Novi SAD J. MATH. VoL. 52, No. 1, 2022, 143-154
https://doi.org/10.30755/NSJOM. 11073

On n—absorbing primary submodules
Mohammad HamodaFl

Abstract. Let R be a commutative ring with 1 # 0, N a proper
submodule of an R—module M, and n a positive integer. In this pa-
per, we define N to be an n—absorbing primary submodule of M if
whenever a;...anx € N for ai,...,an, € R and x € M, then either
ai...an € (N :g M) or there are (n — 1) of the a; 's whose product
with z is in M — rad(N). A number of results concerning n—absorbing
primary submodules are given.
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1. Introduction

Throughout this paper all rings are commutative with 1 # 0 and all modules
are considered to be unitary.
Recently, extensive researches have been done on prime and primary ideals
and submodules. Let R be a commutative ring with identity. Of course a
proper ideal I of R is said to be a prime ideal if ab € I implies that a € I
or b € I where a, b € R. There are several ways to generalize the notion
of prime ideals and submodules, see for example [3], 5 T4 [15], [TT], 22, B0, [32].
Badawi in [7] generalized the concept of prime ideals in a different way. He
defined a proper ideal I of R to be a 2—absorbing ideal of R if whenever
a,b,c € R and abc € I, thenab e Ioracé€ Iorbce I. In |9, Badawi
and Darani generalized the concept of 2—absorbing ideals to the concept of
weakly 2—absorbing ideals. They defined a proper ideal I of R to be a weakly
2—absorbing ideal of R if whenever a,b,c € R and 0 # abc € I, then abe [
orac € [orbece I. Laterin [4], Anderson and Badawi introduced the concept
of n—absorbing ideals of R. According to their definition, a proper ideal I of
the ring R is said to be an n—absorbing (resp., strongly n—absorbing) ideal if
whenever 1 ... x,y1 € [forzy,...,xhy1 € R (vesp., I1 ... L,11 C I for ideals
Ii,...,I41 of R), then there are n of the z; 's (resp., n of the I; 's) whose
product is in 7. In [33], the concepts of 2—absorbing and weakly 2—absorbing
ideals of the ring R generalized to that of submodules of an R—module M as
follows: A proper submodule N of an R—module M is called a 2—absorbing
(resp., weakly 2—absorbing) submodule of M if whenever a,b € R, m € M
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and abm € N (resp.,0 # abm € N), then ab € (N :g M) or am € N or
bm € N. In [34], Darani and Soheilnia generalized the concept of n—absorbing
ideals of the ring R to that of submodules of an R—module M. They defined a
proper submodule N of an R—module M to be an n—absorbing (resp., strongly
n—absorbing) submodule if whenever a; ...a,m € N for ay,...,a, € R and
m € M (vesp., Iy ...I,L C N for ideals I,..., I, of R and submodule L of
M), then either a; ...a, € (N :g M) (resp., I ... I, C (N :g M)) or there are
(n—1) of the a; ’s (resp., I; 's) whose product with m (resp., with L) is in N.
In [8], the concept of primary ideals of the ring R generalized to the concept
of 2—absorbing primary ideals. A proper ideal I of R is called a 2—absorbing
primary ideal of R if whenever a,b,c¢ € R and abc € I,thenab € I orac € VI
or be € VI, where VI = {x € R :zF € I for some positive integer k}
is the radical ideal of I in R. In [24], Mostafanasab et.al. generalized the
concept of 2—absorbing primary ideal of the ring R to that of submodules of
an R—module M. They defined a proper submodule N of an R—module M to
be a 2—absorbing primary submodule of M if whenever a,b € R, m € M and
abm € N, thenam € M —rad(N)orbm € M—rad(N)orabe (N :g M). In
[35], Darani et.al. generalized the concept of 2—absorbing primary submodule
to weakly 2—absorbing primary submodule. They defined a proper submodule
N of an R—module M to be a weakly 2—absorbing primary submodule of M
if whenever a,b € R, m€ M and 0 # abm € N, then am € M — rad(N)
or bm € M —rad(N) or ab € (N :g M). Most of the concepts concerning
prime and primary ideals and submodules have been studied and generalized
to graded ring theory, see for example [I3] [I7, 19, 26l 28]. The motivation of
this paper is to continue the study of the family of n—absorbing ideals and
submodules, also to identify new properties in that subject. The remainder of
this paper is organized as follows:

