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A note on a generalization
of an infinite decomposability result

Christophe Chesneau12 and José Luis Palacios3

Abstract. A recent infinite decomposability result shows that, for
any integer m, a random variable following the exponential distribution
can be written as the sum of m discontinuous random variables and an-
other one following the exponential distribution, all of them independent.
This note extends this result to the Gamma, Laplace and n-Laplace dis-
tributions, with a clear identification on the involved discontinuous dis-
tribution. We also discuss some properties of this new discontinuous
distribution, proving that it is also infinitely decomposable.
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1. Introduction

The exponential distribution is one of the most useful lifetime distribution
in probability and statistics. It depends on a positive scale parameter µ and
has the probability density function (pdf) given by f(x) = µe−µx for x ≥ 0. It
is widely used to model waiting times in a various scenarios (Poisson process,
queuing theory. . . ). In this regard, we refer the reader to [1], and the references
therein. Among its well-known desirable properties, the exponential distribu-
tion is infinitely divisible; if X is a random variable following the exponential
distribution with parameter µ, then, for every natural number n, one can write

(1.1) X =

n∑
i=1

Xi,

where X1, . . . , Xn are independent and identically (i.i.d.) random variables
following the gamma distribution with parameters µ and 1/n. A similar but
less demanding concept is given by the infinite decomposability; in (1.1), it
only requires that X1, . . . , Xn are independent.

In this regard, it is proved in [7] that the exponential distribution is infi-
nite decomposable in the following sense: for any integer m, a random variable
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following the exponential distribution can be written as the sum of m discon-
tinuous random variables (with a discontinuity at 0) and another one following
the exponential distribution, all of them independent. The involved discontin-
uous distribution, depending on two parameters: µ > 0 and ρ ∈ (0, 1), can be
defined as follows. We say that a random variable X follows the distribution
exp(µ, ρ) if: P (X = 0) = 1 − ρ and P (X > x) = ρe−µ(1−ρ)x for all x ≥ 0. In
other words, exp(µ, ρ) has a jump at 0 with value 1 − ρ, and other than that
it looks like an exponential distribution. For more detail on the general notion
of decomposable distribution, we may refer to [5] and [6]. In addition to [7],
modern developments involving this notion in diverse theoretical contexts can
be found in [3], [4] and [8].

In this note, we contribute to the subject by showing how the main result of
[7] can be extended to the gamma, Laplace and n-Laplace distributions, with
a clear identification of the involved discontinuous distribution. This discon-
tinuous distribution is not listed in the literature, and has the originality to
extend the distribution exp(µ, ρ) by the use of a binomial structure. A comple-
mentary study is devoted to the main characteristics of this new discontinuous
distribution, proving that it is also infinitely decomposable. To the best of
our knowledge, these probabilistic results are new, and are of potential inter-
est in queuing theory and the related applications (service disciplines, traffic
engineering, . . . ).

The rest of the note is structured as follows. Section 2 presents some central
definitions. The generalization of the main result in [7] can be found in Section
3. The infinite decomposability of the introduced discontinuous distribution is
discussed in Section 4.

2. Definitions

First of all, some preliminary definitions are presented. Let α ∈ {1, 2},
µ > 0 and n be an integer. We say that a random variable X follows the
distribution D(α, µ, n) if it has the following moment generating function:

MX(t) = E(etX) =

[
µ

µ− tα

]n
,(2.1)

with t such that tα < µ.

Thus defined, D(α, µ, n) is composed of four well-referenced distributions:

� D(1, µ, 1) corresponds to the exponential distribution with parameter µ,
i.e., with the pdf: f(x) = µe−µx, x ≥ 0,

� D(1, µ, n) corresponds to the gamma distribution with parameters µ and
n, i.e., with the pdf: f(x) = [(n− 1)!]−1xn−1µne−µx, x ≥ 0,

� D(2, µ, 1) corresponds to the Laplace distribution with parameter β =
µ1/2, i.e., with the pdf: f(x) = 2−1βe−β|x|, x ∈ R,
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� D(2, µ, n) corresponds to the n-Laplace distribution with parameters β =
µ1/2 and n, i.e., with the pdf:

f(x) =
{

[(n− 1)!]−2
∑n−1
i=0

(
n−1
i

)
(2n− i− 2)!2−2n+i+1βi|x|i

}
βe−β|x|,

x ∈ R.

Thanks to (2.1), it is immediate that a sum of n i.i.d. random variables follow-
ing the distribution D(α, µ, 1) follows the distribution D(α, µ, n).

Now, let ρ ∈ (0, 1), along with the above notations. We say that a random
variable X follows the distribution E(α, µ, ρ, n) if it can be written as

X = YN ,(2.2)

where N denotes a random variable following the binomial distribution with
parameters n and ρ, i.e., with the probability mass function given by

P (N = k) =
n!

k!(n− k)!
ρk(1− ρ)n−k, k = 0, . . . , n,

and Y0, . . . , Yn denote n + 1 random variables independent of N such that
P (Y0 = 0) = 1 and Yi follows the distribution D(α, µ(1− ρ), i) for i = 1, . . . , n.

