) = α then α ∈ ΛSx (I)N .

Theorem 4.4. Let (X,N , ◦) be a PN space and x = {xk}k∈N be a sequence in
X. Let I be an ideal in N such that dI has Property APIO. If
I-st- lim

k→∞
N (xk) = α then ΛSx (I)N = ΓSx (I)N = {α}.

Proof. From Corollary 4.3, we have α ∈ ΛSx (I)N . Let β ∈ ΛSx (I)N be such
that α 6= β. Then there exist two subsets J = {jq : j1 < j2 < ...} and
K = {kr : k1 < k2 < ...} of N such that

dI(J) 6= 0, lim
q→∞
N (xjq ) = α

and

dI(K) 6= 0, lim
r→∞
N (xkr ) = β.

Let t > 0 and 0 < λ < 1 be given. Choose 0 < σ < 1 such that (1 − σ) ◦
(1−σ) > (1−λ). Since the subsequence {x}K of x converges to β with respect
to the probabilistic norm N , there exists r > N0 such that Nxkr−β( t2 ) > 1−σ.

Therefore A = {kr ∈ K : Nxkr−β( t2 ) ≤ 1− σ} ⊂ {kr ∈ K : k1 < k2 < ... <
kN0
}. Let B = {kr ∈ K : Nxkr−β( t2 ) > 1− σ}
Since I is an admissible ideal and A ∈ I we have

(4.1) dI(B) 6= 0.

Again (I-st)− lim
k→∞

N (xk) = α, which implies dI(E) = 0, where E = {k ∈
N : Nxk−α( t2 ) ≤ 1− σ}. And consequently, dI(N \ E) 6= 0.

Since α 6= β, we have B ∩ (N \ E) = ∅, otherwise, for k ∈ B ∩ (N \ E)

Nα−β(t) ≥ Nxk−β( t2 ) ◦ Nxk−α( t2 ) > (1− σ) ◦ (1− σ) > (1− λ);

since λ > 0 is arbitrary and Nα−β(t) > 1 − λ we have Nα−β(t) = 1, for all
t > 0, which implies α = β.

Therefore B ⊂ E. Since dI(E) = 0, we have dI(B) = 0, which contradicts
(4.1). Hence ΛSx (I)N = {α}.

Again let α, β ∈ ΓSx (I)N and α 6= β. Let t > 0 and 0 < λ < 1 be given.
Choose 0 < σ < 1 such that (1− σ) ◦ (1− σ) > (1− λ). Then we have

(4.2) G = {k ∈ N : Nxk−α(
t

2
) > 1− σ}, dI(G) 6= 0
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and

(4.3) H = {k ∈ N : Nxk−β(
t

2
) > 1− σ}, dI(H) 6= 0.

Since α 6= β we have G ∩H = ∅, otherwise, for k ∈ G ∩H

Nα−β(t) ≥ Nxk−α( t2 ) ◦ Nxk−β( t2 ) > (1− σ) ◦ (1− σ) > (1− λ).

Since λ > 0 is arbitrary and Nα−β(t) > 1 − λ, we have Nα−β(t) = 1, for all
t > 0, which implies α = β.

Therefore H ⊂ (N \G) and (I-st)− lim
k→∞

N (xk) = α, which implies dI(N \
G) = 0. Thus dI(H) = 0, which contradicts (4.3). Hence ΓSx (I)N = {α}.

Example 4.5. Consider the ideal I = Ifin of all finite subsets of N. Then I
is an admissible ideal in N and dI has Property APIO. Consider the PN space
(R,N , ◦) from the Example 2.4. We define a sequence x = {xk}k∈N as follows:

xk = 1, if k is a prime number

= 0, otherwise.

Let P be the set of all prime numbers. Then d(P ) = 0. Since I = Ifin is
an admissible ideal, dI(P ) = 0. Clearly, I-st- lim

k→∞
N (xk) = 0 and ΛSx (I)N =

ΓSx (I)N = {0}.

Note 4.6. One can see that in the last example we have not used the APIO
property, rather we use the admissible property of the ideal. Thus we can say
that the converse of the Theorem 4.4 does not necessarily hold.

Let (X,N , ◦) be a probabilistic normed space. Now we define the norm
topology on X as follows: A subset U of X is said to be open if for every x ∈ U
there exists 0 < r < 1 such that for all t > 0, B(x, r, t) ⊂ U .

Definition 4.7. Let (X,N , ◦) be a PN space. Then X is said to be a second
countable PN space if X has countable basis under its norm topology.

Lemma 4.8. Let (X,N , ◦) be a second countable PN space. Then every sub-
space of X is second countable under subspace norm topology.

Proof. Let C is a countable basis for X under its norm topology. Let Y be a
subset of X. Then clearly {C∩Y : C ∈ C} is a countable basis for the subspace
Y of X under its subspace norm topology.

Lemma 4.9. Let (X,N , ◦) be a second countable PN space. Then every open
covering of X contains a countable subcollection covering X.

