Fixed point theorems for λ -generalized contractions in D^* -metric spaces

D. Srinivasa Chary¹, V. Srinivas Chary², Stojan Radenović³ and G. Sudhaamsh Mohan Reddy⁴⁵

Abstract. The fixed point theorems for D^* -metric spaces were obtained by several authors. The notion of a D^* -metric space and λ generalized contractions are presented in this paper and a fixed point theorem on a λ -generalized contraction of an f-orbitally complete D^* metric space is obtained. Further, some consequences of this fixed point theorem are presented in this paper.

AMS Mathematics Subject Classification (2000): 54H25; 47H10

Key words and phrases: D^* -metric space; self-map; contraction; K-contraction; λ -generalized contraction; fixed point; f-orbitally complete

1. Introduction

In 1992 B. C. Dhage [2] initiated a study of general metric spaces called D-metric spaces. Later several researchers made significant contributions to the study of fixed point theorems of D-metric spaces, in [1], [3] and [9]. Unfortunately, almost all fixed point theorems proved on D-metric spaces are not valid, in view of papers [7], [6] and [8]. R. Kannan introduced the concept of K-contraction in metric spaces and obtained fixed point results in metric spaces.

2. Definitions

As a modification of *D*-metric spaces, Shaban Sedghi, Nabi Shobe and Haiyun Zhou [10] have introduced D^* -metric spaces as follows:

Definition 2.1. [10] Let X be a non-empty set. A function $D^* : X^3 \to [0, \infty)$ is said to be a generalized metric or D^* -metric on X, if it satisfies the following properties:

(i) $D^*(x, y, z) \ge 0$ for all $x, y, z \in X$,

⁵Corresponding author

¹Department of Statistics and Mathematics, College of Agriculture, Rajendranagar, Hyderabad-500 030, INDIA, e-mail: srinivasaramanujan1@gmail.com

²Faculty of Science and Technology, Icfai Foundation for Higher Education, Hyderabad-501203, INDIA, e-mail: srinivaschary.varanasi@gmail.com

³Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Beograd 35, Serbia, e-mail: radens@beotel.rs, sradenovic@mas.bg.ac.rs

 $^{^4 {\}rm Faculty}$ of Science and Technology, Icfai Foundation for Higher Education, Hyderabad-501203, INDIA, e-mail: dr.sudhamshreddy@gmail.com

- (ii) $D^*(x, y, z) = 0$ if and only if x=y=z,
- (iii) $D^*(x, y, z) = D^*(\sigma(x, y, z))$ for all $x, y, z \in X$, where $\sigma(x, y, z)$ is a permutation of the set $\{x, y, z\}$,
- (iv) $D^*(x, y, z) \le D^*(x, y, w) + D^*(w, z, z)$ for all $x, y, z, w \in X$.

The pair (X, D^*) , where D^* is a generalized metric on X is called a D^* -metric space, or a generalized metric space.

Example 2.2. [10] Let (X, d) be a metric space. Define $D_1^* : X^3 \to [0, \infty)$ by $D_1^*(x, y, z) = \max\{d(x, y), d(y, z)d(z, x)\}$ for $x, y, z \in X$. Then (X, D_1^*) is a generalized metric space.

Note 2.3. [11] Using (ii) and inequality (iv) of Definition 2.1, one can prove that, if (X, D^*) is a D^* -metric space, then

(2.1)
$$D^*(x, x, y) = D^*(x, y, y)$$

for all $x, y \in X$. In fact, $D^*(x, x, y) \leq D^*(x, x, x) + D^*(x, y, y) = D^*(x, y, y)$ and $D^*(x, y, y) = D^*(y, y, x) \leq D^*(y, y, y) + D^*(y, x, x) = D^*(x, x, y)$ for all $x, y \in X$, proving (2.1).

Definition 2.4. Let (X, D^*) be a D^* -metric space. A sequence $\{x_n\}$ in X is said to

- (i) Converge to some point x of X, if $D^*(x_n, x_n, x) = D^*(x_n, x, x) \to D^*(x, x, x)$ as $n \to \infty$
- (ii) be Cauchy if, for every $\epsilon > 0$, there is a natural number n_0 such that $D^*(x_n, x_n, x_m) < \epsilon$ for all $m, n \ge n_0$.

