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Fixed point theorems for λ-generalized contractions in
D∗-metric spaces
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Abstract. The fixed point theorems for D∗-metric spaces were ob-
tained by several authors. The notion of a D∗-metric space and λ-
generalized contractions are presented in this paper and a fixed point
theorem on a λ-generalized contraction of an f -orbitally complete D∗-
metric space is obtained. Further, some consequences of this fixed point
theorem are presented in this paper.
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1. Introduction

In 1992 B. C. Dhage [2] initiated a study of general metric spaces called
D-metric spaces. Later several researchers made significant contributions to
the study of fixed point theorems of D-metric spaces, in [1], [3] and [9]. Un-
fortunately, almost all fixed point theorems proved on D-metric spaces are not
valid, in view of papers [7], [6] and [8]. R. Kannan introduced the concept
of K-contraction in metric spaces and obtained fixed point results in metric
spaces.

2. Definitions

As a modification of D-metric spaces, Shaban Sedghi, Nabi Shobe and
Haiyun Zhou [10] have introduced D∗-metric spaces as follows:

Definition 2.1. [10] Let X be a non-empty set. A function D∗ : X3 → [0,∞)
is said to be a generalized metric or D∗-metric on X, if it satisfies the following
properties:

(i) D∗(x, y, z) ≥ 0 for all x, y, z ∈ X,
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(ii) D∗(x, y, z) = 0 if and only if x=y=z,

(iii) D∗(x, y, z) = D∗(σ(x, y, z)) for all x, y, z ∈ X, where σ(x, y, z) is a per-
mutation of the set {x, y, z},

(iv) D∗(x, y, z) ≤ D∗(x, y, w) +D∗(w, z, z) for all x, y, z, w ∈ X.

The pair (X,D∗), where D∗ is a generalized metric on X is called a D∗-metric
space, or a generalized metric space.

Example 2.2. [10] Let (X, d) be a metric space. Define D∗
1 : X3 → [0,∞)

by D∗
1(x, y, z) = max{d(x, y), d(y, z)d(z, x)} for x, y, z ∈ X. Then (X,D∗

1) is a
generalized metric space.

Note 2.3. [11] Using (ii) and inequality (iv) of Definition 2.1, one can prove
that, if (X,D∗) is a D∗-metric space, then

(2.1) D∗(x, x, y) = D∗(x, y, y)

for all x, y ∈ X. In fact, D∗(x, x, y) ≤ D∗(x, x, x) + D∗(x, y, y) = D∗(x, y, y)
and D∗(x, y, y) = D∗(y, y, x) ≤ D∗(y, y, y) + D∗(y, x, x) = D∗(x, x, y) for all
x, y ∈ X, proving (2.1).

Definition 2.4. Let (X,D∗) be a D∗-metric space. A sequence {xn} in X is
said to

(i) Converge to some point x of X, if
D∗(xn, xn, x) = D∗(xn, x, x) → D∗(x, x, x) as n → ∞

(ii) be Cauchy if, for every ϵ > 0, there is a natural number n0 such that
D∗(xn, xn, xm) < ϵ for all m,n ≥ n0.

It is easy to see (A fact proved in [10]; Lemma 1.8 and Lemma 1.9) that, if
{xn} converges to x in (X,D∗), then x is unique, and that {xn} is a Cauchy
sequence in (X,D∗).

Definition 2.5. A D∗-metric space (X,D∗) is said to be complete, if every
Cauchy sequence in it converges in it.

Note 2.6. As noted in Example 2.2, given any metric space (X, d) it is possible
to define a D∗-metric D∗

1 by using the metric d. We shall call D∗
1 as D∗-metric

induced by the metric d. Thus, every metric space gives rise to at least one
D∗-metric space (X,D∗

1). Also, if (X,D∗) is a D∗-metric space, then defining
d0(x, y) = D∗(x, y, y) for x, y ∈ X, we can easily show that (X, d0) is a metric
space, and we shall call d0 as metric induced by D∗.

