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Extragradient method for approximating a common
solution for a fixed point and variational inequality
problems in Hilbert space

Santosh Kumar'2?, Richard Osward® and Mengistu Goa Sangago*

Abstract. In this paper, we introduce an extragradient method to
approximate a common solution of variational inequality problem and
a fixed point problem for an asymptotically nonexpansive mapping in a
real Hilbert space. We prove that the sequence generated by the itera-
tive algorithm converges strongly to a common solution of a variational
inequality problem and the fixed point problem for an asymptotically
nonexpansive mapping. The results presented in this paper extend and
generalize many previously known results in the literature. Some appli-
cations of main results are also provided.
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1. Introduction

Variational inequality theory describes a broad spectrum of very interest-
ing developments involving a link among various fields of mathematics, physics,
economics and engineering sciences. Some of these developments have made
mutually enriching contacts with other fields. During the last five decades
which have elapsed since its discovery, variational inequality theory has stim-
ulated efforts and an ever increasing number of research workers are using
variational inequality techniques. The important developments were the for-
mulations that variational inequality can be used to study the problems of
fluid flow through porous media, contact problems in elasticity, transportation
problems and economics equilibrium. Ideas explaining these formulations led
to the developments of new and powerful techniques to solve a wide class of
linear and nonlinear problems. See, for example [2, 3, 6, 8, 10, 12].

Throughout this paper unless otherwise stated, H denotes a real Hilbert
space with inner product (.,.) with the induced norm ||.|| and C denotes a
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nonempty closed convex subset of H. Let {x,,} be a sequence in H, then z,, — «
(respectively, x,, — x) denotes strong (respectively, weak) convergence of the
sequence {x,} to a point x € H. We denote by N and R the sets of all positive
integers and all real numbers, respectively.
Recall that for every point z € H, there exists a unique point in C, denoted
by Pz, such that
lo — Poz|| < ||z —yl|,Vy € C.

The function Po : H — C' is called the metric projection of H onto C. It is
well known that Po is nonexpansive mapping, that is,

|[Pex — Pyl < |lz —yll, Va,y € H,
and satisfies
(1.1) (x —y, Pox — Poy) > ||Pcx — Poyl|?, Vo,y € H.
Further, P is characterized by the following properties:
(i) (Pcx — Poy,xz —y) >0, Va,y € H.
(i) [lo — Pez|® + |ly — Pez|® < [lz — y|I?, Va,y € H.

A mapping T : C — C is said to be asymptotically nonexpansive [7] if there
exists a sequence {k,} C [1,00) with lim k, = 1 such that for every z,y € C
n—oo

and for each n € N
[Tz —T™y|| < knllz —yll.

If k, =1 for all n € N, then T is said to be a nonexpansive mapping.

Note that if a mapping 7' : C' — C'is asymptotically nonexpansive with the
asymptotic sequence {k,} C [1,00), then T is uniformly k—Lipschitzian, that
is,

Tz — T"y|| < kllz — y||,Vz,y € C,

where k = sup k,,, for each n € N.
The ﬁxgsl\;)oint problem (in short, FPP) for the mapping T': C — C'is to
find z € C such that
(1.2) Tz = .
The solution set of FPP (1.2) is denoted by F(T'), that is,
F(T)={xeC:Tx = x}.

A mapping A : C — H is called an a-inverse strongly monotone mapping if
there exists a real number a > 0 such that for every z,y € C

(Az — Ay,x —y) > af| Az — Ay|>.
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A mapping A is called a monotone mapping if for every z,y € C
(Az — Ay,z —y) > 0.

It is known that every a-inverse strong monotone mapping is monotone and is
also é—LipschitZ continuous mapping. The variational inequality problem (in
short, VIP) is to find z € C such that

(1.3) (Az,y—z) >0, Vy € C.

The solution set of the variational inequality problem (1.3) is denoted by
VI(C, A), that is,

VIC,A)={z€C:(Az,y—z) > 0,Vy € C}.
With the connection to the variational inequality problem, it is easy to see that
x € VI(C,A) <= z = Po(z — Nzx) YA > 0.

The so-called extragradient method was introduced in 1976 by Korpelevich
[9] as follows:

xo=x € C,
(14) Yn = PC(xn - )\nA.’L‘n>7
Tnt+l = PC(xn - /\nAyn)

for all n > 0, where A, € (0, 1), C is a closed convex subset of R™ and A is a
monotone and k—Lipschitz continuous mapping of C' into R™. He proved that if
VI(C, A) is nonempty, then the sequences {z,} and {y,}, generated by (1.4),
converge to the same point z € VI(C, A).

