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Cosine families of bounded linear operators on
non-Archimedean Banach spaces

A. Blali1, A. El Amrani2, J. Ettayb34 R. A. Hassani5

Abstract. In this paper, we initiate the investigation of cosine families
of bounded linear operators on non-Archimedean Banach spaces. We
show some properties of non-Archimedean C0−cosine operator functions.

Examples are given to support our work and we will discuss the solv-
ability of some homogeneous p-adic second-order differential equations
where the parameter of C0-cosine family of bounded linear operators be-
longs to a clopen ball Ωr of the ground field K.
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1. Introduction and preliminaries

In the classical setting, R and C denote the set of real numbers and complex
numbers, respectively. Cosine functions are closely related with differential
equations on Archimedean Banach space X over C :

u
′′
(t)−B2u(t) = 0 or u

′′
(t)−Bu(t) = 0, t ∈ R,

with corresponding initial conditions and B : D(B) → X is a linear operator.
Solutions are given by u(t) = ch(Bt), t ∈ R (ch: hyperbolic cosine). By
direct calculation one verifies that thus defined functions satisfy the following
functional equations:

∀t, s ∈ R, C(t+ s) + C(t− s) = 2C(t)C(s), C(0) = I,

I is the unit operator on X. It has been observed by Augustin Louis, baron
Cauchy (1789− 1857).

In [13], M. Sova attempted to make a systematic study of the basic proper-
ties of operator functions called cosine operator functions i.e., functions which
satisfy the well-know functional equation of d’Alembert. In the real case such a
functional equation is satisfied by the class of all cos(at), ch(at) (ch: hyperbolic
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cosine, a arbitrary real number). Many studies were started for cosine families
of linear operators on Banach or Hilbert spaces; for examples of the pioneering
work of H.O. Fattorini, who treats in detail some of applications of the sec-
ond Cauchy problem for linear differential equations and also who studied the
uniformly bounded cosine functions in Hilbert spaces for more details, we refer
to [1], and [7]. Moreover, I. Cioranescu and C. Lizama [2] characterized the
spectrum of strongly continuous cosine functions defined in a Hilbert space in
terms of properties of the infinitesimal generator. In [13], M. Sova proved that
the infinitesimal generator of all uniformly continuous cosine family of linear
operators on a Banach space is a bounded operator. Recently, R. Ameziane
Hassani, A. Blali, A. El Amrani and K. Moussaouja showed by counterexam-
ple that the result mentioned above is not true in general on Fréchet spaces,
and they proved that the infinitesimal generator of an uniformly continuous
cosine family of operators in a class of Fréchet spaces (quojection) is necessar-
ily continuous. For more details, we refer to [8], and also they proved if the
Quojection-Fréchet spece X is a Grothendieck space with the Dunford-Pettis
property, then every C0-cosine family is necessarily uniformly continuous and
therefore its infinitesimal generator is a continuous linear operator. M. Kostić
studied the convoluted C-cosine functions, convoluted C-semigroups and com-
position property and automatic extension of convoluted C-cosine functions;
for more details, we refer to [10].

In the non-Archimedean setting, [3] T. Diagana started with a brief con-
ceptualization of C0-groups on (ultrametric) free Banach spaces X. In contrast
with the classical setting the parameter of a given C0-group belongs to a clopen
ball Ωr of the ground field K. In [6], A. El Amrani et al. introduced and studied
new classes of linear operators so called C0-groups, C-groups and cosine families
of bounded linear operators on non-Archimedean Banach spaces over a non-
Archimedean complete valued field K of characteristic zero (i.e., char(K) = 0).
Throughout this paper, X is a non-Archimedean (n.a) Banach space over a
(n.a) non trivially complete valued field K with valuation | · |, B(X) denotes
the set of all bounded linear operators from X into X, Qp is the field of p-adic
numbers (p ≥ 2 being a prime) equipped with p-adic valuation |.|p, Zp denotes
the ring of p-adic integers (the ring of p-adic integers Zp is the unit ball of Qp).
For more details, we refer to [9] and [12]. We denote the completion of algebraic
closure of Qp under the p-adic absolute value | · |p by Cp [9]. Let r > 0, Ωr is
the clopen ball of K centred at 0 with radius r, e.g., Ωr = {t ∈ K : |t| < r}.
In contrast with the classical context, the p-adic hyperbolic cosine and cosine
functions are given by

ch(q) =

+∞∑
n=0

q2n

(2n)!
and cos(q) =

+∞∑
n=0

(−1)n
q2n

(2n)!

respectively, they are not always well defined and analytic for each q ∈ Qp.