In Section 2, we give some basic definitions and results that are used in the
sequel of this paper. Section 3 includes the results and theorems concerning
n—absorbing primary submodules. We give a useful characterization of an
n—absorbing primary submodule, (see Theorem [3.6]). The first main result of
this section is (Theorem . We show that if N is a submodule of a finitely
generated multiplication R—module M with M —rad(N) a primary submodule
of M, then N is an n—absorbing primary submodule of M. One important
part of this section is in the case when R is a Noetherian domain and M a
torsion-free multiplication R—module (see Theorem . Section 4 includes
the conclusion.

2. Preliminary notes

As usual, if N is a proper submodule of an R—module M, then the residual
of N by M is the set (N :g M) ={r € R:rM C N} which is an ideal of
R. In particular, if m € M, then (0:5 m) = {r € R:rm = 0} is called the
annihilator of m. Also, the set (0 :zr M) is an ideal of R called the annihilator
of M.

The radical M —rad(N) is defined to be the intersection of all prime submodules
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of M containing N. If M has no prime submodule containing N, then we say
M —rad(N) = M. The radical of the module M is defined to be M — rad(0).
Recall that a proper submodule N of an R—module M is prime (resp., pri-
mary) submodule of M if for r € R and m € M with rm € N, then either
mé€ Norr € (N :g M) (resp., r* € (N :g M) for some positive integer k). In
this case, one can easily verify that p = (N :g M) (resp., p = /(N :g M)) is
a prime ideal of R and we say N is a p — prime (resp., p—primary) submodule.
An R—module M is called faithful if its annihilator is 0. M is called a multipli-
cation module if for each submodule N of M, we have N = PM for some ideal
P of R. In this case we can take P = (N :g M), see [16]. For more details on
multiplication modules, one can consult [10] and [2].

An R—module M is called a cancellation module if PM = IM (for ideals P
and I of R) implies P = I. Finitely generated faithful multiplication modules
are cancellation modules ([29],Corollary to Theorem 9). If M is a finitely gen-
erated faithful multiplication R—module hence (a cancellation module), then
it is easy to see that (PN :g M) = P(N :g M) for each submodule N of M
and each ideal P of R.

Let M be an R—module, and I a prime ideal of R. We say that I is an associ-
ated prime of M (or that I is associated to M) if T is the annihilator of some
x € M. The set of associated primes of M is denoted by Assr(M).

3. Results and discussion

Definition 3.1. Let n be a positive integer. A proper ideal I of a commu-
tative ring R is said to be an n—absorbing primary ideal of R if whenever
ai...ant1 € Iforag,...,ant1 € R, then either a;...a, € I or a product of
n of the a; 's (other than a; ...a,) is in V.

Equivalently, one can define n—absorbing primary ideals in the following
way:
A proper ideal I of a commutative ring R is said to be an n—absorbing primary
ideal of R if whenever aj...apy1 € [ for a1,...,anp41 € R, then either
ai...an € Iorthereexists 1 < ¢ < nsuchthatay...a;—1ai41...an41 € VI.
From the definition, one can see that any n—absorbing ideal of R is an n—absor-
bing primary ideal of R. However, the converse is not true in general.

Example 3.2. Let R =Z and I = (50) be an ideal of R. We have 5.5.2 € I,
5.5 ¢ I and 5.2 ¢ I. Thus, I is not a 2—absorbing ideal of R. However, we
have that 5.2 € v/T and hence I is a 2—absorbing primary ideal of R.

Definition 3.3. Let n be a positive integer. A proper submodule N of
an R—module M is said to be an m—absorbing primary submodule of M
if whenever a;...ap,z € N for a1,...,a, € R and x € M, then either
aj...an € (N :g M) or there are (n — 1) of the a; 's whose product with x is
in M — rad(N).

Equivalently, a proper submodule N of an R— module M is called an
n—absorbing primary submodule of M if whenever a;j...a,z € N for
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ay,...,a, € R and z € M, then either ay...a, € (N :g M) or there
exists 1 < ¢ < n such that a1 ...a;—10;41...a,2 € M —rad(N).