Theorem 2.7. Let (X, d) be a metric space and D∗
1 the D∗-metric induced by

d (as given in Example 2.2). A sequence {xn} in (X,D∗
1) is a Cauchy sequence

if and only if {xn} is a Cauchy sequence in (X, d).
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Proof. First note that we have d(x, y) ≤ D∗
1(x, y, y) ≤ 2d(x, y) for all x, y ∈ X.

The theorem follows immediately from the above inequality. In fact, if {xn}
is a Cauchy sequence in (X, d), then, for any given ϵ > 0, choose a natural
number n0 such that m,n ≥ n0 implies d(xm, xn) < ϵ/2; and note that, for
the same n0,m, n ≥ n0 implies that D∗(xm, xn, xn) ≤ 2d(xm, xn) < ϵ, proving
that {xn} is a Cauchy sequence in (X,D∗

1). The other part of the theorem
can be proved by using the left one among the two inequalities noted at the
beginning of the proof.

Corollary 2.8. Suppose that (X, d) is a metric space, and let D∗
1 be a D∗-

metric induced by the metric d. Then the D∗-metric space (X,D∗
1) is complete

if and only if (X, d) is complete.

Proof. Follows from Theorem 2.7 .

It has been proved in ([10]; Lemma 1.7) that, if (X,D∗) is aD∗-metric space,
then D∗ is a continuous function on X3, in the sense that lim

n→∞
D∗(xn, yn, zn) =

D∗(x, y, z), whenever {(xn, yn, zn)} is a sequence inX3 converging to (x, y, z) ∈
X3. Equivalently, lim

n→∞
xn = x , lim

n→∞
yn = y and lim

n→∞
zn = z imply that

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z).

The purpose of this paper is to define certain types of contractions among
self-maps of D∗-metric spaces, and to establish fixed point theorems for such
self-maps.

Definition 2.9. Let f be a self map of a D∗-metric space (X,D∗). For any
x ∈ X, the set Of (x : ∞) = {fnx : n ≥ 0} = {x, fx, f2x, ...} is called the orbit
of x under f .

Definition 2.10. Let f be a self-map of a D∗-metric space (X,D∗). If, for
some x ∈ X, every Cauchy sequence in Of (x : ∞) converges a point in X, then
(X,D∗) is said to be an f -orbitally complete D∗-metric space.

Remark 2.11. Trivially, a complete D∗-metric space is f -orbitally complete for
any self-map f of X. However, the converse is not true. A self-map f of a
D∗-metric space (X,D∗) is called a contraction, if there is a q with 0 ≤ q < 1
such that

(2.2) D∗(fx, fy, fz) ≤ q.D∗(x, y, z)

for all x, y, z ∈ X.

R. Kannan [4] defined a contraction for metric spaces in a different way,
which we shall call a K-contraction. Analogously we define K-contraction for
D∗-metric spaces as follows:

Definition 2.12. A self-map f of a D∗-metric space (X,D∗) is called a K-
contraction, if there is a q with 0 ≤ q < 1/3 such that

(2.3) D∗(fx, fy, fz) ≤ q.{D∗(x, fx, fx) +D∗(y, fy, fy) +D∗(z, fz, fz)}
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for all x, y, z ∈ X.

The concepts of contraction and K-contraction are independent. We now
define a special type of contraction, called a λ-generalized contraction for D∗-
metric spaces as follows:

Definition 2.13. A self-map f of a D∗-metric space (X,D∗) is called a λ-
generalized contraction if, for every x, y, z ∈ X, there exist non-negative num-
bers q, r, s, t and v (depending on x, y and z) such that

(2.4) sup
x,y,z∈X

{q + r + s+ t+ 10v} = λ < 1

and

(2.5)

D∗(fx, fy, fz) ≤ q(x, y, z)D∗(x, y, z) + r(x, y, z)D∗(x, fx, fx)

+ s(x, y, z)D∗(y, fy, fy) + t(x, y, z)D∗(z, fz, fz)

+ v(x, y, z){D∗(x, fy, fy) +D∗(y, fz, fz)

+D∗(z, fx, fx) +D∗(x, fz, fz) +D∗(y, fx, fx)

+D∗(z, fy, fy) +D∗(x, fy, fz)

+D∗(y, fz, fx) +D∗(z, fx, fy)},

for all x, y, z ∈ X. From the definition it is clear that every contraction and
K-contraction are λ-generalized contractions.