However, they do converges for all q ∈ Qp such that |q|p < r = p
−1
p−1 . For more

details, we refer to [9] and [12]. We begin with some preliminaries.
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Definition 1.1 ([4], Definition 2.1). Let X be a vector space over K.
A non-negative real valued function ∥ · ∥ : X → R+ is called a non-

Archimedean norm if:

(1) For all x ∈ X, ∥x∥ = 0 if and only if x = 0,

(2) For any x ∈ X and λ ∈ K, ∥λx∥ = |λ|∥x∥,

(3) For any x , y ∈ X, ∥x+ y∥ ≤ max(∥x∥, ∥y∥).

Property (3) of Definition 1.1 is referred to as the ultrametric or strong
triangle inequality.

Definition 1.2 ([4], Definition 2.2). A non-Archimedean normed space is a
pair (X; ∥ · ∥), where X is a vector space over K and ∥ · ∥ is a non-Archimedean
norm on X.

Definition 1.3 ([4], Definition 2.2). A non-Archimedean Banach space is a
vector space endowed with a non-Archimedean norm, which is complete.

For more details on non-Archimedean Banach spaces and related issues, see
for example [4], [5],[11] and [14].

Proposition 1.4 ([4], Proposition 2.16). (1) A closed subspace of a
non-Archimedean Banach space is a non-Archimedean Banach space;

(2) The direct sum of two non-Archimedean Banach spaces is a
non-Archimedean Banach space.

In this section, we define and discuss properties of non-Archimedean Banach
spaces which have bases.

Definition 1.5 ([4], Definition 2.5). A non-Archimedean Banach space
(X, ∥ · ∥) over a non-Archimedean valued field (complete) (K, | |) is said to
be a free non-Archimedean Banach space if there exists a family (xi)i∈I of
elements of X indexed by a set I such that each element x ∈ X can be writ-

ten uniquely like a pointwise convergent series defined by x =
∑
i∈I

λixi, and

∥x∥ = sup
i∈I

|λi|∥xi∥.

The family (xi)i∈I is then called an orthogonal basis for X; which is equiv-
alent to saying that (xi)i∈I is a Schauder basis (or a basis), in this case (X is a
n.a Banach space), [11, theorem 2.3.11]. If, for all i ∈ I, ∥xi∥ = 1, then (xi)i∈I

is called an orthonormal basis of X. For more details of orthogonality and the
concepts of bases in the non-Archimedean case, we refer to [11] and [14].

However the treatment of those non-Archimedean Banach spaces in the gen-
eral case can be found in [5] and [11]. Moreover, X is a free non-Archimedean
Banach space over K if and only if X is isometrically isomorphic to c0(I, u) for
certain index set I and an application u : I → R∗

+. By [11, Theorem 2.58] c0(I)
is of countable type if and only if I is countable. For more details we refer to
[11] and [14]. In this work the basis of free n.a Banach spaces considered is
countable I = N.
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Definition 1.6. [4] Let (X, ∥ · ∥) be a non-Archimedean Banach space. The
non-Archimedean Banach space (B(X), ∥ · ∥) is the collection of all bounded
linear operators from X into itself equipped with the operator-norm defined by

(∀A ∈ B(X)) ∥A∥ = sup
x∈X\{0}

∥A (x) ∥
∥x∥

.

For more details on the theory of non-Archimedean linear operators, we
refer to [3],[4],[5],[11] and [14].

Throughout this paper, X is a non-Archimedean (n.a) Banach space over a
(n.a) non trivially complete valued field K of characteristic zero with valuation
|.|, B(X) is equipped with the norm of Definition 1.6 and for all r > 0, Ωr =
{t ∈ K : |t| < r} and Ω∗

r = Ωr\{0}, denote the clopen ball with the center at
0 and the radius r, deprived of zero, and r chosen such that t ∈ Ωr 7→ C(t) is
well defined.

