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On n−absorbing primary submodules

Mohammad Hamoda12

Abstract. Let R be a commutative ring with 1 ̸= 0, N a proper
submodule of an R−module M , and n a positive integer. In this pa-
per, we define N to be an n−absorbing primary submodule of M if
whenever a1 . . . anx ∈ N for a1, . . . , an ∈ R and x ∈ M, then either
a1 . . . an ∈ (N :R M) or there are (n − 1) of the ai

′s whose product
with x is in M − rad(N). A number of results concerning n−absorbing
primary submodules are given.
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1. Introduction

Throughout this paper all rings are commutative with 1 ̸= 0 and all modules
are considered to be unitary.
Recently, extensive researches have been done on prime and primary ideals
and submodules. Let R be a commutative ring with identity. Of course a
proper ideal I of R is said to be a prime ideal if ab ∈ I implies that a ∈ I
or b ∈ I where a, b ∈ R. There are several ways to generalize the notion
of prime ideals and submodules, see for example [3, 5, 14, 15, 11, 22, 30, 32].
Badawi in [7] generalized the concept of prime ideals in a different way. He
defined a proper ideal I of R to be a 2−absorbing ideal of R if whenever
a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In [9], Badawi
and Darani generalized the concept of 2−absorbing ideals to the concept of
weakly 2−absorbing ideals. They defined a proper ideal I of R to be a weakly
2−absorbing ideal of R if whenever a, b, c ∈ R and 0 ̸= abc ∈ I, then ab ∈ I
or ac ∈ I or bc ∈ I. Later in [4], Anderson and Badawi introduced the concept
of n−absorbing ideals of R. According to their definition, a proper ideal I of
the ring R is said to be an n−absorbing (resp., strongly n−absorbing) ideal if
whenever x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp., I1 . . . In+1 ⊆ I for ideals
I1, . . . , In+1 of R), then there are n of the xi

′s (resp., n of the Ii
′s) whose

product is in I. In [33], the concepts of 2−absorbing and weakly 2−absorbing
ideals of the ring R generalized to that of submodules of an R−module M as
follows: A proper submodule N of an R−module M is called a 2−absorbing
(resp., weakly 2−absorbing) submodule of M if whenever a, b ∈ R, m ∈ M
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and abm ∈ N (resp.,0 ̸= abm ∈ N), then ab ∈ (N :R M) or am ∈ N or
bm ∈ N . In [34], Darani and Soheilnia generalized the concept of n−absorbing
ideals of the ring R to that of submodules of an R−module M . They defined a
proper submodule N of an R−module M to be an n−absorbing (resp., strongly
n−absorbing) submodule if whenever a1 . . . anm ∈ N for a1, . . . , an ∈ R and
m ∈ M (resp., I1 . . . InL ⊆ N for ideals I1, . . . , In of R and submodule L of
M), then either a1 . . . an ∈ (N :R M) (resp., I1 . . . In ⊆ (N :R M)) or there are
(n− 1) of the ai

′s (resp., Ii
′s) whose product with m (resp., with L) is in N .

In [8], the concept of primary ideals of the ring R generalized to the concept
of 2−absorbing primary ideals. A proper ideal I of R is called a 2−absorbing
primary ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈

√
I

or bc ∈
√
I, where

√
I = {x ∈ R : xk ∈ I for some positive integer k}

is the radical ideal of I in R. In [24], Mostafanasab et.al. generalized the
concept of 2−absorbing primary ideal of the ring R to that of submodules of
an R−module M . They defined a proper submodule N of an R−module M to
be a 2−absorbing primary submodule of M if whenever a, b ∈ R, m ∈ M and
abm ∈ N , then am ∈ M−rad(N) or bm ∈ M−rad(N) or ab ∈ (N :R M). In
[35], Darani et.al. generalized the concept of 2−absorbing primary submodule
to weakly 2−absorbing primary submodule. They defined a proper submodule
N of an R−module M to be a weakly 2−absorbing primary submodule of M
if whenever a, b ∈ R, m ∈ M and 0 ̸= abm ∈ N , then am ∈ M − rad(N)
or bm ∈ M − rad(N) or ab ∈ (N :R M). Most of the concepts concerning
prime and primary ideals and submodules have been studied and generalized
to graded ring theory, see for example [13, 17, 19, 26, 28]. The motivation of
this paper is to continue the study of the family of n−absorbing ideals and
submodules, also to identify new properties in that subject. The remainder of
this paper is organized as follows:
In Section 2, we give some basic definitions and results that are used in the
sequel of this paper. Section 3 includes the results and theorems concerning
n−absorbing primary submodules. We give a useful characterization of an
n−absorbing primary submodule, (see Theorem 3.6). The first main result of
this section is (Theorem 3.11). We show that if N is a submodule of a finitely
generated multiplication R−module M with M−rad(N) a primary submodule
of M , then N is an n−absorbing primary submodule of M . One important
part of this section is in the case when R is a Noetherian domain and M a
torsion-free multiplication R−module (see Theorem 3.20). Section 4 includes
the conclusion.

2. Preliminary notes

As usual, if N is a proper submodule of an R−module M, then the residual
of N by M is the set (N :R M) = {r ∈ R : rM ⊆ N} which is an ideal of
R. In particular, if m ∈ M, then (0 :R m) = {r ∈ R : rm = 0} is called the
annihilator of m. Also, the set (0 :R M) is an ideal of R called the annihilator
of M .
The radical M−rad(N) is defined to be the intersection of all prime submodules
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of M containing N . If M has no prime submodule containing N, then we say
M − rad(N) = M . The radical of the module M is defined to be M − rad(0).
Recall that a proper submodule N of an R−module M is prime (resp., pri-
mary) submodule of M if for r ∈ R and m ∈ M with rm ∈ N, then either
m ∈ N or r ∈ (N :R M) (resp., rk ∈ (N :R M) for some positive integer k). In
this case, one can easily verify that p = (N :R M) (resp., p =

√
(N :R M)) is

a prime ideal of R and we say N is a p− prime (resp., p−primary) submodule.
An R−module M is called faithful if its annihilator is 0. M is called a multipli-
cation module if for each submodule N of M , we have N = PM for some ideal
P of R. In this case we can take P = (N :R M), see [16]. For more details on
multiplication modules, one can consult [10] and [2].
An R−module M is called a cancellation module if PM = IM (for ideals P
and I of R) implies P = I. Finitely generated faithful multiplication modules
are cancellation modules ([29],Corollary to Theorem 9). If M is a finitely gen-
erated faithful multiplication R−module hence (a cancellation module), then
it is easy to see that (PN :R M) = P (N :R M) for each submodule N of M
and each ideal P of R.
Let M be an R−module, and I a prime ideal of R. We say that I is an associ-
ated prime of M (or that I is associated to M) if I is the annihilator of some
x ∈ M . The set of associated primes of M is denoted by AssR(M).

3. Results and discussion

Definition 3.1. Let n be a positive integer. A proper ideal I of a commu-
tative ring R is said to be an n−absorbing primary ideal of R if whenever
a1 . . . an+1 ∈ I for a1, . . . , an+1 ∈ R, then either a1 . . . an ∈ I or a product of
n of the ai

′s (other than a1 . . . an) is in
√
I.

Equivalently, one can define n−absorbing primary ideals in the following
way:
A proper ideal I of a commutative ring R is said to be an n−absorbing primary
ideal of R if whenever a1 . . . an+1 ∈ I for a1, . . . , an+1 ∈ R, then either
a1 . . . an ∈ I or there exists 1 ≤ i ≤ n such that a1 . . . ai−1ai+1 . . . an+1 ∈

√
I.

From the definition, one can see that any n−absorbing ideal of R is an n−absor-
bing primary ideal of R. However, the converse is not true in general.

Example 3.2. Let R = Z and I = (50) be an ideal of R. We have 5.5.2 ∈ I,
5.5 ̸∈ I and 5.2 ̸∈ I. Thus, I is not a 2−absorbing ideal of R. However, we
have that 5.2 ∈

√
I and hence I is a 2−absorbing primary ideal of R.