3. Main results

Fixed point theorem for λ-generalized contraction of D∗-
metric spaces

Theorem 3.1. Suppose f is a self-map of a D∗-metric space (X,D∗) and X
is f -orbitally complete. If f is a λ-generalized contraction, then it has a unique
fixed point u ∈ X. In fact,

(3.1) u = lim
n→∞

fnx

for any x ∈ X and

(3.2) D∗(fnx, u, u) ≤ λn

1− λ
D∗(x, fx, fx)

for any x ∈ X and n ≥ 1.

Proof. Let x ∈ X be an arbitrary element of X. Define the sequence {xn} by
x0 = x, x1 = fx0, x2 = fx1 = f2x, ..., xn = fxn−1 = fnx, ...and denote the
orbit of x under f by Of (x : ∞) = {xn : n = 0, 1, 2, 3, ...}.
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Consider

D∗(xn, xn+1, xn+1) = D∗(fxn−1, fxn, fxn)

≤ q(xn−1, xn, xn)D
∗(xn−1, xn, xn)

+ r(xn−1, xn, xn)D
∗(xn−1, xn, xn)

+ s(xn−1, xn, xn)D
∗(xn, xn+1, xn+1)

+ t(xn−1, xn, xn)D
∗(xn, xn+1, xn+1)

+ v(xn−1, xn, xn){D∗(xn−1, xn+1, xn+1)

+D∗(xn, xn+1, xn+1) +D∗(xn, xn, xn)

+D∗(xn−1, xn+1, xn+1) +D∗(xn, xn, xn)

+D∗(xn, xn+1, xn+1) +D∗(xn−1, xn+1, xn+1)

+D∗(xn, xn+1, xn) +D∗(xn, xn, xn+1)}

writing
qn−1 = q(xn−1, xn, xn), rn−1 = r(xn−1, xn, xn), sn−1 = s(xn−1, xn, xn),
tn−1 = t(xn−1, xn, xn) and vn−1 = v(xn−1, xn, xn), we get

D∗(xn, xn+1, xn+1) ≤ qn−1D
∗(xn−1, xn, xn) + rn−1D

∗(xn−1, xn, xn)

+ sn−1D
∗(xn, xn+1, xn+1) + tn−1D

∗(xn, xn+1, xn+1)

+ vn−1{3D∗(xn−1, xn+1, xn+1) + 2D∗(xn, xn+1, xn+1)

+ 2D∗(xn, xn, xn+1)}

since D∗(x, x, y) = D∗(x, y, y) [Note 2.3 ], so we write
D∗(xn−1, xn+1, xn+1) = D∗(xn−1, xn−1, xn+1) and
D∗(xn, xn, xn+1) = D∗(xn, xn+1, xn+1). Therefore

D∗(xn, xn+1, xn+1) ≤ qn−1D
∗(xn−1, xn, xn) + rn−1D

∗(xn−1, xn, xn)

+ sn−1D
∗(xn, xn+1, xn+1) + tn−1D

∗(xn, xn+1, xn+1)

+ vn−1{3D∗(xn−1, xn−1, xn+1) + 4D∗(xn, xn+1, xn+1)}

By using property (iv) of a D∗−metric space, we write

D∗(xn−1, xn−1, xn+1) ≤ D∗(xn−1, xn−1, xn) +D∗(xn, xn+1, xn+1)

≤ D∗(xn−1, xn, xn) +D∗(xn, xn+1, xn+1)}

D∗(xn, xn+1, xn+1) ≤ qn−1D
∗(xn−1, xn, xn) + rn−1D

∗(xn−1, xn, xn)

+ sn−1D
∗(xn, xn+1, xn+1) + tn−1D

∗(xn, xn+1, xn+1)

+ vn−1{3D∗(xn−1, xn, xn) + 7D∗(xn, xn+1, xn+1)}
≤ (qn−1 + rn−1 + 3vn−1)D

∗(xn−1, xn, xn)