It is easy to see (A fact proved in [10]; Lemma 1.8 and Lemma 1.9) that, if $\{x_n\}$ converges to x in (X, D^*) , then x is unique, and that $\{x_n\}$ is a Cauchy sequence in (X, D^*) .

Definition 2.5. A D^* -metric space (X, D^*) is said to be complete, if every Cauchy sequence in it converges in it.

Note 2.6. As noted in Example 2.2, given any metric space (X, d) it is possible to define a D^* -metric D_1^* by using the metric d. We shall call D_1^* as D^* -metric induced by the metric d. Thus, every metric space gives rise to at least one D^* -metric space (X, D_1^*) . Also, if (X, D^*) is a D^* -metric space, then defining $d_0(x, y) = D^*(x, y, y)$ for $x, y \in X$, we can easily show that (X, d_0) is a metric space, and we shall call d_0 as metric induced by D^* .

Theorem 2.7. Let (X, d) be a metric space and D_1^* the D^* -metric induced by d (as given in Example 2.2). A sequence $\{x_n\}$ in (X, D_1^*) is a Cauchy sequence if and only if $\{x_n\}$ is a Cauchy sequence in (X, d).

Proof. First note that we have $d(x, y) \leq D_1^*(x, y, y) \leq 2d(x, y)$ for all $x, y \in X$. The theorem follows immediately from the above inequality. In fact, if $\{x_n\}$ is a Cauchy sequence in (X, d), then, for any given $\epsilon > 0$, choose a natural number n_0 such that $m, n \geq n_0$ implies $d(x_m, x_n) < \epsilon/2$; and note that, for the same $n_0, m, n \geq n_0$ implies that $D^*(x_m, x_n, x_n) \leq 2d(x_m, x_n) < \epsilon$, proving that $\{x_n\}$ is a Cauchy sequence in (X, D_1^*) . The other part of the theorem can be proved by using the left one among the two inequalities noted at the beginning of the proof.

Corollary 2.8. Suppose that (X,d) is a metric space, and let D_1^* be a D^* -metric induced by the metric d. Then the D^* -metric space (X, D_1^*) is complete if and only if (X,d) is complete.

Proof. Follows from Theorem 2.7.

It has been proved in ([10]; Lemma 1.7) that, if (X, D^*) is a D^* -metric space, then D^* is a continuous function on X^3 , in the sense that $\lim_{n \to \infty} D^*(x_n, y_n, z_n) = D^*(x, y, z)$, whenever $\{(x_n, y_n, z_n)\}$ is a sequence in X^3 converging to $(x, y, z) \in X^3$. Equivalently, $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$ and $\lim_{n \to \infty} z_n = z$ imply that $\lim_{n \to \infty} D^*(x_n, y_n, z_n) = D^*(x, y, z)$.

The purpose of this paper is to define certain types of contractions among self-maps of D^* -metric spaces, and to establish fixed point theorems for such self-maps.

Definition 2.9. Let f be a self map of a D^* -metric space (X, D^*) . For any $x \in X$, the set $O_f(x : \infty) = \{f^n x : n \ge 0\} = \{x, fx, f^2 x, ...\}$ is called the orbit of x under f.

Definition 2.10. Let f be a self-map of a D^* -metric space (X, D^*) . If, for some $x \in X$, every Cauchy sequence in $O_f(x : \infty)$ converges a point in X, then (X, D^*) is said to be an f-orbitally complete D^* -metric space.

Remark 2.11. Trivially, a complete D^* -metric space is f-orbitally complete for any self-map f of X. However, the converse is not true. A self-map f of a D^* -metric space (X, D^*) is called a contraction, if there is a q with $0 \le q < 1$ such that

$$(2.2) D^*(fx, fy, fz) \le q.D^*(x, y, z)$$

for all $x, y, z \in X$.