Definition 3.3. Let n be a positive integer. A proper submodule N of
an R−module M is said to be an n−absorbing primary submodule of M
if whenever a1 . . . anx ∈ N for a1, . . . , an ∈ R and x ∈ M, then either
a1 . . . an ∈ (N :R M) or there are (n− 1) of the ai

′s whose product with x is
in M − rad(N).

Equivalently, a proper submodule N of an R− module M is called an
n−absorbing primary submodule of M if whenever a1 . . . anx ∈ N for
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a1, . . . , an ∈ R and x ∈ M, then either a1 . . . an ∈ (N :R M) or there
exists 1 ≤ i ≤ n such that a1 . . . ai−1ai+1 . . . anx ∈ M − rad(N).

Definition 3.4. Let n be a positive integer. A proper submodule N of an
R−module M is said to be a weakly n−absorbing primary submodule of M if
whenever 0 ̸= a1 . . . anx ∈ N for a1, . . . , an ∈ R and x ∈ M, then either
a1 . . . an ∈ (N :R M) or there are (n− 1) of the ai

′s whose product with x is
in M − rad(N).

Theorem 3.5. If N is an n−absorbing primary submodule of an R−module
M, then it’s an m−absorbing primary submodule of M for every positive integer
m > n.

Proof. Let N be an n−absorbing primary submodule of M . We need to show
that N is an (n + 1)−absorbing primary submodule of M . Let
a1a2 . . . an+1x ∈ N for a1, a2, . . . , an+1 ∈ R and x ∈ M . Now set a1a2 = a.
Then a . . . an+1x ∈ N implies a . . . an+1 ∈ (N :R M) or
a . . . ai−1ai+1 . . . an+1x ∈ M − rad(N) or a3a4 . . . an+1x ∈ M − rad(N) for
some 3 ≤ i ≤ n+ 1. Hence, N is an m−absorbing primary submodule of M
for m > n.

Now, we give a characterization of an n−absorbing primary submodule:

Theorem 3.6. Let N be a proper submodule of an R−module M . Then the
following statements are equivalent:

(i) N is an n−absorbing primary submodule of M ;

(ii) If a1 . . . an ̸∈ (N :R M), where a1, . . . , an ∈ R, then (N :M a1 . . . an) ⊆⋃n
i=1(M − rad(N) :M a1a2 . . . ai−1ai+1 . . . an).

Proof. (i) =⇒ (ii) Assume that a1, . . . , an ∈ R are such that a1 . . . an ̸∈
(N :R M). Let x ∈ (N :M a1 . . . an). Then a1 . . . anx ∈ N, and so there are
(n− 1) of the ai

′s whose product with x is in M − rad(N). Then there exists
k ∈ {1, 2, . . . , n} such that a1a2 . . . ak−1ak+1 . . . anx ∈ M − rad(N), which im-
plies that x ∈ (M−rad(N) :M a1a2 . . . ak−1ak+1 . . . an) ⊆

⋃n
i=1(M−rad(N) :M

a1a2 . . . ai−1ai+1 . . . an).
(ii) =⇒ (i) Let a1a2 . . . anx ∈ N for some a1, a2, . . . , an ∈ R and x ∈ M .
Assume that a1a2 . . . an ̸∈ (N : M). This implies that x ∈ (N :M a1a2 . . . an) ⊆⋃n

i=1(M − rad(N) :M a1a2 . . . ai−1ai+1 . . . an). Thus, we have
a1a2 . . . ai−1ai+1 . . . anx ∈ M − rad(N) for some i ∈ {1, 2, . . . , n}. Therefore,
N is an n−absorbing primary submodule of M .

Recall from [27] that a ring R is said to be a u−ring if I ⊆
⋃n

i=1 Ii for some
ideals I, I1, I2, . . . , In of R implies that I ⊆ Ik for some k ∈ {1, 2, . . . , n}.