One can remark that the distribution E(α, µ, ρ, n) is discontinuous; we have
P (X = 0) = P (N = 0) = (1− ρ)n 6= 0, whereas P (X = x) = 0 for any x 6= 0.
Also, E(1, µ, ρ, 1) corresponds to the distribution exp(µ, ρ) introduced by [7].

As an important characterization, the cumulative distribution function (cdf)
of the distribution E(α, µ, ρ, n) is given by

FX(x) = P (X ≤ x) = (1− ρ)n1{x≥0} +

n∑
k=1

n!

k!(n− k)!
ρk(1− ρ)n−kFYk

(x),

where 1A denotes the indicator function such that 1A = 1 if x ∈ A and 0
elsewhere, and FYk

(x) denotes the cdf of Yk.
To the best of our knowledge, this discontinuous distribution has not re-

ceived a special treatment in the literature, which is one aim of this paper.
In particular, in the next part of the study, we show how it naturally appears
in several infinite decomposable results involving standard distributions (expo-
nential, gamma, Laplace and n-Laplace distributions).

3. Main results

First of all, we present the moment generating function of the distribution
E(α, µ, ρ, n), which will be crucial in the subsequent proofs.

Lemma 3.1. The moment generating function of a random variable X follow-
ing the distribution E(α, µ, ρ, n) is given by

MX(t) =

[
(1− ρ)(µ− tα)

µ(1− ρ)− tα

]n
,

for t such that tα < µ(1− ρ).
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Proof. We use the representation of X given by (2.2). Since Y0, . . . , Yn and N
are independent, by using (2.1), we get

MX(t) = E(etX) = E[E(etYN | N)] =

n∑
k=0

MYk
(t)P (N = k)

=

n∑
k=0

[
µ(1− ρ)

µ(1− ρ)− tα

]k
n!

k!(n− k)!
ρk(1− ρ)n−k

=

n∑
k=0

n!

k!(n− k)!

[
µρ(1− ρ)

µ(1− ρ)− tα

]k
(1− ρ)n−k.

It follows from the standard binomial formula and some algebra that

MX(t) =

[
µρ(1− ρ)

µ(1− ρ)− tα
+ (1− ρ)

]n
=

[
(1− ρ)(µ− tα)

µ(1− ρ)− tα

]n
.

This ends the proof of Lemma 3.1.

From Lemma 3.1, several distributional and mathematical properties of
the distribution E(α, µ, ρ, n) can be determined. In particular, a sum of n i.i.d.
random variables following the distribution E(α, µ, ρ, 1), follows the distribution
E(α, µ, ρ, n). Also, the s-th ordinary moment of X can be obtained as µ′s =
E(Xs) = M(t)(s) |t=0.

The following result emphasizes the link between the distributionsD(α, µ, n)
and E(α, µ, ρ, n).

Proposition 3.2. Let X be a random variable following the distribution
E(α, µ, ρ, n) and Y a random variable following the distribution D(α, µ, n), with
X and Y independent. Then, Z = X + Y follows the distribution D(α, µ(1 −
ρ), n).

Proof. By using the independence of X and Y , and the expression of their
respective moment generating functions, owing to Lemma 3.1 and (2.1), for t
such that tα < µ(1− ρ) < µ, we obtain

MZ(t) = MX(t)MY (t) =

[
(1− ρ)(µ− tα)

µ(1− ρ)− tα

]n [
µ

µ− tα

]n
=

[
µ(1− ρ)

µ(1− ρ)− tα

]n
.

Then, we recognize the moment generating function of a random variable fol-
lowing the distribution D(α, µ(1 − ρ), n). This ends the proof of Proposition
3.2.

We are now in position to state the first main result of the paper, which
mainly follows from Proposition 3.2.
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Proposition 3.3. Let θ > 0 and X be random variable following the distribu-
tion D(α, θ, n). Then, for every integer m, we can write

X =

m+1∑
i=1

Xi,

where Xi follows the distribution E
(
α, θ/(1− ρ)i, ρ, n

)
for i = 1, . . . ,m, and

Xm+1 follows the distribution D (α, θ/(1− ρ)m, n), with X1, . . . , Xm, Xm+1 in-
dependent.

Proof. The proof follows immediately by induction and Proposition 3.2; one
can notice that the initialization step, i.e., the case m = 1, immediately follows
from Proposition 3.2 with µ = θ/(1− ρ).

By applying Proposition 3.3 with α = 1 and n = 1, we rediscover the main
result in [7].

As a simple application, we can mention the M/M/1 queue with inter-
arrival times modeled by a random variable following the exponential distri-
bution exp(λ) and service times modeled by a random variable following the
exponential distribution exp(µ). Then, the waiting time in the queue has a
jump at zero and it is modeled by a random variable following the distribu-
tion exp(µ, ρ), where ρ = λ/µ, and the total time in the system (waiting time
plus service time) is modeled by a random variable following the distribution
exp(µ(1− ρ)), which is a particular case of Proposition 3.2.