Definition 3.4. Let n be a positive integer. A proper submodule N of an
R—module M is said to be a weakly n—absorbing primary submodule of M if
whenever 0 # ay...apx € N for ai,...,a, € R and x € M, then either
a...an, € (N :g M) or there are (n — 1) of the a; 's whose product with x is
in M — rad(N).

Theorem 3.5. If N is an n—absorbing primary submodule of an R—module
M, then it’s an m—absorbing primary submodule of M for every positive integer
m > n.

Proof. Let N be an n—absorbing primary submodule of M. We need to show
that N is an (n + 1)—absorbing primary submodule of M. Let
aias...anpp1x € N for aj,as,...,a,41 € Rand z € M. Now set ajas = a.
Then @...app1z € N implies @...any1 € (N g M) or
T...0;—1G;41 ... Gn1T € M —rad(N) or asayq...anp12 € M —rad(N) for
some 3 < ¢ < n+ 1. Hence, N is an m—absorbing primary submodule of M
for m > n. O

Now, we give a characterization of an n—absorbing primary submodule:

Theorem 3.6. Let N be a proper submodule of an R—module M. Then the
following statements are equivalent:

(i) N is an n—absorbing primary submodule of M;

(i) If a1 ...an & (N :g M), where a1,...,a, € R, then (N :pray...a,) C
U (M —rad(N) :pr aras ... a; 1541 - .- Gp).

i=1
Proof. (i) = (ii) Assume that a1,...,a, € R are such that aj...a, ¢
(N :g M). Let ¢ € (N :ps a1...ay,). Then ay...a,z € N, and so there are
(n—1) of the a; 's whose product with z is in M — rad(N). Then there exists
ke {1,2,...,n} such that ajas...ax—1a541 ... anx € M —rad(N), which im-
plies that z € (M —rad(N) :p a1a2 - .. ag—1ak41 - .. an) C Uimy (M —rad(N) :p
a1ag...a;—14;41 - .. an).
(it) = (i) Let aras...anx € N for some aj,as,...,a, € Rand z € M.
Assume that aq1as . ..a, € (N : M). This implies that © € (N :a araz...a,) C
U, (M — rad(N) v  @1G2...0;—1Qi41 ... an). Thus, we have
103 ... G;i—10i41 ... @ € M —rad(N) for some i € {1,2,...,n}. Therefore,
N is an n—absorbing primary submodule of M. O

Recall from [27] that a ring R is said to be a u—ring if I C |J-_, I; for some
ideals I,13, I, ..., I, of R implies that I C Iy for some k € {1,2,...,n}.

Similar to the concept of a u—ring, define the concept of a u—module as
follows:

Definition 3.7. An R—module M is said to be a u—module if N C U?:l N;
for some submodules N, N1, Ny,..., N, of M implies that N C Nj for some
ke{1,2,...,n}.
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Theorem 3.8. Let M be a finitely generated multiplication u—module over the
ring R. If N is an n—absorbing primary submodule of M, then (N :g M) is
an n—absorbing primary ideal of R.

Proof. Let ai,...,an+1 € R be such that a;...a,41 € (N :g M). This
implies that ap+1M C (N :p aias...a,). Now assume that ajag...a, €
(N :g M). Then by Theorem we have a,4+1 M C U, (M — rad(N) :n
a1as .. .4;—1G;41 - - - Gy ). Since M is a u—module, we conclude that a,+1M C
(M —rad(N) :ar a1as ... Gg—1ak41 - - - @) for some k € {1,2,...,n}. Thus, we
have ajas...ak—1ak41 ... apt1 € (M —rad(N) :g M) = /(N :g M). There-
fore, (N :g M) is an n—absorbing primary ideal of R. O

Theorem 3.9. Let N be a submodule of an R—module M. If M — rad(N) is
prime submodule of M, then N is an n—absorbing primary submodule of M.