Similar to the concept of a u−ring, define the concept of a u−module as
follows:

Definition 3.7. An R−module M is said to be a u−module if N ⊆
⋃n

i=1 Ni

for some submodules N,N1, N2, . . . , Nn of M implies that N ⊆ Nk for some
k ∈ {1, 2, . . . , n}.
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Theorem 3.8. Let M be a finitely generated multiplication u−module over the
ring R. If N is an n−absorbing primary submodule of M, then (N :R M) is
an n−absorbing primary ideal of R.

Proof. Let a1, . . . , an+1 ∈ R be such that a1 . . . an+1 ∈ (N :R M). This
implies that an+1M ⊆ (N :M a1a2 . . . an). Now assume that a1a2 . . . an ̸∈
(N :R M). Then by Theorem 3.6, we have an+1M ⊆

⋃n
i=1(M − rad(N) :N

a1a2 . . . ai−1ai+1 . . . an). Since M is a u−module, we conclude that an+1M ⊆
(M − rad(N) :M a1a2 . . . ak−1ak+1 . . . an) for some k ∈ {1, 2, . . . , n}. Thus, we
have a1a2 . . . ak−1ak+1 . . . an+1 ∈ (M − rad(N) :R M) =

√
(N :R M). There-

fore, (N :R M) is an n−absorbing primary ideal of R.

Theorem 3.9. Let N be a submodule of an R−module M . If M − rad(N) is
prime submodule of M, then N is an n−absorbing primary submodule of M .

Proof. Let a1a2 . . . anx = a1(a2 . . . anx) ∈ N ⊆ M − rad(N) for some
a1, a2, . . . , an ∈ R and x ∈ M . Assume that a2 . . . anx ̸∈ M − rad(N).
Since M − rad(N) is prime, we conclude that a1 ∈ (M − rad(N) :R M),
which implies that a1a2 . . . ai−1ai+1 . . . anx ∈ M − rad(N). Therefore, N is
an n−absorbing primary submodule of M .

Proposition 3.10. ([24], Proposition 2.5.) Let M be a finitely generated multi-
plication R−module and N be a submodule of M . Then the following statements
are equivalent:

(i) M − rad(N) is a primary submodule of M .

(ii) M − rad(N) is a prime submodule of M .

Theorem 3.11. Let M be a finitely generated multiplication R−module and
N be a submodule of M . If M − rad(N) is primary submodule of M, then N
is an n−absorbing primary submodule of M .

Proof. Assume that M is a finitely generated multiplication R−module and
M − rad(N) is a primary submodule of M, then by Proposition 3.10, M −
rad(N) is a prime submodule of M and therefore N is an n−absorbing primary
submodule of M by Theorem 3.9.

Theorem 3.12. Let M be a faithful (resp., finitely generated faithful) multi-
plication R−module. If M − rad(N) is a prime (resp., primary) submodule
of M, then Nn is an n−absorbing primary submodule of M for every positive
integer n.

Proof. Assume that M is a faithful (resp., finitely generated faithful) multipli-
cation R−module and M−rad(N) is a prime (resp., primary) submodule of M .
Then there exists an ideal P of R such that N = PM . Since for any faithful
multiplication module M, we have M − rad(IM) =

√
IM for any ideal I of R

by ([1], Theorem 1(3)). Then M − rad(Nn) =
√
PnM = M − rad(N) which is

a prime (resp., primary) submodule of M . Therefore, Nn is an n−absorbing
primary submodule of M for every positive integer n by Theorem 3.9 and
Theorem 3.11.
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Proposition 3.13. ([24], Proposition 2.14.) Let M be a multiplication R−mo-
dule and K,N be submodules of M . Then we have the following:

(i)
√
(KN :R M) =

√
(K :R M) ∩

√
(N :R M).

(ii) M − rad(KN) = M − rad(K) ∩ M − rad(N).

(iii) M − rad(K ∩ N) = M − rad(K) ∩ M − rad(N).

Theorem 3.14. Let M be a multiplication R−module and N1, . . . , Nm are
n−absorbing primary submodules of M with the same M−radical. Then
N1

⋂
. . .

⋂
Nm is an n−absorbing primary submodule of M .

Proof. M − rad(N1

⋂
. . .

⋂
Nm) =

⋂m
i=1 M − rad(Ni) (by Proposition 3.13).