Definition 1.7 ([6], Definition 2.24). Let r > 0 be a real number. A function
C : Ωr −→ B(X) is called a C0 or strongly continuous operator cosine function
on X if

(i) C(0)=I,

(ii) For every t, s ∈ Ωr, C(t+ s) + C(t− s) = 2C(t)C(s),

(iii) For each x ∈ X, t −→ C(t)x is continuous on Ωr.

A cosine family of bounded linear operators (C(t))t∈Ωr
is uniformly continuous

if lim
t→0

∥C(t)− I∥ = 0 .

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

2
C(t)x− x

t2
exists},

and

For each x ∈ D(A), Ax = lim
t→0

2
C(t)x− x

t2
,

is called the infinitesimal generator of the cosine family (C(t))t∈Ωr
; where for

all x ∈ X, 2x = x+ x.

We begin with the following lemmas.

Lemma 1.8 ([6], Lemma 2.26). Let (C(t))t∈Ωr
be a strongly continuous cosine

family on X, then for each t ∈ Ωr, C(2t) = 2C(t)2 − I.

Remark 1.9. Let K = Qp. By Lemma 1.8, if p ̸= 2, we have for all t ∈
Ωr, C( t2 )

2 = C(t)+I
2 .

Lemma 1.10 ([6], Lemma 2.27). Let (C(t))t∈Ωr
be a strongly continuous cosine

family on X , then:

(i) For every t ∈ Ωr, C(−t) = C(t),
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(ii) For each t, s ∈ Ωr, C(t)C(s) = C(s)C(t).

We have the following theorem.

Theorem 1.11 ([6], Theorem 2.32). Let (C(t))t∈Ωr
be a strongly continuous

cosine family satisfying : there is M > 0 such that for each t ∈ Ωr ∥C(t)∥ ≤ M ,
and let A be its infinitesimal generator. Then, for every x ∈ D(A), AC(s)x =
C(s)Ax and C(s)x ∈ D(A) for each s ∈ Ωr.

Recall that C+
p = {a ∈ Cp : |1− a| < 1}. For each a ∈ C+

p where p ̸= 2, the
element

(1.1)
√
a = a

1
2 =

∑
n∈N

( 1
2

n

)
(a− 1)n

is the unique positive square root of a. For more details see [12], section 49,
page 143.

Example 1.12 ([6], Theorem 2.28). Let K = Cp with p ̸= 2. Consider the ball

Ωr of Cp with r = p
−1
p−1 . Let X be a free n.a. Banach space over Cp and (ei)i∈N

be an canonical base of X. Define for each q ∈ Ωr and for x =
∑
i∈N

xiei the

family of linear operators C(q)x =
∑
i∈N

xi cosh(
√
µiq)ei , where (µi)i∈N ⊂ C+

p

is a sequence of positive elements of Cp. It is routine to check that the family
(C(q))q∈Ωr is well defined.

Proposition 1.13 ([6], Proposition 2.29). The family (C(q))q∈Ωr
of linear

operators given above is a cosine family of bounded linear operators, whose
infinitesimal generator is the bounded diagonal operator A defined by Ax =∑
i∈N

√
µixiei for each x =

∑
i∈N

xiei ∈ X.

2. Main results

Recall that k is the residue class field of K. Througout this paper, we as-
sume that K is a complete non-Archimedean valued field of characteristic zero(
char(K) = 0

)
with char(k) = p

(
p is a prime number

)
, we have the following

example.

Example 2.1. Let X be a non-Archimedean Banach space over K, let A ∈
B(X) such that ∥A∥ < r

(
= p

−1
p−1

)
; it is easy to check that for all t ∈ Ωr,

C(t) =
∑
n∈N

t2n

(2n)!
An is a strongly continuous cosine family of bounded operators

of infinitesimal generator A on X.

We have the following lemma.
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Lemma 2.2. Let X be a non-Archimedean Banach space over K, let (C(t))t∈Ωr

be a strongly continuous cosine family on X. Then for each t ∈ Ωr and n ∈ N∗

there exist n + 1 constants a0, · · · , an in K such that C(nt) = a0I + a1C(t) +
· · ·+ anC(t)n.

Proof. By induction. For n = 1 the assertion is true and also for n = 2 by
Lemma 1.8. Now let n ≥ 2, then by (ii) of Definition 1.7,

C((n+ 1)t) = −C((n− 1)t) + 2C(t)C(nt).