Proof. Let aaz...anx = a1(az...apz) € N C M — rad(N) for some
ai,az,...,a, € R and x € M. Assume that ay...a,x € M — rad(N).
Since M — rad(N) is prime, we conclude that a; € (M — rad(N) :g M),
which implies that ajas...a;—1a;41...a,x € M —rad(N). Therefore, N is
an n—absorbing primary submodule of M. O

Proposition 3.10. ([24], Proposition 2.5.) Let M be a finitely generated multi-
plication R—module and N be a submodule of M. Then the following statements
are equivalent:

(i) M —rad(N) is a primary submodule of M.
(i) M —rad(N) is a prime submodule of M.

Theorem 3.11. Let M be a finitely generated multiplication R—module and
N be a submodule of M. If M — rad(N) is primary submodule of M, then N
s an n—absorbing primary submodule of M.

Proof. Assume that M is a finitely generated multiplication R—module and
M — rad(N) is a primary submodule of M, then by Proposition M —
rad(N) is a prime submodule of M and therefore N is an n—absorbing primary
submodule of M by Theorem [3.9] O

Theorem 3.12. Let M be a faithful (resp., finitely generated faithful) multi-
plication R—module. If M — rad(N) is a prime (resp., primary) submodule
of M, then N™ is an n—absorbing primary submodule of M for every positive
mteger n.

Proof. Assume that M is a faithful (resp., finitely generated faithful) multipli-
cation R—module and M —rad(N) is a prime (resp., primary) submodule of M.
Then there exists an ideal P of R such that N = PM. Since for any faithful
multiplication module M, we have M — rad(IM) = +/IM for any ideal I of R
by ([I], Theorem 1(3)). Then M —rad(N") = vP"M = M — rad(N) which is
a prime (resp., primary) submodule of M. Therefore, N™ is an n—absorbing
primary submodule of M for every positive integer n by Theorem and
Theorem [B.111 O
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Proposition 3.13. (|24, Proposition 2.14.) Let M be a multiplication R—mo-
dule and K, N be submodules of M. Then we have the following:

(Z) \/(KN ‘R M)Z \/(K ‘R M)ﬂ\/(NRM)
(ii)) M —rad(KN) =M —rad(K)N M — rad(N).

(iii) M —rad(KN N)=M —rad(K)N M —rad(N).

Theorem 3.14. Let M be a multiplication R—module and Ny, ...,N,, are
n—absorbing primary submodules of M with the same M—radical. Then
Ni(...( Nm is an n—absorbing primary submodule of M.

Proof. M —rad(N1()...() Nm) =iz, M — rad(N;) (by Proposition [3.13]).
Assume that a1 ...a,x € N for ay,...,a, € Randx € M and ay...a, &
(NMi(---) Ny :g M). Then ay ...an & (N; :g M) for some i € {1,2,...,m}.
Hence there are (n — 1) of the a; 's whose product with = is in M — rad(N;).
But N; ’s have the same M—radical, so N1[()...[) N is an n—absorbing
primary submodule of M. O

Theorem 3.15. Let M be a multiplication R—module. If Nj is an nj—absor-
bing primary submodule with the same radical of M for all j € {1,...,m},
then Ny N ...N N, is an n—absorbing primary submodule of M with n =
ny+ ...+ Ny,

Proof. Since N; is mj—absorbing primary submodule with n; < n, then by
Theorem [3.5] N is an n—absorbing primary submodule of M. By Theorem
3.14] Ny N...N N, is an n—absorbing primary submodule of M. O

Recall that a commutative ring R with nonzero identity is said to be a
divided ring if for every prime ideal I of R, we have I C aR for all a € R\ I,
see [I2]. Also the reader can consult [6] and [2I] for more information on
divided rings. Also, in [31], Tekir et.al. extended the concept of divided rings
to modules as follows:

Definition 3.16. An R—module M is said to be a divided module if every
prime submodule P of M is comparable with Rm for each m € M, or equiva-
lently, P C Rm for each me M — P.

Theorem 3.17. FEvery proper submodule N of a divided R—module M is an
n—absorbing primary submodule of M.

Proof. Suppose that N is a proper submodule of the R—module M. By ([31],
Proposition 1), prime submodules of a divided module are linearly ordered. So
M —rad(N) is a prime submodule of M. Hence, we are done by definition. O

Remark 3.18. Assume that I = (0:5 M) and A = R/I. It is easy to see that:

(i) N is an n—absorbing primary R—submodule of M if and only if NV is an
n—absorbing primary A—submodule of M.
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(ii) (IV :r M) is an n—absorbing primary ideal of R if and only if (N :4 M)
is an n—absorbing primary ideal of A.