R. Kannan [4] defined a contraction for metric spaces in a different way, which we shall call a K-contraction. Analogously we define K-contraction for D^* -metric spaces as follows:

Definition 2.12. A self-map f of a D^* -metric space (X, D^*) is called a Kcontraction, if there is a q with $0 \le q < 1/3$ such that

$$(2.3) \quad D^*(fx, fy, fz) \le q.\{D^*(x, fx, fx) + D^*(y, fy, fy) + D^*(z, fz, fz)\}$$

Π

for all $x, y, z \in X$.

The concepts of contraction and K-contraction are independent. We now define a special type of contraction, called a λ -generalized contraction for D^* -metric spaces as follows:

Definition 2.13. A self-map f of a D^* -metric space (X, D^*) is called a λ generalized contraction if, for every $x, y, z \in X$, there exist non-negative numbers q, r, s, t and v (depending on x, y and z) such that

(2.4)
$$\sup_{x,y,z\in X} \{q+r+s+t+10v\} = \lambda < 1$$

and

$$D^{*}(fx, fy, fz) \leq q(x, y, z)D^{*}(x, y, z) + r(x, y, z)D^{*}(x, fx, fx) + s(x, y, z)D^{*}(y, fy, fy) + t(x, y, z)D^{*}(z, fz, fz) + v(x, y, z)\{D^{*}(x, fy, fy) + D^{*}(y, fz, fz) + D^{*}(z, fx, fx) + D^{*}(x, fz, fz) + D^{*}(y, fx, fx) + D^{*}(z, fy, fy) + D^{*}(x, fy, fz) + D^{*}(y, fz, fx) + D^{*}(z, fx, fy)\},$$

for all $x, y, z \in X$. From the definition it is clear that every contraction and K-contraction are λ -generalized contractions.

3. Main results

Fixed point theorem for λ -generalized contraction of D^* metric spaces

Theorem 3.1. Suppose f is a self-map of a D^* -metric space (X, D^*) and X is f-orbitally complete. If f is a λ -generalized contraction, then it has a unique fixed point $u \in X$. In fact,

(3.1)
$$u = \lim_{n \to \infty} f^n x$$

for any $x \in X$ and

(3.2)
$$D^*(f^n x, u, u) \le \frac{\lambda^n}{1-\lambda} D^*(x, fx, fx)$$

for any $x \in X$ and $n \ge 1$.

Proof. Let $x \in X$ be an arbitrary element of X. Define the sequence $\{x_n\}$ by $x_0 = x, x_1 = fx_0, x_2 = fx_1 = f^2x, ..., x_n = fx_{n-1} = f^nx$, ...and denote the orbit of x under f by $O_f(x:\infty) = \{x_n : n = 0, 1, 2, 3, ...\}$.

Consider

$$D^{*}(x_{n}, x_{n+1}, x_{n+1}) = D^{*}(fx_{n-1}, fx_{n}, fx_{n})$$

$$\leq q(x_{n-1}, x_{n}, x_{n})D^{*}(x_{n-1}, x_{n}, x_{n})$$

$$+ r(x_{n-1}, x_{n}, x_{n})D^{*}(x_{n-1}, x_{n}, x_{n})$$

$$+ s(x_{n-1}, x_{n}, x_{n})D^{*}(x_{n}, x_{n+1}, x_{n+1})$$

$$+ t(x_{n-1}, x_{n}, x_{n})D^{*}(x_{n}, x_{n+1}, x_{n+1})$$

$$+ v(x_{n-1}, x_{n}, x_{n})\{D^{*}(x_{n-1}, x_{n+1}, x_{n+1})$$

$$+ D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n}, x_{n}, x_{n})$$

$$+ D^{*}(x_{n-1}, x_{n+1}, x_{n+1}) + D^{*}(x_{n}, x_{n}, x_{n})$$

$$+ D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n-1}, x_{n+1}, x_{n+1})$$

$$+ D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n-1}, x_{n+1}, x_{n+1})$$