Hence if we assume that the assertion of the lemma is true for each 1 ≤ k ≤ n,
then a simple computation shows that it is also true for n + 1. This in fact
proves our lemma.

As in [3], we have the following remark.

Remark 2.3. (i). Let X be a non-Archimedean free Banach space over K,
let (C(t))t∈Ωr

be a C0-cosine family of linear operators on X and (ei)i∈N an
orthogonal base of X, then for each t ∈ Ωr, C(t) can be expressed as: for any

x =
∑
i∈N

xiei ∈ X, C (t) (x) =
∑
i∈N

xiC (t) (ei) , where

(
∀j ∈ N

)
C (t) (ej) =

∑
i∈N

ai, j (t) ei, with lim
i→∞

|ai j (t) |∥ei∥ = 0.

(ii). Using (i), one can easily see that for each t ∈ Ω∗
r ,(

∀j ∈ N
) (C (t)− I

t2

)
ej =

(
ajj (t)− 1

t2

)
ej +

∑
i ̸=j

aij (t)

t2
ei,

with lim
i ̸=j,i→∞

|aij (t) |∥ei∥ = 0.

(iii). If (C (t))t∈Ωr
is a C0-cosine family of linear operators on X, then its

infinitesimal generator A may or may not be a bounded linear operator on X.

Theorem 2.4. Let X be a non-Archimedean Banach space over K, let A ∈
B(X) such that ∥A∥ < r

(
r = p

−1
p−1

)
. Then A is the infinitesimal generator of

a uniformly continuous cosine family of bounded operators (C(t))t∈Ωr
.

Proof. Let X be a non-Archimedean Banach space over K, let A ∈ B(X) such

that ∥A∥ < r
(
= p

−1
p−1

)
, then for all t ∈ Ωr, C(t) =

∑
n∈N

t2n

(2n)!
An satisfies the

conditions of Definition 1.7, we will show that, for each t ∈ Ωr,

(2.1) C(t) =
∑
n∈N

t2n

(2n)!
An,

the series given by 2.1 converges in norm and defines a family of bounded linear
operators on X by |t|∥A∥ < r. It is easy to check that C(0) = I and for all



Cosine families of bounded linear operators on n.a. Banach spaces 179

t, s ∈ Ωr, C(t+s)+C(t−s) = 2C(t)C(s). It remains to show that (C(t))t∈Ωr

given above is a uniformly continuous cosine family. Indeed, for all t ∈ Ωr;

one has C(t) − I = t2A

(∑
n∈N

t2n

(2(n+ 1))!
An

)
, then ∥C(t) − I∥ ≤ |t|2p∥A∥∥ζt∥,(

where ζt =
∑
n∈N

t2n

(2(n+ 1))!
An

)
converges and

(
∀t ∈ Ω∗

r

)
∥2C(t)−I

t2 − A∥ ≤

∥2A∥∥
∑
n≥1

t2n

(2(n+ 1))!
An)∥ < ∥

∑
n≥1

t2n

(2(n+ 1))!
An∥, then

(2.2) lim
t→0

∥C(t)− I∥ = 0.

Consequently,

(2.3) lim
t→0

∥2C(t)− I

t2
−A∥ = 0.

Hence, A is the infinitesimal generator of a uniformly continuous cosine family
of bounded operators (C(t))t∈Ωr

.

Remark 2.5. (i). Note that the mapping Ωr 7→ B (X) , t 7→ C(t) is analytic.

Furthermore, d2C(t)
dt2 = AC (t) = C (t)A.

(ii). An abstract version of Theorem 2.4, that is in general ultametric-valued
field K, remains an unsolved problem.

We have the following proposition.

Proposition 2.6. Let X be a non-Archimedean Banach space over K, let
(T (t))t∈Ωr

be a uniformly continuous group of bounded linear operators on X.

Set for all t ∈ Ωr, C(t) = T (t)+T (−t)
2 , (C(t))t∈Ωr is a uniformly continuous

cosine family of bounded linear operators on X.