Theorem 3.19. Let M be an R—module and S be a multiplicatively closed sub-
set of R. If N is an n—absorbing primary submodule of M and S™'N # S—'M,
then S™IN is an n—absorbing primary submodule of S™'M.

Proof. Let a1,...,an € R, $1,...,8, € S and £ € S~'M be such that
‘:—i‘j—j Lo Ee S~IN. Then there exists m € S such that majas...a,z € N.
As N is an n—absorbing primary submodule of M, we get either ajas...a, €
(N :g M) or may ...a;—1a;41...anx € M —rad(N) for some 1 < i < n.
The first case implies that

n — Gy —1(n . —1pr. -1
%%ZT = ‘;‘;;Zn € SSHN:gM)C(S™'N :g-1g ST'M).
The second case implies that

ai—105 n —1 —1 —1
s et e STHM —rad(N)) € ST'M —rad(ST'N).

Hence S™!'N is an n—absorbing primary submodule of S~1M. O

Let T(R) be the total quotient ring of the commutative ring R. A non

zero ideal I of R is called an invertible ideal of R if II~' = R, where I~ =
{z € T(R):2I C R}. In [25], Naoum and Al-Alwan generalized the concept
of an invertible ideal to the concept of an invertible submodule:
Let M be an R—module and let S = R\{0}. Then G = {g € S : gz =
0 for some x € M implies x = 0} is a multiplicatively closed subset of R. Let
N; be a submodule of M and let Ny = {m € Rg: mN; C M}. A submodule
N7 is said to be invertible in M if NoN7 = M. A nonzero R—module M is said
to be a Dedekind module if each nonzero submodule of M is invertible. For
more information on Dedekind and generalized Dedekind modules, the reader
can consult [IJ.

Theorem 3.20. Let R be a Noetherian domain, M a torsion-free multiplica-
tion u—module over R. Then the following statements are equivalent:

(i) M is a Dedekind module;

(i) If N is a nonzero n—absorbing primary submodule of M, then either
N = A" for some mazximal submodule A of M and some positive integer
n or N = ATAS for some maximal submodules A1 and Ay of M and
some positive integers n, m;

(iii) If N is a nonzero n—absorbing primary submodule of M, then either
N = P™ for some prime submodule P of M and some positive integer n
or N = N{'NJ"* for some prime submodules N1 and Ny of M and some
positive integers n, m.

Proof. (i) = (i) Since every multiplication module over a Noetheian ring is
a Noetherian module, so M is Noetherian and hence finitely generated. As N
is an n—absorbing primary submodule of M, so by Theorem (N :g M)
is an n—absorbing primary ideal of R. Now, N = IM = (N :g M)M for
some proper ideal I of R. Since a finitely generated torsion free multiplication
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module M over a domain R is a Dedekind module iff R is a Dedekind domain
by ([20], Theorem 2.13). Then, we have either I = L™ for some maximal ideal L
of R and some positive integer n or I = LT Ly for some maximal ideals L; and
Ls of R and some positive integers n, m by ([7], Theorem 2.11.). Hence, either
N=L"M = (LM)* = A™ where A= LM or N = (L1 M)*(LoM)™ = A} AD
where A; = L1 M and Ay = Lo M.

(44) = (4i7) It is clear.

(#it) = (i) We need to show that R is a Dedekind domain. Let I be an ideal of
R and L be a maximal ideal of R be such that L? ¢ T ¢ L. Then /I = L and
so that M — rad(IM) = LM, since M is a faithful multiplication R—module.
Then by Theorem IM is an n—absorbing primary submodule of M. Now
by (iii), either IM = P"™ for some prime submodule P of M and some positive
integer n or IM = N'Nj" for some prime submodules Ny and Ny of M and
some positive integers n, m. Since M is a cancellation module, then [ = J"
for some prime ideal J of R and some positive integer n or I = J{*J3* for some
prime ideals J; and J; of R and some positive integers n, m in which any of
the two cases make a contradiction. Thus there are no ideals properly between
L? and L. Therefore, R is a Dedekind domain by ([I8], Theorem 39.2). O

Lemma 3.21. ([23], Corollary 1.3) Let M and M be R—modules with f :
M — M an R—module epimorphism. If N is a submodule of M containing

Ker(f), then f(M —rad(N)) = M — rad(f(N)).