$$+ D^{*}(x_{n}, x_{n+1}, x_{n}) + D^{*}(x_{n}, x_{n}, x_{n+1})\}$$

writing

$$q_{n-1} = q(x_{n-1}, x_n, x_n), r_{n-1} = r(x_{n-1}, x_n, x_n), s_{n-1} = s(x_{n-1}, x_n, x_n), t_{n-1} = t(x_{n-1}, x_n, x_n)$$
 and $v_{n-1} = v(x_{n-1}, x_n, x_n)$, we get

$$D^{*}(x_{n}, x_{n+1}, x_{n+1}) \leq q_{n-1}D^{*}(x_{n-1}, x_{n}, x_{n}) + r_{n-1}D^{*}(x_{n-1}, x_{n}, x_{n}) + s_{n-1}D^{*}(x_{n}, x_{n+1}, x_{n+1}) + t_{n-1}D^{*}(x_{n}, x_{n+1}, x_{n+1}) + v_{n-1}\{3D^{*}(x_{n-1}, x_{n+1}, x_{n+1}) + 2D^{*}(x_{n}, x_{n+1}, x_{n+1}) + 2D^{*}(x_{n}, x_{n}, x_{n+1})\}$$

since $D^*(x, x, y) = D^*(x, y, y)$ [Note 2.3], so we write $D^*(x_{n-1}, x_{n+1}, x_{n+1}) = D^*(x_{n-1}, x_{n-1}, x_{n+1})$ and $D^*(x_n, x_n, x_{n+1}) = D^*(x_n, x_{n+1}, x_{n+1})$. Therefore

$$D^{*}(x_{n}, x_{n+1}, x_{n+1}) \leq q_{n-1}D^{*}(x_{n-1}, x_{n}, x_{n}) + r_{n-1}D^{*}(x_{n-1}, x_{n}, x_{n}) + s_{n-1}D^{*}(x_{n}, x_{n+1}, x_{n+1}) + t_{n-1}D^{*}(x_{n}, x_{n+1}, x_{n+1}) + v_{n-1}\{3D^{*}(x_{n-1}, x_{n-1}, x_{n+1}) + 4D^{*}(x_{n}, x_{n+1}, x_{n+1})\}$$

By using property (iv) of a D^* -metric space, we write

$$D^*(x_{n-1}, x_{n-1}, x_{n+1}) \le D^*(x_{n-1}, x_{n-1}, x_n) + D^*(x_n, x_{n+1}, x_{n+1})$$

$$\le D^*(x_{n-1}, x_n, x_n) + D^*(x_n, x_{n+1}, x_{n+1})\}$$

$$D^{*}(x_{n}, x_{n+1}, x_{n+1}) \leq q_{n-1}D^{*}(x_{n-1}, x_{n}, x_{n}) + r_{n-1}D^{*}(x_{n-1}, x_{n}, x_{n}) + s_{n-1}D^{*}(x_{n}, x_{n+1}, x_{n+1}) + t_{n-1}D^{*}(x_{n}, x_{n+1}, x_{n+1}) + v_{n-1}\{3D^{*}(x_{n-1}, x_{n}, x_{n}) + 7D^{*}(x_{n}, x_{n+1}, x_{n+1})\} \leq (q_{n-1} + r_{n-1} + 3v_{n-1})D^{*}(x_{n-1}, x_{n}, x_{n}) + (s_{n-1} + t_{n-1} + 7v_{n-1})D^{*}(x_{n}, x_{n+1}, x_{n+1})$$

This implies that

$$(1 - s_{n-1} - t_{n-1} - 7v_{n-1})D^*(x_n, x_{n+1}, x_{n+1}) \leq (q_{n-1} + r_{n-1} + 3v_{n-1})D^*(x_{n-1}, x_n, x_n).$$