Assume that a1 . . . anx ∈ N for a1, . . . , an ∈ R and x ∈ M and a1 . . . an ̸∈
(N1

⋂
. . .

⋂
Nm :R M). Then a1 . . . an ̸∈ (Ni :R M) for some i ∈ {1, 2, . . . ,m}.

Hence there are (n − 1) of the ai
′s whose product with x is in M − rad(Ni).

But Ni
′s have the same M−radical, so N1

⋂
. . .

⋂
Nm is an n−absorbing

primary submodule of M .

Theorem 3.15. Let M be a multiplication R−module. If Nj is an nj−absor-
bing primary submodule with the same radical of M for all j ∈ {1, . . . ,m},
then N1 ∩ . . . ∩ Nm is an n−absorbing primary submodule of M with n =
n1 + . . .+ nm.

Proof. Since Nj is nj−absorbing primary submodule with nj ≤ n, then by
Theorem 3.5, Nj is an n−absorbing primary submodule of M . By Theorem
3.14, N1 ∩ . . . ∩ Nm is an n−absorbing primary submodule of M .

Recall that a commutative ring R with nonzero identity is said to be a
divided ring if for every prime ideal I of R, we have I ⊆ aR for all a ∈ R\ I,
see [12]. Also the reader can consult [6] and [21] for more information on
divided rings. Also, in [31], Tekir et.al. extended the concept of divided rings
to modules as follows:

Definition 3.16. An R−module M is said to be a divided module if every
prime submodule P of M is comparable with Rm for each m ∈ M , or equiva-
lently, P ⊆ Rm for each m ∈ M − P .

Theorem 3.17. Every proper submodule N of a divided R−module M is an
n−absorbing primary submodule of M .

Proof. Suppose that N is a proper submodule of the R−module M . By ([31],
Proposition 1), prime submodules of a divided module are linearly ordered. So
M −rad(N) is a prime submodule of M . Hence, we are done by definition.

Remark 3.18. Assume that I = (0 :R M) and A = R/I. It is easy to see that:

(i) N is an n−absorbing primary R−submodule of M if and only if N is an
n−absorbing primary A−submodule of M .
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(ii) (N :R M) is an n−absorbing primary ideal of R if and only if (N :A M)
is an n−absorbing primary ideal of A.

Theorem 3.19. Let M be an R−module and S be a multiplicatively closed sub-
set of R. If N is an n−absorbing primary submodule of M and S−1N ̸= S−1M,
then S−1N is an n−absorbing primary submodule of S−1M .

Proof. Let a1, . . . , an ∈ R, s1, . . . , sn ∈ S and x
s ∈ S−1M be such that

a1

s1
a2

s2
. . . an

sn
x
s ∈ S−1N . Then there existsm ∈ S such thatma1a2 . . . anx ∈ N .

As N is an n−absorbing primary submodule of M, we get either a1a2 . . . an ∈
(N :R M) or ma1 . . . ai−1ai+1 . . . anx ∈ M − rad(N) for some 1 ≤ i ≤ n.
The first case implies that
a1

s1
a2

s2
. . . an

sn
= a1a2...an

s1s2...sn
∈ S−1(N :R M) ⊆ (S−1N :S−1R S−1M).

The second case implies that
a1

s1
a2

s2
. . . ai−1ai+1

si−1si+1
. . . anx

sns
∈ S−1(M − rad(N)) ⊆ S−1M − rad(S−1N).

Hence S−1N is an n−absorbing primary submodule of S−1M .

Let T (R) be the total quotient ring of the commutative ring R. A non
zero ideal I of R is called an invertible ideal of R if II−1 = R, where I−1 =
{x ∈ T (R) : xI ⊆ R}. In [25], Naoum and Al-Alwan generalized the concept
of an invertible ideal to the concept of an invertible submodule:
Let M be an R−module and let S = R\{0}. Then G = {g ∈ S : gx =
0 for some x ∈ M implies x = 0} is a multiplicatively closed subset of R. Let
N1 be a submodule of M and let N2 = {m ∈ RG : mN1 ⊆ M}. A submodule
N1 is said to be invertible in M if N2N1 = M . A nonzero R−module M is said
to be a Dedekind module if each nonzero submodule of M is invertible. For
more information on Dedekind and generalized Dedekind modules, the reader
can consult [1].