+ (sn−1 + tn−1 + 7vn−1)D
∗(xn, xn+1, xn+1)

This implies that

(1− sn−1 − tn−1 − 7vn−1)D
∗(xn, xn+1, xn+1)

≤ (qn−1 + rn−1 + 3vn−1)D
∗(xn−1, xn, xn).
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Hence D∗(xn, xn+1, xn+1) ≤ ( qn−1+rn−1+3vn−1

1−sn−1−tn−1−7vn−1
)D∗(xn−1, xn, xn)

D∗(xn, xn+1, xn+1) ≤ λD∗(xn−1, xn, xn), where λ = qn−1+rn−1+3vn−1

1−sn−1−tn−1−7vn−1
.

Assume that λ < 1, which implies λ = qn−1+rn−1+3vn−1

1−sn−1−tn−1−7vn−1
< 1

qn−1 + rn−1 + 3vn−1 < 1− sn−1 − tn−1 − 7vn−1

qn−1 + rn−1 + sn−1 + tn−1 + 10vn−1 < 1 since
sup

x,y,z∈X
{q + r + s+ t+ 10v} = λ = qn−1 + rn−1 + sn−1 + tn−1 + 10vn−1 < 1.

Thus by iteration, we get

(3.3) D∗(xn, xn+1, xn+1) ≤ λnD∗(x0, x1, x1) = λnD∗(x0, fx0, fx0)

Therefore

D∗(xn, xn+p, xn+p) ≤ D∗(xn, xn+1, xn+1) +D∗(xn+1, xn+2, xn+2)

+D∗(xn+2, xn+3, xn+3) + . . .+D∗(xn+p−1, xn+p, xn+p)

≤ λnD∗(x0, x1, x1) + λn+1D∗(x0, x1, x1)

+ λn+2D∗(x0, x1, x1) + . . .+ λn+p−1D∗(x0, x1, x1)

≤ (λn + λn+1 + λn+2 + . . .+ λn+p−1 + . . .)D∗(x0, x1, x1)

≤ λn

1− λ
D∗(x0, x1, x1)

(3.4) D∗(xn, xn+p, xn+p) ≤
λn

1− λ
D∗(x0, x1, x1)

Hence D∗(xn, xn+p, xn+p) ≤ λnD∗(x0, x1, x1)/(1 − λ) → 0 as n → ∞, since
0 ≤ λ < 1, and {xn} is a Cauchy sequence in Of (x : ∞). Since X is f -orbitally
complete, there exists a u ∈ X such that

u = lim
n→∞

xn = lim
n→∞

fnx0 = lim
n→∞

fnx.

To show that u is a fixed point of f ,

D∗(fu, fxn, fxn) ≤ qD∗(u, xn, xn) + rD∗(u, fu, fu)

+ sD∗(xn, fxn, fxn) + tD∗(xn, fxn, fxn)

+ v{D∗(u, fxn, fxn) +D∗(xn, fxn, fxn)

+D∗(xn, fu, fu) +D∗(u, fxn, fxn)

+D∗(xn, fu, fu) +D∗(xn, fxn, fxn)

+D∗(u, fxn, fxn) +D∗(xn, fxn, fu)

+D∗(xn, fu, fxn)}
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D∗(fu, fxn, fxn) ≤ qD∗(u, xn, xn) + rD∗(u, xn+1, xn+1)

+ rD∗(xn+1, fu, fu) + sD∗(xn, xn+1, xn+1)

+ tD∗(xn, xn+1, xn+1) + v{D∗(u, xn+1, xn+1)

+D∗(xn, xn+1, xn+1) +D∗(xn, xn+1, xn+1)

+D∗(xn+1, fu, fu) +D∗(u, xn+1, xn+1)

+D∗(xn, xn+1, xn+1) +D∗(xn+1, fu, fu)

+D∗(xn, xn+1, xn+1) +D∗(u, xn+1, xn+1)

+D∗(xn, xn+1, xn+1) +D∗(xn+1, xn+1, fu)

+D∗(xn, xn+1, xn+1) +D∗(xn+1, fu, xn+1)}
≤ qD∗(u, xn, xn) + (r + 3v)D∗(u, xn+1, xn+1)

+ (r + 4v)D∗(fxn, fu, fu)

+ (s+ t+ 6v)D∗(xn, xn+1, xn+1)

D∗(fu, fxn, fxn) ≤ λD∗(u, xn, xn) + λD∗(u, xn+1, xn+1)

+ λD∗(fxn, fu, fu) + λD∗(xn, xn+1, xn+1).