Theorem 3.22. Let M and M be R—modules and let f : M — M be an
R—module homomorphism. Then we have the following:

(i) If N is an n—absorbing primary submodule of M, then f~'(N) is an
n—absorbing primary submodule of M.

(i) If f is epimorphism and N is an n—absorbing primary submodule of M
containing Ker(f), then f(N) is an n—absorbing primary submodule of
M.

Proof. (i) Let a1,...,a, € R and x € M such that a;...a,z € f~1(N).
Then aj ...a,f(z) € N. Thus, either a; ...a, € (N :g M) or there are (n—1)
of the a; 's whose product with f(x) is in M — rad(N) and hence, either
ai...an € (f7*(N) :g M) or there are (n — 1) of the a; 's whose product with
risin f~1(M—rad(N)). Now, by using the inclusion f~1(M —rad(N)) C M—
rad(f~'(N)), we have f~1(N) is an n—absorbing primary submodule of M.

(ii) Let ai,...,a, € R and § € M be such that a1...a,5 € f(N). By as-
sumption there exists © € M such that § = f(x) and so f(a; ...anz) € f(N).
Since, Ker(f) C N, wehavea; ...a,x € N. Theneithera;...a, € (N :g M)
or there are (n — 1) of the a; 's whose product with x is in M — rad(N). Thus,
either a; ...a, € (f(N) :gp M) or there are (n — 1) of the a; 's whose prod-
uct with 7 is in f(M — rad(N)) = M — rad(f(N)). Therefore, f(N) is an
n—absorbing primary submodule of M. O
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Corollary 3.23. Let L and N be submodules of an R—module M such that
L C N. If N is an n—absorbing primary submodule of M, then N/L is an
n—absorbing primary submodule of M/ L.

Proof. Follows directly from Theorem [3.22] (ii). O

Theorem 3.24. Let L and N be submodules of an R—module M such that
Lc NcC M. If L is an n—absorbing primary submodule of M and N/L 1is
a weakly n—absorbing primary submodule of M /L, then N is an n—absorbing
primary submodule of M.

Proof. Let a1,...,a, € R and x € M such that a;...a,z € N. If
aj...anx € L, then either ay...a, € (L :g M) C (N :g M) or there are
(n — 1) of the a; 's whose product with = is in M — rad(L) C M — rad(N).
So assume that a;...a,z &€ L. Then 0 # ay...a,(x + L) € N/L implies
that either a1 ...a, € (N/L :g M/L) or there are (n — 1) of the a; 's whose
product with (z+ L) is in M/L —rad(N/L) = %‘i(m. It means that either
aj...an € (N :g M) or there are (n— 1) of the a; 's whose product with « is in
M — rad(N). Therefore, N is an n—absorbing primary submodule of M. O

According to [24]:
Let R; be a commutative ring with identity and M; be an R;—module, for
i =1,2. Let R= Ry X Ry. Then M = M; x M> is an R—module and
each submodule of M is of the form N = Ny x N, for some submodules Ny
of M7 and N5 of M. In addition, if M, is a multiplication R;—module, for
1 = 1,2, then M is a multiplication R—module. In this case, for each submodule
N = Ny x Ny of M we have M — rad(N) = My — rad(N1) x My — rad(N2).

Theorem 3.25. Let My be a multiplication Ri—module and My be a multi-
plication Ro—module and let R = Ry X Ry and M = M; x Ms. Then the
following hold:

(i) A proper submodule L1 of My is an n—absorbing primary submodule if
and only if N = Ly X My is an n—absorbing primary submodule of M.

(i) A proper submodule Lo of My is an n—absorbing primary submodule if
and only if N = My x Ls is an n—absorbing primary submodule of M.