Hence $D^*(x_n, x_{n+1}, x_{n+1}) \leq (\frac{q_{n-1}+r_{n-1}+3v_{n-1}}{1-s_{n-1}-t_{n-1}-7v_{n-1}})D^*(x_{n-1}, x_n, x_n)$ $D^*(x_n, x_{n+1}, x_{n+1}) \leq \lambda D^*(x_{n-1}, x_n, x_n)$, where $\lambda = \frac{q_{n-1}+r_{n-1}+3v_{n-1}}{1-s_{n-1}-t_{n-1}-7v_{n-1}}$. Assume that $\lambda < 1$, which implies $\lambda = \frac{q_{n-1}+r_{n-1}+3v_{n-1}}{1-s_{n-1}-t_{n-1}-7v_{n-1}} < 1$ $q_{n-1}+r_{n-1}+3v_{n-1} < 1-s_{n-1}-t_{n-1}-7v_{n-1}$ $q_{n-1}+r_{n-1}+s_{n-1}+t_{n-1}+10v_{n-1} < 1$ since $\sup_{x,y,z\in X} \{q+r+s+t+10v\} = \lambda = q_{n-1}+r_{n-1}+s_{n-1}+t_{n-1}+10v_{n-1} < 1.$ Thus by iteration, we get

(3.3)
$$D^*(x_n, x_{n+1}, x_{n+1}) \le \lambda^n D^*(x_0, x_1, x_1) = \lambda^n D^*(x_0, fx_0, fx_0)$$

Therefore

$$D^{*}(x_{n}, x_{n+p}, x_{n+p}) \leq D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n+1}, x_{n+2}, x_{n+2}) + D^{*}(x_{n+2}, x_{n+3}, x_{n+3}) + \dots + D^{*}(x_{n+p-1}, x_{n+p}, x_{n+p}) \leq \lambda^{n} D^{*}(x_{0}, x_{1}, x_{1}) + \lambda^{n+1} D^{*}(x_{0}, x_{1}, x_{1}) + \lambda^{n+2} D^{*}(x_{0}, x_{1}, x_{1}) + \dots + \lambda^{n+p-1} D^{*}(x_{0}, x_{1}, x_{1}) \leq (\lambda^{n} + \lambda^{n+1} + \lambda^{n+2} + \dots + \lambda^{n+p-1} + \dots) D^{*}(x_{0}, x_{1}, x_{1}) \leq \frac{\lambda^{n}}{1 - \lambda} D^{*}(x_{0}, x_{1}, x_{1})$$

(3.4)
$$D^*(x_n, x_{n+p}, x_{n+p}) \le \frac{\lambda^n}{1-\lambda} D^*(x_0, x_1, x_1)$$

Hence $D^*(x_n, x_{n+p}, x_{n+p}) \leq \lambda^n D^*(x_0, x_1, x_1)/(1-\lambda) \to 0$ as $n \to \infty$, since $0 \leq \lambda < 1$, and $\{x_n\}$ is a Cauchy sequence in $O_f(x : \infty)$. Since X is f-orbitally complete, there exists a $u \in X$ such that

$$u = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f^n x_0 = \lim_{n \to \infty} f^n x.$$

To show that u is a fixed point of f,

$$D^{*}(fu, fx_{n}, fx_{n}) \leq qD^{*}(u, x_{n}, x_{n}) + rD^{*}(u, fu, fu) + sD^{*}(x_{n}, fx_{n}, fx_{n}) + tD^{*}(x_{n}, fx_{n}, fx_{n}) + v\{D^{*}(u, fx_{n}, fx_{n}) + D^{*}(x_{n}, fx_{n}, fx_{n}) + D^{*}(x_{n}, fu, fu) + D^{*}(u, fx_{n}, fx_{n}) + D^{*}(x_{n}, fu, fu) + D^{*}(x_{n}, fx_{n}, fx_{n}) + D^{*}(u, fx_{n}, fx_{n}) + D^{*}(x_{n}, fx_{n}, fu) + D^{*}(x_{n}, fu, fu, fx_{n})\}$$