Proof. Setting, for each t ∈ Ωr, C(t) = T (t)+T (−t)
2 , (C(t))t∈Ωr

is a uniformly
continuous cosine family of bounded linear operators on X. In fact:

(i) C(0) = T (0)+T (0)
2 = I,

(ii) For each t, s ∈ Ωr,

2C(t)C(s) = 2

(
T (t) + T (−t)

2

)
·
(
T (s) + T (−s)

2

)
(2.4)

=
T (t+ s) + T (−(t+ s))

2
+

T (t− s) + T (−(t− s))

2
(2.5)

= C(t+ s) + C(t− s).(2.6)

(iii) ∥C(t)− I∥ ≤ max{∥ etA−I
2 ∥; ∥ e−tA−I

2 ∥} −→ 0 as t → 0.
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We have the following example.

Example 2.7. It is easy to check that (etA)t∈Ωr is a uniformly continuous

group on X. Set, for each t ∈ Ωr, C(t) = etA+e−tA

2 . Then (C(t))t∈Ωr
is a

uniformly cosine family on X. In fact

(i) C(0) = e0A+e−0A

2 = I,

(ii) For each t, s ∈ Ωr,

2C(t)C(s) = 2

(
etA + e−tA

2

)
·
(
esA + e−sA

2

)
(2.7)

=
e(t+s)A + e−(t+s)A

2
+

e(t−s)A + e−(t−s)A

2
(2.8)

= C(t+ s) + C(t− s).(2.9)

(iii) ∥C(t)− I∥ ≤ max{∥ etA−I
2 ∥; ∥ e−tA−I

2 ∥} −→ 0 as t → 0.

Proposition 2.8. There exists a Banach space X over Qp and strongly con-
tinuous cosine family (C(t))t∈Qp

of bounded linear operators on X satisfying:
there exists M > 0 such that for all z ∈ X, t ∈ Qp, ∥C(t)z∥ ≤ (1 + |t|2pM)∥z∥.
Proof. Let X = Qp ×Qp equipped with the non-Archimedean norm by:
For all z = (x, y) ∈ Qp × Qp, ∥z∥ = max{|x|p, |y|p}, where | · |p is the p-adic
absolute value. We consider (C(t))t∈Qp

on Qp ×Qp:

∀t ∈ Qp, C(t) =

(
1 t2

2
0 1

)
.

(C(t))t∈Qp
is well-defined and defines a strongly continuous cosine family on

X. In fact:

(i) C(0)=I,

(ii) For all t, s ∈ Qp,

C(t− s) + C(t+ s) =

(
1 (t−s)2

2
0 1

)
+

(
1 (t+s)2

2
0 1

)
(2.10)

=

(
2 (t−s)2+(t+s)2

2
0 2

)
(2.11)

=

(
2 t2 + s2

0 2

)
.(2.12)

And

C(t)C(s) =

(
1 t2

2
0 1

)
·
(
1 s2

2
0 1

)
(2.13)

=

(
1 t2+s2

2
0 1

)
.(2.14)

Hence ∀ t, s ∈ Qp, C(t− s) + C(t+ s) = 2C(t)C(s).
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(iii) For all z ∈ X and t ∈ Qp, we have

∥C(t)z − z∥ = ∥
(

t2y
2
0

)
∥

= | t
2y

2
|p

≤ M |t|2∥z∥ with M = |1
2
|p.

Consequently, for all z ∈ X, lim
t→0

∥C(t)z − z∥ = 0. Hence (C(t))t∈Ωr
is a C0-

cosine family on X.

(iv) On the other hand, for all z = (x, y) ∈ X and t ∈ Qp, we have

∥C(t)z∥ = ∥
(
x+ t2y

2
y

)
∥

= max{|x+
t2y

2
|p, |y|p}

≤ max{|x|p, |
t2y

2
|p, |y|p}

≤ max{|x|p, (1 +M |t|2p)|y|} with M = |1
2
|p

≤ (1 +M |t|2p)max{|x|p, |y|p}
≤ (1 +M |t|2p)∥z∥.

We introduce the following definition.

Definition 2.9. A (C(t))t∈Ωr cosine family of linear operators with the in-
finitesimal generator A is said to be a cosine family of contraction, if for all
t ∈ Ωr, ∥C(t)∥ ≤ 1.

Example 2.10. Let X be a non-Archimedean Banach space over Cp with

p ̸= 2, let A ∈ B(X) such that ∥A∥ < r
(
r = p

−1
p−1

)
, for all t ∈ Ωr, C(t) =

e−tA + etA

2
, from Example 2.7. (C(t))t∈Ωr is a uniformly continuous cosine

family on X and, for all t ∈ Ωr,

∥C(t)∥ ≤ {∥e
−tA + etA

2
∥} ≤ max{∥e−tA∥, ∥etA∥} = 1.