Proof. (i) Assume that N = L; x My is an n—absorbing primary submodule
of M. Since N is a proper submodule of M, so L1 # M;. Let M = {0}><¢]M2
Then N = {O}X% is an n—absorbing primary submodule of M by Corollary
Since M is module-isomorphic to M; and N is module-isomorphic to L1,
so L is an n—absorbing primary submodule of Mj.

Conversely, assume that L; is an n—absorbing primary submodule of M, then
it is easy to see that N = L1 x Ms is an n—absorbing primary submodule of
M.

(ii) Proceed similarly to (7). O
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Lemma 3.26. If I is an n—absorbing primary ideal of R, then /I is an
n—absorbing ideal of R

Proof. Let ai1,...,an4+1 € R be such that ai...any; € VI and the prod-

uct of ap4q with (n — 1) of a1,...,a, & V1. Since a;...anr1 € VI, then

(a1...an41)F = af...ak | € I for some positive integer k. Since I is an

n—absorbing primary ideal of R and the product of a,4+1 with (n — 1) of
k

ai,...,a, is not in VI, we conclude that a¥...a* = (a;...a,)* € I, and

thus a; ...a, € VI. Therefore, /T is an n—absorbing ideal of R. O

Theorem 3.27. Let I be an n—absorbing primary ideal of the ring R and let
M be a faithful multiplication R—module with Assp(M/~/IM) a totally ordered
set. Then ay...apx € IM implies that ay ...ap_1x € VIM or anx € VIM

orai...a, € I, wheneveray,...,a, € Randzx € M.
Proof. Assume that a1,...,a, € R,z € Manda;...a,z € IM. If (\ﬁM ‘R
a;x) = R for some 1 < j < mn, then we are done. Now, suppose that

(VIM :p ajx) are proper ideals of R for all 1 < j < n. Since Assg(M/VIM)
is a totally ordered set, then U;;l(\ﬁM :r a;jz) is an ideal of R and so there

exists a maximal ideal P such that U;zl(ﬁM ‘r a;z) € P. We claim that
ar g Tp(M)={Te€ M:(1-y)T =0 for somey € P}. To prove the claim,
assume on the contrary that a;x € Tp(M). This implies that (1 — y)ayz =0
for some y € P, thus (1 —y)ayz € VIM and so 1 —y € (VIM :g a1x) C P,
a contradiction.

Now by ([16], Theorem 1.2), there are y € P and T € M such that (1 —
y)M C RZ. Thus, (1 —y)z = sT for some s € R. As ay...ap,x € IM,
so (1 —y)(ay...apnz) = b for some b € I. Thus (a;...ans — b)T = 0 and
so (1—y)(a1...ans —b)M C (a1...a,s — b)RT = 0. But M is faithful, so
(I —y)(ay...aps —b) = 0. Therefore, (1 —y)(ar...ans) = (1 —y)b € I.
Then (1 —y)(ay...an_1)s € VIor (1 —y)an, € VI ora;...ans € I, because
I is an n—absorbing primary ideal of R. If (1 — y)(a;...an,_1)s € VI, then
(1—y)(ar...an—1) €VTor (1—y)se€VIor (ar...an_1)s € VI, because VT
is an n—absorbing ideal of R by Lemma If (1—y)(ay...an_1) € VI, then
(1—y)(ay...an12) € VIM andso 1 —y € (VIM :g ay...a,_12) C P, a
contradiction. If (1—y)s € VT, then (1—y)?z = (1—y)sT € v IM which implies
that (1 —y)? € (VIM :g x) € (VIM :p ay...an_12) C P, a contradiction.
Similarly, we can get that (1 — y)a, ¢ VI. Now a;...a,_15 € /I implies
that (1 — y)ay...apn—1¢ = ay1...a,—1ST € VIM andso 1 —y € (\ﬁM ‘R
aj...an—12) C P, a contradiction. If ay...a,s € I, then ay...a,-18 € VI
or ans € VIoray...a, € I of which the first two cases are impossible, thus
a...ap € P. ]

4. Conclusion

In this paper, we considered n—absorbing primary submodules. Weakly
n—absorbing primary submodules have been defined and have not been studied
in depth. Future research on weakly n—absorbing primary submodules over
commutative rings can therefore be constructed.
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