Proof. Since X is second countable PN space, X has a countable basis under
norm topology, say, C = {Cn}n∈N. Now let B be an open covering of X. Then
for each n ∈ N, we can choose an element Bn of B such that Bn contains
Cn. We claim that the countable subcollection B′ = {Bn}n∈N of B covers X.
Indeed, for each x ∈ X, we can choose an element B ∈ B such that x ∈ B.
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Since B is open, thus there exists Cn ∈ C such that x ∈ Cn ⊂ B. Now since
Cn ⊂ B and n ∈ N, the subcollection is well-defined. Also, since Cn ⊂ Bn,
x ∈ Bn. Hence B′ covers X. This completes the proof.

Theorem 4.10. Let (X,N , ◦) be a second countable PN space. Let I be an
ideal such that dI has Property APIO. Then for any sequence x = {xk}k∈N
there exists a sequence y = {yk}k∈N in X such that LNy = ΓSx (I)N and dI({k :
xk 6= yk}) = 0.

Proof. At first, we prove that ΓSx (I)N ⊂ LNx . Let ξ ∈ ΓSx (I)N . Let t > 0
and 0 < λ < 1 be given. Then we have dI({k ∈ N : Nxk−ξ(t) > 1 − λ}) 6= 0.
Now we claim that d({k ∈ N : Nxk−ξ(t) > 1 − λ}) 6= 0. If possible, let
d({k ∈ N : Nxk−ξ(t) > 1− λ}) = 0. Then

lim
n→∞

|S(n)|
n = 0,

where S = {k ∈ N : Nxk−ξ(t) > 1− λ}. Since I is admissible, therefore

I − lim
n→∞

|S(n)|
n = 0,

where S = {k ∈ N : Nxk−ξ(t) > 1 − λ}. Thus dI({k ∈ N : Nxk−ξ(t) >
1−λ}) = 0, which is a contradiction. Hence d({k ∈ N : Nxk−ξ(t) > 1−λ}) 6= 0.
Thus ξ is a statistical cluster point of x, and hence a limit point of x. Thus
ΓSx (I)N ⊂ LNx . If ΓSx (I)N = LNx , we will take y = {yk}k∈N = {xk}k∈N = x,
and we are done. Let ΓSx (I)N be a proper subset of LNx . Let η ∈ LNx \ΓSx (I)N .
Choose a ball B(η, rη, t) = {u ∈ X : Nη−u(t) > 1 − rη} with the center at
η and radius rη ∈ (0, 1) such that dI({k ∈ N : xk ∈ B(η, rη, t)}) = 0. Then
the collection of all such B(η, rη, t)’s is an open cover for LNx \ ΓSx (I)N . Since
LNx \ΓSx (I)N is a subspace of a second countable space X, it is second countable
(by Lemma4.9). Then there exists a countable subcover, say {B(ηj , rj , t)}j∈N of
{B(η, rη, t) : η ∈ LNx \ΓSx (I)N } for LNx \ΓSx (I)N . Since each ηj is a limit point
of x and dI({k ∈ N : xk ∈ B(ηj , rj , t)}) = 0, consequently each B(ηj , rj , t)
contains an I-thin subsequence of x. Let I1 = {k ∈ N : xk ∈ B(η1, r1, t)}, Ij =
{k ∈ N : xk ∈ B(ηj , rj , t)} \ (I1 ∪ I2... ∪ Ij−1),∀j ≥ 2, j ∈ N. Then {Ij}j∈N is
a countable collection of mutually disjoint sets with dI(Ij) = 0,∀j ∈ N. Since
dI has Property APIO, there exists a countable collection of sets {Bj}j∈N such

that |Ij∆Bj | < ∞ for each j ∈ N and dI(B =
∞⋃
j=1

Bj) = 0. Then Ij \ B is

a finite set and so {k ∈ N : k ∈ Iηj} \ B is a finite set for each j ∈ N. Let
N \B = {ji < j2 < ...} and we define a sequence y = {yk}k∈N as follows

yk =

{
xjk if k ∈ B,
xk if k ∈ N \B.

Obviously, the set {k : xk 6= yk}(⊂ B) has I-asymptotic density zero and by
Theorem 3.2 we have ΓSx (I)N = ΓSy (I)N . Now we show that LNy = ΓSy (I)N .

If possible, let ΓSy (I)N ( LNy and l ∈ LNy \ ΓSy (I)N . Then there exists a
subsequence of y converging to l. Note that the subsequence must be I-thin but
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{y}B has no limit point. Therefore no such l can exist. Hence LNy = ΓSy (I)N .

Consequently, LNy = ΓSx (I)N .
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Gos. Univ. Učen. Zap. 122, kn. 4 (1962), 3–20.

Received by the editors Septebner 28, 2019
First published online August 31, 2020


	Introduction
	Basic Definitions and Notations
	I-statistical limit points and I-statistical cluster points in a PN space
	Condition APIO