Theorem 3.20. Let R be a Noetherian domain, M a torsion-free multiplica-
tion u−module over R. Then the following statements are equivalent:

(i) M is a Dedekind module;

(ii) If N is a nonzero n−absorbing primary submodule of M, then either
N = An for some maximal submodule A of M and some positive integer
n or N = An

1A
m
2 for some maximal submodules A1 and A2 of M and

some positive integers n, m;

(iii) If N is a nonzero n−absorbing primary submodule of M, then either
N = Pn for some prime submodule P of M and some positive integer n
or N = Nn

1 N
m
2 for some prime submodules N1 and N2 of M and some

positive integers n, m.

Proof. (i) =⇒ (ii) Since every multiplication module over a Noetheian ring is
a Noetherian module, so M is Noetherian and hence finitely generated. As N
is an n−absorbing primary submodule of M, so by Theorem 3.8, (N :R M)
is an n−absorbing primary ideal of R. Now, N = IM = (N :R M)M for
some proper ideal I of R. Since a finitely generated torsion free multiplication
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module M over a domain R is a Dedekind module iff R is a Dedekind domain
by ([20], Theorem 2.13). Then, we have either I = Ln for some maximal ideal L
of R and some positive integer n or I = Ln

1L
m
2 for some maximal ideals L1 and

L2 of R and some positive integers n, m by ([7], Theorem 2.11.). Hence, either
N = LnM = (LM)n = An where A = LM or N = (L1M)n(L2M)m = An

1A
m
2

where A1 = L1M and A2 = L2M .
(ii) =⇒ (iii) It is clear.
(iii) =⇒ (i) We need to show that R is a Dedekind domain. Let I be an ideal of
R and L be a maximal ideal of R be such that L2 ⊂ I ⊂ L. Then

√
I = L and

so that M − rad(IM) = LM, since M is a faithful multiplication R−module.
Then by Theorem 3.11, IM is an n−absorbing primary submodule of M . Now
by (iii), either IM = Pn for some prime submodule P of M and some positive
integer n or IM = Nn

1 N
m
2 for some prime submodules N1 and N2 of M and

some positive integers n, m. Since M is a cancellation module, then I = Jn

for some prime ideal J of R and some positive integer n or I = Jn
1 J

m
2 for some

prime ideals J1 and J2 of R and some positive integers n, m in which any of
the two cases make a contradiction. Thus there are no ideals properly between
L2 and L. Therefore, R is a Dedekind domain by ([18], Theorem 39.2).

Lemma 3.21. ([23], Corollary 1.3) Let M and M be R−modules with f :
M −→ M an R−module epimorphism. If N is a submodule of M containing
Ker(f), then f(M − rad(N)) = M − rad(f(N)).

Theorem 3.22. Let M and M be R−modules and let f : M −→ M be an
R−module homomorphism. Then we have the following:

(i) If N is an n−absorbing primary submodule of M, then f−1(N) is an
n−absorbing primary submodule of M .

(ii) If f is epimorphism and N is an n−absorbing primary submodule of M
containing Ker(f), then f(N) is an n−absorbing primary submodule of
M .

Proof. (i) Let a1, . . . , an ∈ R and x ∈ M such that a1 . . . anx ∈ f−1(N).
Then a1 . . . anf(x) ∈ N . Thus, either a1 . . . an ∈ (N :R M) or there are (n− 1)
of the ai

′s whose product with f(x) is in M − rad(N) and hence, either
a1 . . . an ∈ (f−1(N) :R M) or there are (n− 1) of the ai

′s whose product with
x is in f−1(M−rad(N)). Now, by using the inclusion f−1(M−rad(N)) ⊆ M−
rad(f−1(N)), we have f−1(N) is an n−absorbing primary submodule of M .
(ii) Let a1, . . . , an ∈ R and y ∈ M be such that a1 . . . any ∈ f(N). By as-
sumption there exists x ∈ M such that y = f(x) and so f(a1 . . . anx) ∈ f(N).
Since, Ker(f) ⊆ N, we have a1 . . . anx ∈ N . Then either a1 . . . an ∈ (N :R M)
or there are (n− 1) of the ai