Therefore

(1− λ)D∗(fu, fxn, fxn) ≤ λ(D∗(u, xn, xn)

+D∗(u, xn+1, xn+1) +D∗(xn, xn+1, xn+1))

and

D∗(fu, fxn, fxn) ≤ (
λ

1− λ
)(D∗(u, xn, xn)

+D∗(u, xn+1, xn+1) +D∗(xn, xn+1, xn+1))

which implies that lim
n→∞

D∗(fu, fxn, fxn) = 0. Hence fu = lim
n→∞

fxn =

lim
n→∞

xn+1 = u, and u is a fixed point of f .

To prove that f has unique fixed point, suppose that fu = u and fw = w
for some u,w ∈ X. Then, by the definition of λ-generalized contraction, it
follows that

D∗(u,w,w) = D∗(fu, fw, fw) ≤ qD∗(u,w,w) + rD∗(u, fu, fu)

+ sD∗(w, fw, fw) + tD∗(w, fw, fw) + v{D∗(u, fw, fw)

+D∗(w, fw, fw) +D∗(w, fu, fu) +D∗(u, fu, fu)

+D∗(w, fu, fu) +D∗(w, fw, fw) +D∗(u, fw, fw)

+D∗(w, fw, fu) +D∗(w, fu, fw)}
≤ (q + 6v)D∗(u,w,w) ≤ λD∗(u,w,w)

Which implies that (1−λ)D∗(u,w,w) = 0, since λ < 1, D∗(u,w,w) = 0. That
implies u = w. Thus f has unique fixed point. Since x is arbitrary in the above
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discussion, it follows that u = lim
n→∞

fnx for any x ∈ X and hence equation

3.1 is proved. Finally, since D∗(xn, xn+p, xn+p) ≤ λnD∗(x, fx, fx)/(1−λ) (by
3.4), on letting p → ∞, we obtain D∗(xn, u, u) ≤ λnD∗(x, fx, fx)/(1 − λ),
proving equation 3.2.

Corollary 3.2. Let f be a self-map of a D∗-metric space (X,D∗), and X be
f -orbitally complete. If f is a contraction of (X,D∗), then it has a unique fixed
point u ∈ X. In fact,

(3.5) u = lim
n→∞

fnx for any x ∈ X and

for any x ∈ X and

(3.6) D∗(fnx, u, u) ≤ λn

1− λ
D∗(x, fx, fx)

for any x ∈ X and n ≥ 1.

Proof. Since every contraction is λ-generalized contraction, the Corollary fol-
lows from Theorem 3.1.

Remark 3.3. The Banach contraction principle is a particular case of Corollary
3.2. For, if (X, d) is a complete metric space, then, by Corollary 2.8 , (X,D∗

1)
is a complete D∗-metric space, and hence f -orbitally complete for any selfmap
f of X. Also, if f is a contraction of (X, d), then the contractive condition can
be written as

D∗
1(fx, fy, fy) ≤ q.D∗

1(x, y, y)

for all x, y ∈ X, since D∗
1(x, y, y) = d(x, y) ; so that f is a contraction on

(X,D∗
1). Thus f is a contraction on the f -orbitally complete D∗-metric space

(X,D∗
1), and the conclusions of Corollary 3.2 hold for f , and f satisfies the

Banach contraction principle.

Corollary 3.4. Suppose that f is a self-map of a D∗-metric space (X,D∗) and
X is f -orbitally complete. If f is a K-contraction of (X,D∗), with constant q,
then it has a unique fixed point u ∈ X. In fact,

(3.7) u = lim
n→∞

fnx

for any x ∈ X and

(3.8) D∗(fnx, u, u) ≤ 2qn

1− 2q
D∗(x, fx, fx)

for all x ∈ X and n ≥ 1.