$$D^{*}(fu, fx_{n}, fx_{n}) \leq qD^{*}(u, x_{n}, x_{n}) + rD^{*}(u, x_{n+1}, x_{n+1}) + rD^{*}(x_{n+1}, fu, fu) + sD^{*}(x_{n}, x_{n+1}, x_{n+1}) + tD^{*}(x_{n}, x_{n+1}, x_{n+1}) + v\{D^{*}(u, x_{n+1}, x_{n+1}) + D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n+1}, fu, fu) + D^{*}(u, x_{n+1}, x_{n+1}) + D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n+1}, fu, fu) + D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(u, x_{n+1}, x_{n+1}) + D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n+1}, x_{n+1}, fu) + D^{*}(x_{n}, x_{n+1}, x_{n+1}) + D^{*}(x_{n+1}, fu, x_{n+1}) \} \leq qD^{*}(u, x_{n}, x_{n}) + (r + 3v)D^{*}(u, x_{n+1}, x_{n+1}) + (r + 4v)D^{*}(fx_{n}, fu, fu) + (s + t + 6v)D^{*}(x_{n}, x_{n+1}, x_{n+1})$$

$$D^*(fu, fx_n, fx_n) \le \lambda D^*(u, x_n, x_n) + \lambda D^*(u, x_{n+1}, x_{n+1}) + \lambda D^*(fx_n, fu, fu) + \lambda D^*(x_n, x_{n+1}, x_{n+1}).$$

Therefore

$$(1-\lambda)D^*(fu, fx_n, fx_n) \le \lambda(D^*(u, x_n, x_n) + D^*(u, x_{n+1}, x_{n+1}) + D^*(x_n, x_{n+1}, x_{n+1}))$$

and

$$D^*(fu, fx_n, fx_n) \le (\frac{\lambda}{1-\lambda})(D^*(u, x_n, x_n) + D^*(u, x_{n+1}, x_{n+1}) + D^*(x_n, x_{n+1}, x_{n+1}))$$

which implies that $\lim_{n\to\infty} D^*(fu, fx_n, fx_n) = 0$. Hence $fu = \lim_{n\to\infty} fx_n = \lim_{n\to\infty} x_{n+1} = u$, and u is a fixed point of f. To prove that f has unique fixed point, suppose that fu = u and fw = w

To prove that f has unique fixed point, suppose that fu = u and fw = w for some $u, w \in X$. Then, by the definition of λ -generalized contraction, it follows that

$$\begin{split} D^*(u,w,w) &= D^*(fu,fw,fw) \leq q D^*(u,w,w) + r D^*(u,fu,fu) \\ &+ s D^*(w,fw,fw) + t D^*(w,fw,fw) + v \{D^*(u,fw,fw) \\ &+ D^*(w,fw,fw) + D^*(w,fu,fu) + D^*(u,fu,fu) \\ &+ D^*(w,fu,fu) + D^*(w,fw,fw) + D^*(u,fw,fw) \\ &+ D^*(w,fw,fu) + D^*(w,fu,fw) \} \\ &\leq (q+6v) D^*(u,w,w) \leq \lambda D^*(u,w,w) \end{split}$$

Which implies that $(1 - \lambda)D^*(u, w, w) = 0$, since $\lambda < 1$, $D^*(u, w, w) = 0$. That implies u = w. Thus f has unique fixed point. Since x is arbitrary in the above

discussion, it follows that $u = \lim_{n \to \infty} f^n x$ for any $x \in X$ and hence equation 3.1 is proved. Finally, since $D^*(x_n, x_{n+p}, x_{n+p}) \leq \lambda^n D^*(x, fx, fx)/(1-\lambda)$ (by 3.4), on letting $p \to \infty$, we obtain $D^*(x_n, u, u) \leq \lambda^n D^*(x, fx, fx)/(1-\lambda)$, proving equation 3.2.

Corollary 3.2. Let f be a self-map of a D^* -metric space (X, D^*) , and X be f-orbitally complete. If f is a contraction of (X, D^*) , then it has a unique fixed point $u \in X$. In fact,

(3.5)
$$u = \lim_{n \to \infty} f^n x \quad for \quad any \quad x \in X \quad and$$

for any $x \in X$ and

(3.6)
$$D^*(f^n x, u, u) \le \frac{\lambda^n}{1 - \lambda} D^*(x, f x, f x)$$

for any $x \in X$ and $n \ge 1$.

Proof. Since every contraction is λ -generalized contraction, the Corollary follows from Theorem 3.1.