′s whose product with x is in M − rad(N). Thus,
either a1 . . . an ∈ (f(N) :R M) or there are (n − 1) of the ai

′s whose prod-
uct with y is in f(M − rad(N)) = M − rad(f(N)). Therefore, f(N) is an
n−absorbing primary submodule of M .
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Corollary 3.23. Let L and N be submodules of an R−module M such that
L ⊆ N . If N is an n−absorbing primary submodule of M, then N/L is an
n−absorbing primary submodule of M/L.

Proof. Follows directly from Theorem 3.22 (ii).

Theorem 3.24. Let L and N be submodules of an R−module M such that
L ⊂ N ⊂ M . If L is an n−absorbing primary submodule of M and N/L is
a weakly n−absorbing primary submodule of M/L, then N is an n−absorbing
primary submodule of M .

Proof. Let a1, . . . , an ∈ R and x ∈ M such that a1 . . . anx ∈ N . If
a1 . . . anx ∈ L, then either a1 . . . an ∈ (L :R M) ⊆ (N :R M) or there are
(n − 1) of the ai

′s whose product with x is in M − rad(L) ⊆ M − rad(N).
So assume that a1 . . . anx ̸∈ L. Then 0 ̸= a1 . . . an(x + L) ∈ N/L implies
that either a1 . . . an ∈ (N/L :R M/L) or there are (n − 1) of the ai

′s whose

product with (x+L) is in M/L− rad(N/L) = M−rad(N)
L . It means that either

a1 . . . an ∈ (N :R M) or there are (n−1) of the ai
′s whose product with x is in

M − rad(N). Therefore, N is an n−absorbing primary submodule of M .

According to [24]:
Let Ri be a commutative ring with identity and Mi be an Ri−module, for
i = 1, 2. Let R = R1 × R2. Then M = M1 × M2 is an R−module and
each submodule of M is of the form N = N1 × N2 for some submodules N1

of M1 and N2 of M2. In addition, if Mi is a multiplication Ri−module, for
i = 1, 2, thenM is a multiplication R−module. In this case, for each submodule
N = N1 × N2 of M we have M − rad(N) = M1 − rad(N1)× M2 − rad(N2).

Theorem 3.25. Let M1 be a multiplication R1−module and M2 be a multi-
plication R2−module and let R = R1 × R2 and M = M1 × M2. Then the
following hold:

(i) A proper submodule L1 of M1 is an n−absorbing primary submodule if
and only if N = L1 × M2 is an n−absorbing primary submodule of M .

(ii) A proper submodule L2 of M2 is an n−absorbing primary submodule if
and only if N = M1 × L2 is an n−absorbing primary submodule of M .

Proof. (i) Assume that N = L1 × M2 is an n−absorbing primary submodule
of M . Since N is a proper submodule of M, so L1 ̸= M1. Let M = M

{0}× M2
.

Then N = N
{0}× M2

is an n−absorbing primary submodule of M by Corollary

3.23. Since M is module-isomorphic to M1 and N is module-isomorphic to L1,
so L1 is an n−absorbing primary submodule of M1.
Conversely, assume that L1 is an n−absorbing primary submodule of M1, then
it is easy to see that N = L1 × M2 is an n−absorbing primary submodule of
M .
(ii) Proceed similarly to (i).



152 Mohammad Hamoda

Lemma 3.26. If I is an n−absorbing primary ideal of R, then
√
I is an

n−absorbing ideal of R

Proof. Let a1, . . . , an+1 ∈ R be such that a1 . . . an+1 ∈
√
I and the prod-

uct of an+1 with (n − 1) of a1, . . . , an ̸∈
√
I. Since a1 . . . an+1 ∈

√
I, then

(a1 . . . an+1)
k = ak1 . . . a

k
n+1 ∈ I for some positive integer k. Since I is an

n−absorbing primary ideal of R and the product of an+1 with (n − 1) of
a1, . . . , an is not in

√
I, we conclude that ak1 . . . a

k
n = (a1 . . . an)

k ∈ I, and
thus a1 . . . an ∈

√
I. Therefore,

√
I is an n−absorbing ideal of R.