Proof. Since every contraction is a λ-generalized contraction, the Corollary
follows from Theorem 3.1 by taking λ = 2q.
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Remark 3.5. Kannan’s result ( [5]; p. 406 ) is a particular case of the Corollary
3.4 . In fact, if (X, d) is a complete metric space, then, by Corollary 2.8,
(X,D∗

1) is a complete D∗-metric space, and hence f -orbitally complete for any
selfmap f of X. Also, if f is a K-contraction, with constant q, of (X, d), then
the condition of K-contraction can be written as

(3.9) D∗
1(fx, fy, fy) ≤ q{D∗

1(x, fx, fx) +D∗
1(y, fy, fy)}

for all x, y ∈ X. Since D∗
1(x, y, y) = d(x, y). Thus f is a K-contraction on

(X,D∗
1), and f is a K-contraction on the f -orbitally complete D∗-metric space

(X,D∗
1). Therefore the conclusions of Corollary 3.4 hold for f , which are the

conclusions of Kannan’s result.

4. Consequences of Theorem 3.1

Theorem 4.1. Let f be a self-map of a D∗-metric space (X,D∗) and X be f -
orbitally complete. If there is a positive integer k such that fk is a λ-generalized
contraction, then it has a unique fixed point u ∈ X. In fact,

(4.1) u = lim
n→∞

fnx,

for any x ∈ X and

(4.2) D∗(fnx, u, u) ≤ λn/k.ρ(x, fx, fx)

for any x ∈ X and n ≥ 1,
where ρ(x, fx, fx) = max{λ−1D∗(frx, fr+kx, fr+kx) : r = 0, 1, 2, . . . , k − 1}.

Proof. Suppose that fk is a λ-generalized contraction of an f -orbitally complete
D∗-metric space (X,D∗). By Theorem 3.1, fk has unique fixed point. Let u
be the fixed point of fk. Then we claim that fu is also a fixed point of fk.
In fact, fk(fu) = fk+1u = f(fku) = fu. By the uniqueness of fixed point of
fk, fu = u, showing that u is a fixed point of f . To prove the uniqueness of
fixed point of f , let u, v ∈ X be such that fu = u and fv = v. Then fku = u
and fkv = v and hence u and v are fixed points of fk, which has unique fixed
point. Hence u = v. To prove equation 4.1, let n be any integer. Then by
the division algorithm, n = mk + j, 0 ≤ j < k, m ≥ 0 and, for any x ∈ X,
fnx = (fk)mf jx. Since fk is a λ-generalized contraction, by equation 3.2 we
have

D∗(fnx, u, u) = D∗((fk)mf jx, u, u)

≤ λm

1− λ
D∗(f jx, fkf jx, fkf jx)

=
λm

1− λ
D∗(f jx, fk+jx, fk+jx)

D∗(fnx, u, u) ≤ λm

1−λ max{D∗(f ix, f i+jx, f i+jx) : i = 0, 1, 2 . . . , k − 1} → 0
as m = m(n) → ∞. Thus u = lim

n→∞
fnx for any x ∈ X. To prove equation
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4.2, let n be any positive integer. Since fk is a λ-generalized contraction and
n = mk + j, 0 ≤ j < k, m ≥ 0 with m = [n/k] , from equation 3.2 we have

D∗(fnx, u, u) = D∗(fmkf jx, u, u)

≤ λm

1− λ
D∗(f jx, fk+jx, fk+jx)

=
(λ1/k)mk+j−j

1− λ
D∗(f jx, fk+jx, fk+jx)

≤ (λ1/k)mk+j−kD∗(f jx, fk+jx, fk+jx)

≤ (λ1/k)nλ−1D∗(f jx, fk+jx, fk+jx)

Hence
D∗(fnx, u, u) ≤ λn/k max{λ−1D∗(f ix, f i+kx, f i+kx) : i = 0, 1, 2 . . . , k − 1}.
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