In 2003, Takahashi and Toyoda [14] introduced the following iteration pro-
cess for finding a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of a variational inequality problem for an
inverse strongly-monotone mapping

(1.5) Tpt1 = Ty + (1 — )T Po(x, — A\Axy,),

for every n =0,1,2,..., where x = 29 € C and {\,} C (0, 2«). They showed
that, if F(T)NVI(C,A) # 0, then the sequence {z,} generated by (1.5),
converges weakly to some z € F(T)NVI(C, A).

In 2006, motivated by the Korpelevich extragradient method, Zeng and Yao
[19] introduced a new extragradient method and proved the following theorem.

Theorem 1.1. (/19]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A: C' — H be a monotone and k— Lipschitz continuous mapping.
Let S : C — C be a nonexpansive mapping such that F(S)NVI(C,A) # 0. Let
{xn} and {yn} be sequences in C defined as follows:

ro=x € C,
(16) Yn = PC(xn - )\nA.’En>7
Tn4+1 = QpTo + (1 - an)SPC(xn - /\nAyn)7vn > 07

where {\n,} and {a,} satisfy the conditions
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(i) Ak € (0,1 —06) for some 6 € (0,1).
(ii) {an} C(0,1), > 0° o =00, limy,_yoo vy, =0.

Then the sequences {x,} and {y,} converge strongly to the same point
Prpsynvi(c,a)To, provided that lim, o ||Tny1 — zn|| = 0.

In 2007, Yao et al. [17] introduced the iterative scheme:

1 =u € C,
(17) Yn = PC(xn - /\nAxn)y
Tn+1 = QplU + ann + ’YnSPC(In - AnAyn)avn 2 07

where {an}, {Bn}, {7n} are sequences in [0, 1]. They proved the convergence
of this sequence to common elements of VI(C, A) and F(S) for a monotone
and k—Lipschitz continuous mapping A : C'— H and a nonexpansive mapping
S :C — C for which F(S)NVI(C,A) # 0.

Recently, Nadezhkina and Takahashi [11] and Yao and Yao [18] proposed
some new iterative schemes for finding elements in F(T)NVI(C, A).

In this paper, motivated by iterative schemes considered in [10, 11, 19, 18],
we constructed an iterative algorithm to approximate a common element of
the set of fixed points of asymptotically nonexpansive mapping and the set
of solution of variational inequality problem and proved a strong convergence
theorem in Hilbert space settings.

2. Preliminaries

We now introduce preliminaries which will be used in this paper.
Recall that a mapping f from C into it self is called a p-contraction mapping
if there exists p € (0,1) such that

1f () = FWIl < pllz —yll, Va,y € C.

Definition 2.1 ([4]). Let C be a closed convex subset of a Hilbert space H.
A mapping T': C — C is called asymptotically regular on C' if and only if,

lim ||T"z — T x| = 0,V € C.

n—oo
Lemma 2.2 (/5]). Let T be an asymptotically nonexpansive mapping on a
closed and convex subset C of a real Hilbert space H. Let {x,} be a sequence

in C. Then I — T is demiclosed at 0. That is, if v, — x and ©, — Tx, — 0,
then z € F(T).

Lemma 2.3 (/16]). Let {6,} be a sequence of non negative real numbers,
satisfying

5n+1 < (1 - En)én + Enﬁn + Yn,Vn > 0,

where {en}, {Bn} and {vn} satisfies the conditions:
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(i) {en} C0,1], Zz—:n = 00 or equivalently, H(l —&,) =0,
n=1 n=1

(ii) lim sup 8, <0,

n— oo

o0
(ili) yn >0, Y yn < 0.

n=1

Then,
lim 4,, = 0.
n—oo

Lemma 2.4 ([1]). Let H be a real Hilbert space. Then, for any given x,y € H,
we have the following inequality:

lz +yl* < ll= )1 + 2(y, = + ).

Lemma 2.5 ([/15]). Let {t,} be a sequence of nonnegative real numbers such
that tp41 < (1 — ap)ty, + anfn, n > 0 where {a,} is a sequence in (0,1) and
{Bn} is a sequence in R such that

(C1) Z an, = 00 or equivalently H(l —ay) =0,
n=0

n=0

(C2) limsup B, < 0. Then lim t, = 0.
n—oo

n— oo

Definition 2.6. A set valued mapping T': H — 2 is called monotone if, for
all x,y € H, we have

(x—y,f—g) >0, VfeTx,geTy.