Theorem 3.27. Let I be an n−absorbing primary ideal of the ring R and let
M be a faithful multiplication R−module with AssR(M/

√
IM) a totally ordered

set. Then a1 . . . anx ∈ IM implies that a1 . . . an−1x ∈
√
IM or anx ∈

√
IM

or a1 . . . an ∈ I, whenever a1, . . . , an ∈ R and x ∈ M .

Proof. Assume that a1, . . . , an ∈ R, x ∈ M and a1 . . . anx ∈ IM . If (
√
IM :R

ajx) = R for some 1 ≤ j ≤ n, then we are done. Now, suppose that

(
√
IM :R ajx) are proper ideals of R for all 1 ≤ j ≤ n. Since AssR(M/

√
IM)

is a totally ordered set, then
⋃n

j=1(
√
IM :R ajx) is an ideal of R and so there

exists a maximal ideal P such that
⋃n

j=1(
√
IM :R ajx) ⊆ P . We claim that

a1x ̸∈ TP (M) = {x ∈ M : (1−y)x = 0 for some y ∈ P}. To prove the claim,
assume on the contrary that a1x ∈ TP (M). This implies that (1− y)a1x = 0
for some y ∈ P, thus (1 − y)a1x ∈

√
IM and so 1− y ∈ (

√
IM :R a1x) ⊆ P,

a contradiction.
Now by ([16], Theorem 1.2), there are y ∈ P and x ∈ M such that (1 −
y)M ⊆ Rx. Thus, (1 − y)x = sx for some s ∈ R. As a1 . . . anx ∈ IM,
so (1 − y)(a1 . . . anx) = bx for some b ∈ I. Thus (a1 . . . ans − b)x = 0 and
so (1 − y)(a1 . . . ans − b)M ⊆ (a1 . . . ans − b)Rx = 0. But M is faithful, so
(1 − y)(a1 . . . ans − b) = 0. Therefore, (1 − y)(a1 . . . ans) = (1 − y)b ∈ I.
Then (1− y)(a1 . . . an−1)s ∈

√
I or (1− y)an ∈

√
I or a1 . . . ans ∈ I, because

I is an n−absorbing primary ideal of R. If (1 − y)(a1 . . . an−1)s ∈
√
I, then

(1− y)(a1 . . . an−1) ∈
√
I or (1− y)s ∈

√
I or (a1 . . . an−1)s ∈

√
I, because

√
I

is an n−absorbing ideal of R by Lemma 3.26. If (1−y)(a1 . . . an−1) ∈
√
I, then

(1 − y)(a1 . . . an−1x) ∈
√
IM and so 1 − y ∈ (

√
IM :R a1 . . . an−1x) ⊆ P, a

contradiction. If (1−y)s ∈
√
I, then (1−y)2x = (1−y)sx ∈

√
IM which implies

that (1 − y)2 ∈ (
√
IM :R x) ⊆ (

√
IM :R a1 . . . an−1x) ⊆ P, a contradiction.

Similarly, we can get that (1 − y)an ̸∈
√
I. Now a1 . . . an−1s ∈

√
I implies

that (1 − y)a1 . . . an−1x = a1 . . . an−1sx ∈
√
IM and so 1 − y ∈ (

√
IM :R

a1 . . . an−1x) ⊆ P, a contradiction. If a1 . . . ans ∈ I, then a1 . . . an−1s ∈
√
I

or ans ∈
√
I or a1 . . . an ∈ I of which the first two cases are impossible, thus

a1 . . . an ∈ P .

4. Conclusion

In this paper, we considered n−absorbing primary submodules. Weakly
n−absorbing primary submodules have been defined and have not been studied
in depth. Future research on weakly n−absorbing primary submodules over
commutative rings can therefore be constructed.
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