As another example, in actuarial sciences, the claim-size random variable
may be modelled with a discontinuity at zero (see [2, Example 2.3, p. 40]), so
our results, at least theoretically, could be of interest in this context, though the
discontinuities of the claim-size variable typically occur at some limit L > 0,
above which the insurer only pays the policy limit L.

Discussion. We would like to mention that an alternative proof for Propo-
sition 3.3 is possible; we can prove it by using the result in [7], some existing
distributional results on D(α, θ, n) and further developments.

For instance, for the case α = 1 and any integer n corresponding to the
gamma distribution case, the main lines of an alternative proofs are as fol-
lows. For any random variable X following the distribution D(1, θ, n), we can
write X =

∑n
i=1 Ui, where U1, . . . , Un are n i.i.d. random variables follow-

ing the distribution D(1, θ, 1). Then, by applying the infinite decomposability

result of [7], we can write Ui =
∑m+1
j=1 Vj,i, where Vj,i follows the distribu-

tion E
(
1, θ/(1− ρ)j , ρ, 1

)
for j = 1, . . . ,m, and Vm+1,i follows the distribution

D (1, θ/(1− ρ)m, 1), with V1,i, . . . , Vm,i, Vm+1,i independent. Then, we have

X =
∑m+1
j=1 Wj , where Wj =

∑n
i=1 Vj,i. We end by showing that Wj follows

the distribution E
(
1, θ/(1− ρ)j , ρ, n

)
for j = 1, . . . ,m, and Wm+1 follows the

distribution D (1, θ/(1− ρ)m, n).
Also, for the case α = 2 and any integer n corresponding to the n-Laplace

distribution case (including the former Laplace distribution for n = 1), a sim-
ilar approach can be investigated. Indeed, for any random variable X fol-
lowing the distribution D(2, θ, n), we can write X =

∑n
i=1(Ai − Bi), where
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A1, . . . , An, B1, . . . , Bn are 2n i.i.d. random variables following the distribu-
tion D(1, θ1/2, 1). By applying the result in [7] on Ai and Bi for i = 1, . . . , n
separately, with more efforts and developments, we are able to prove the desired
result.

Thus, the main interest of Proposition 3.3 is to be elegant, and to iden-
tify the involved discontinuous distribution from the beginning, with a clear
identification, revealing its binomial compounding structure.

4. On the infinite decomposability of E(α, µ, ρ, n)

An interesting new fact is that E(α, µ, ρ, n) is also infinite decomposable.
That claim is proved in this section.

Proposition 4.1. Let X be a random variable following the distribution
E(α, µ1, ρ1, n), Y a random variable following the distribution E(α, µ2, ρ2, n),
with µ1 = µ2(1 − ρ2), and X and Y independent. Then, Z = X + Y follows
the distribution E(α, µ2, ρ1 + ρ2 − ρ1ρ2, n).

Proof. By using the independence of X and Y and Lemma 3.1, for t such that
tα < µ1(1− ρ1), we get

MZ(t) = MX(t)MY (t) =

[
(1− ρ1)(µ1 − tα)

µ1(1− ρ1)− tα

]n [
(1− ρ2)(µ2 − tα)

µ2(1− ρ2)− tα

]n
=

[
(1− ρ1)(µ2(1− ρ2)− tα)

µ2(1− ρ2)(1− ρ1)− tα
× (1− ρ2)(µ2 − tα)

µ2(1− ρ2)− tα

]n
=

[
(1− ρ1)(1− ρ2)(µ2 − tα)

µ2(1− ρ1)(1− ρ2)− tα

]n
.

We recognize the moment generating function of a random variable following
the distribution E(α, µ2, ρ1 + ρ2 − ρ1ρ2, n). The proof of Proposition 4.1 is
completed.

The previous proposition and the induction principle allow us to claim the
following result.

Corollary 4.2. Let X1, . . . , Xm be independent random variables such that Xi

follows the distribution E(α, µi, ρi, n) for i = 1, . . . ,m. If µi = µi+1(1 − ρi+1)
for i = 1, . . . ,m− 1, then

X =

m∑
i=1

Xi

follows the distribution E (α, µm, 1−
∏m
i=1(1− ρi), n).

Now, we are in position to state the second main result of the paper, dealing
with the infinite decomposability of the distribution.
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Proposition 4.3. Let θ > 0 and X be a random variable following the distri-
bution E(α, θ, σ, n). Then, for every integer m, we can write

X =

m∑
i=1

Xi,

where Xi follows the distribution E
(
α, θ(1− σ)1−i/m, 1− (1− σ)1/m, n

)
with

X1, . . . , Xm independent.

Proof. The proof follows from Corollary 4.2 applied with µi = θ(1−ρ)m−i and
ρi = ρ = 1− (1−σ)1/m for i = 1, . . . ,m (so µi = θ(1−σ)1−i/m), satisfying the
desired relation, i.e., µi = µi+1(1− ρi+1).
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