Remark 3.3. The Banach contraction principle is a particular case of Corollary 3.2. For, if (X, d) is a complete metric space, then, by Corollary 2.8, (X, D_1^*) is a complete D^* -metric space, and hence f-orbitally complete for any selfmap f of X. Also, if f is a contraction of (X, d), then the contractive condition can be written as

$$D_1^*(fx, fy, fy) \le q.D_1^*(x, y, y)$$

for all $x, y \in X$, since $D_1^*(x, y, y) = d(x, y)$; so that f is a contraction on (X, D_1^*) . Thus f is a contraction on the f-orbitally complete D^* -metric space (X, D_1^*) , and the conclusions of Corollary 3.2 hold for f, and f satisfies the Banach contraction principle.

Corollary 3.4. Suppose that f is a self-map of a D^* -metric space (X, D^*) and X is f-orbitally complete. If f is a K-contraction of (X, D^*) , with constant q, then it has a unique fixed point $u \in X$. In fact,

(3.7)
$$u = \lim_{n \to \infty} f^n x$$

for any $x \in X$ and

(3.8)
$$D^*(f^n x, u, u) \le \frac{2q^n}{1 - 2q} D^*(x, fx, fx)$$

for all $x \in X$ and $n \ge 1$.

Proof. Since every contraction is a λ -generalized contraction, the Corollary follows from Theorem 3.1 by taking $\lambda = 2q$.

Remark 3.5. Kannan's result ([5]; p. 406) is a particular case of the Corollary 3.4. In fact, if (X, d) is a complete metric space, then, by Corollary 2.8, (X, D_1^*) is a complete D^* -metric space, and hence f-orbitally complete for any selfmap f of X. Also, if f is a K-contraction, with constant q, of (X, d), then the condition of K-contraction can be written as

(3.9)
$$D_1^*(fx, fy, fy) \le q\{D_1^*(x, fx, fx) + D_1^*(y, fy, fy)\}$$

for all $x, y \in X$. Since $D_1^*(x, y, y) = d(x, y)$. Thus f is a K-contraction on (X, D_1^*) , and f is a K-contraction on the f-orbitally complete D^* -metric space (X, D_1^*) . Therefore the conclusions of Corollary 3.4 hold for f, which are the conclusions of Kannan's result.

4. Consequences of Theorem 3.1

Theorem 4.1. Let f be a self-map of a D^* -metric space (X, D^*) and X be forbitally complete. If there is a positive integer k such that f^k is a λ -generalized
contraction, then it has a unique fixed point $u \in X$. In fact,

(4.1)
$$u = \lim_{n \to \infty} f^n x,$$

for any $x \in X$ and

(4.2)
$$D^*(f^n x, u, u) \le \lambda^{n/k} \cdot \rho(x, fx, fx)$$

for any $x \in X$ and $n \ge 1$, where $\rho(x, fx, fx) = \max\{\lambda^{-1}D^*(f^rx, f^{r+k}x, f^{r+k}x) : r = 0, 1, 2, \dots, k-1\}.$

Proof. Suppose that f^k is a λ -generalized contraction of an f-orbitally complete D^* -metric space (X, D^*) . By Theorem 3.1, f^k has unique fixed point. Let u be the fixed point of f^k . Then we claim that fu is also a fixed point of f^k . In fact, $f^k(fu) = f^{k+1}u = f(f^ku) = fu$. By the uniqueness of fixed point of f^k , fu = u, showing that u is a fixed point of f. To prove the uniqueness of fixed point of f, let $u, v \in X$ be such that fu = u and fv = v. Then $f^k u = u$ and $f^k v = v$ and hence u and v are fixed points of f^k , which has unique fixed point. Hence u = v. To prove equation 4.1, let n be any integer. Then by the division algorithm, n = mk + j, $0 \leq j < k$, $m \geq 0$ and, for any $x \in X$, $f^n x = (f^k)^m f^j x$. Since f^k is a λ -generalized contraction, by equation 3.2 we have