Consequently, (C(t))t∈Ωr
is a contraction.

We have the following definition.

Definition 2.11 ([6], Definition 2.16). Let X and Y be two non-Archimedean
Banach spaces over K. For all T ∈ B(X) and S ∈ B(Y ), the operator T ⊕ S is
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defined on the Banach space X ⊕ Y (= {(x, y) : x ∈ X, y ∈ Y } = {x⊕ y : x ∈
X, y ∈ Y } endowed with the n.a. norm ∥x⊕ y∥ = max(∥x∥, ∥y∥), ) by

(∀x⊕ y ∈ X ⊕ Y ) (T ⊕ S)(x⊕ y) = Tx⊕ Sy = (Tx, Sy).

We have the following theorem.

Theorem 2.12. Let (C(t))t∈Ωr
is a C0− cosine family of a generator A on

X. Let S(t) = C(t)⊕ I for all t ∈ Ωr. Then we have

(i) (S(t))t∈Ωr
be a C0− cosine family on X ⊕X,

(ii) The generator of (S(t))t∈Ωr is the operator T defined on D(T ) = D(A)⊕
X such that for all x ∈ D(A), y ∈ X, T (x⊕ y) = Ax⊕ 0.

Proof. (i) Since (C(t))t∈Ωr
be a C0− cosine family of a generator A on X,

then
S(0) = C(0)⊕ I = I ⊕ I = IX⊕X .

Let x⊕ y ∈ X ⊕X and t, s ∈ Ωr, we have:

2S(t)S(s)(x⊕ y) = 2S(t)(C(s)⊕ I)(x⊕ y)

= 2(C(t)⊕ I)(C(s)x⊕ y)

= 2C(t)C(s)x⊕ 2y

= C(t− s)(x) + C(t+ s)(x)⊕ 2y

= C(t− s)x⊕ y + C(t+ s)x⊕ y

= S(t− s)(x⊕ y) + S(t+ s)(x⊕ y)

= (S(t− s) + S(t+ s))(x⊕ y).

On the other hand,

lim
t→0

∥S(t)(x⊕ y)− x⊕ y∥ = lim
t→0

∥(C(t)x− x)⊕ 0∥

= lim
t→0

max (∥C(t)x− x∥, 0)

= lim
t→0

∥C(t)x− x∥

= 0.

Therefore (S(t))t∈Ωr
is a C0− cosine family on X ⊕X.

(ii) Let x ∈ D(A) and y ∈ X. We have:

lim
t→0

2
S (t) (x⊕ y)− x⊕ y

t2
= lim

t→0
2
C (t) (x)⊕ y − x⊕ y

t2

= lim
t→0

2 (C (t) (x)− x)⊕ 0

t2

= Ax⊕ 0.

Then D(T ) = D(A)⊕X and T (x⊕ y) = A(x)⊕ 0, for all x ∈ D(A).
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We have the following example.

Example 2.13. Assume that p is a prime number and r = p
−1
p−1 . The 2 × 2

square matrix A over Cp × Cp given by:

A =

(
a 0
0 b

)
where a, b ∈ Ωr,

generates a C0 cosine operator C(t) given by:

∀t ∈ Ωr, C(t) =

(
ch(ta) 0

0 ch(tb)

)
where ch(·) denotes the p-adic hyperbolic cosine function.

Example 2.14. Let A be the multiplication operator on X = C (Zp, Qp)

defined by (∀u ∈ C (Zp, Qp)) Au = Q(x)u, u(0) = u0, where Q =

∞∑
n=0

qnfn ∈

C (Zp, Qp), qn ∈ Qp, (fn)n is the base of X. Suppose that ∥Q∥∞ = sup
n

|qn| <

r
(
= p

−1
p−1

)
. The function defined by (∀t ∈ Ωr) , u(t) =

∑
n∈N

(
(tA)2n

2n!

)
u0, for

some u0 ∈ X, is the solution to the homogenous p-adic second-order differential

equation d2

dt2u(t) = A2u(t), t ∈ Ωr, u(0) = u0.

2.1. Question

� Can we caracterize the infinitesimal generator of C0-cosine on infinite
dimensional non-Archimedean Banach spaces ?
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