$$D^*(f^n x, u, u) = D^*((f^k)^m f^j x, u, u)$$

$$\leq \frac{\lambda^m}{1 - \lambda} D^*(f^j x, f^k f^j x, f^k f^j x)$$

$$= \frac{\lambda^m}{1 - \lambda} D^*(f^j x, f^{k+j} x, f^{k+j} x)$$

 $D^*(f^n x, u, u) \leq \frac{\lambda^m}{1-\lambda} \max\{D^*(f^i x, f^{i+j} x, f^{i+j} x) : i = 0, 1, 2..., k-1\} \to 0$ as $m = m(n) \to \infty$. Thus $u = \lim_{n \to \infty} f^n x$ for any $x \in X$. To prove equation 4.2, let n be any positive integer. Since f^k is a λ -generalized contraction and $n = mk + j, \ 0 \le j < k, \ m \ge 0$ with m = [n/k], from equation 3.2 we have

$$D^{*}(f^{n}x, u, u) = D^{*}(f^{mk}f^{j}x, u, u)$$

$$\leq \frac{\lambda^{m}}{1-\lambda}D^{*}(f^{j}x, f^{k+j}x, f^{k+j}x)$$

$$= \frac{(\lambda^{1/k})^{mk+j-j}}{1-\lambda}D^{*}(f^{j}x, f^{k+j}x, f^{k+j}x)$$

$$\leq (\lambda^{1/k})^{mk+j-k}D^{*}(f^{j}x, f^{k+j}x, f^{k+j}x)$$

$$\leq (\lambda^{1/k})^{n}\lambda^{-1}D^{*}(f^{j}x, f^{k+j}x, f^{k+j}x)$$

Hence $D^*(f^n x, u, u) \leq \lambda^{n/k} \max\{\lambda^{-1} D^*(f^i x, f^{i+k} x, f^{i+k} x) : i = 0, 1, 2..., k-1\}.$

Acknowledgement

The authors wish to express their sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

References

- AHMAD, B., ASHRAF, M., AND RHOADES, B. E. Fixed point theorems for expansive mappings in *D*-metric spaces. *Indian J. Pure Appl. Math. 32*, 10 (2001), 1513–1518.
- [2] DHAGE, B. C. Generalised metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc. 84, 4 (1992), 329–336.
- [3] DHAGE, B. C., PATHAN, A. M., AND RHOADES, B. E. A general existence principle for fixed point theorems in *D*-metric spaces. *Int. J. Math. Math. Sci.* 23, 7 (2000), 441–448.
- [4] KANNAN, R. On certain sets and fixed point theorems. Rev. Roumaine Math. Pures Appl. 14 (1969), 51–54.
- [5] KANNAN, R. Some results on fixed points. II. Amer. Math. Monthly 76 (1969), 405–408.
- [6] NAIDU, S. V. R., RAO, K. P. R., AND RAO, N. S. On the concepts of balls in a D-metric space. Int. J. Math. Math. Sci., 1 (2005), 133–141.
- [7] NAIDU, S. V. R., RAO, K. P. R., AND SRINIVASA RAO, N. On the topology of D-metric spaces and generation of D-metric spaces from metric spaces. Int. J. Math. Math. Sci., 49-52 (2004), 2719–2740.
- [8] NAIDU, S. V. R., RAO, K. P. R., AND SRINIVASA RAO, N. On convergent sequences and fixed point theorems in *D*-metric spaces. *Int. J. Math. Math. Sci.*, 12 (2005), 1969–1988.
- RHOADES, B. E. A fixed point theorem for generalized metric spaces. Internat. J. Math. Math. Sci. 19, 3 (1996), 457–460.

- [10] SEDGHI, S., SHOBE, N., AND ZHOU, H. A common fixed point theorem in D^{*}-metric spaces. Fixed Point Theory Appl. (2007), Art. ID 27906, 13.
- [11] SEDGHI, S., TURKOGLU, D., SHOBE, N., AND SEDGHI, S. Common fixed point theorems for six weakly compatible mappings in D*-metric spaces. *Thai J. Math.* 7, 2 (2009), 381–391.

Received by the editors September 30, 2019 First published online March 8, 2021