Such an operator is maximal monotone if its graph G(T) is not properly
contained in the graph of any other monotone operator. It is known that
a monotone mapping 7' is a maximal if and only if, for (z,f) € H x H,
(x —y, f—g) >0 for every (y,g) € G(T) implies f € Tx.

Let A be a monotone, k-Lipschitz-continuous mapping of C onto H and let
N¢cwv be the normal cone to C' at v € C such that
Nev={we H: {v—u,w) >0,YVu € C}.
Define
| Av+ Negv, ved(,
Tv= { 0, v C.

Then, T is maximal monotone and 0 € Tv if and only v € VI(C, A), see
(Rockafellar, [13]).
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3. Main results

Let A: C — H be an a-inverse strongly monotone mapping , f : C — C
be a p-contraction mapping and let T : C — C be an asymptotically non
expansive mapping. Let {a,} C [0,1] and A\, € (0,2a). For any z1 € C, we
find y; € C such that

Yy = Pc(ﬂjl - >\1Al‘1).

Now we can compute zo € C' by
o = aq f(z1) + (1 — a1)TPc(y1 — M Ay).
Also, we can find y2 € C such that
Y2 = Po(xe — Ao Axo).
After that, we can compute z3 € C by
w3 = aaf(w2) + (1 — a2)T*Po(ys — A2 Ays).
Inductively, we can generate the sequence {z, } C C as follows:

xr € C,
(3.1) yn = Po(xn — MAzy),n=1,2,3,...
Tpt1 = @ f(xn) + (1 — an)T"Po(Yn — AnAyn),n=1,2,3,...

We now state and prove our strong convergence theorem as follows:

Theorem 3.1. Let C' be a non empty closed and convex subset of a real Hilbert
space H. Let f : C — C be p-contraction mapping, A : C — H be an a-
inverse strongly monotone mapping and let T : C' — C be asymptotically non-
expansive mapping. Assume that T is asymptotically regular on C such that

F(T)NVI(C,A) #0. Let {oa,} C [0,1] and {\,} C [0,2a] satisfy
(i) T}LII;oan =0, Zan = 00,
n=1

(i) 0 <a<A, <b<2aq,

=0.

—1
iii) lim (Ap — Apg1) =0, lim i
—

n—oo
For zq € C, if {x,} is the sequence generated by the iterative scheme (3.1),
then {x,} converges strongly to z = Ppiryavi(c,a)f(2).
Proof. For all z,y € C and as A\, € (0,2«), we have

1= AuA)z — (I = Au Ay
Iz = y) — An(Az — Ay)||?
lz =yl = 2\n (e — y, Az — Ay) + X7 || Az — Ay]|?
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< o=yl + X (A — 20) || Az — Aylf?
(32) <l =yl

which implies that I — A\, A : C — H is nonexpansive.
Let z € F(T)NVI(C, A) and z,, = Pc(yn — AMAyn) . Then 2z = Po(z — A\, Az).
From (3.2), we have

”Zn - ZH = HPC(yn - /\nAyn) - PC(Z - /\nAZ)H

(3:3) < ln — Andya) = (2 = AnA2)]| < [lyn — 2]
= ||Pc(zn — AnAzn) — Po(z — A Az)]|
< (@0 — AnAzyn) — (2 — A A2) ||
(3.4) < lzn — 2|
(kn — 1)

Take € € (0,1 — p). Since

that
(kn — 1) < eay, for all n € N.
From (3.1) and (3.4) it follows that

— 0 as n — oo, there exists N € N such
Qn

[€n41 — 2]
lon f(an) + (1 — an)T" 2 — 2|
lom (f(2n) = f(2)) + an(f(2) = 2) + (1 = an)(T" 2, — 2)|

< anpllen =zl + anl| f(2) = 2] + (1 = an)[IT"20 — 2|

< anpllan =zl +anl f(2) = 2| + (1 — an)knllzn — 2]

< anpllen = 2l + anllf(2) = 2 + (1 = an)kallon — 2|

= (I=an(l=p))lzn = 2] + anl[f(2) = 2] + (1 = an)(kn = D[z — 2]
< (I=an@=p)lzn =2l + anll f(2) = 2l + canlzn — =]

< (- ant=p= a2l +anl )1

< max{fjzy — 2, T——IIf(2) = 2[}.

By induction, we see that, for all n > 1
lzn — 2| < max{[|lzy — z[|, ;== [l f(2) — z[I}-
Thus, {z,}, {yn}, {Azn}, {f(zn)}, {zn} and {T"z,} are bounded. Next,
we prove that
li_>m |znt1 — zpn] = 0.

We observe that:

Hzn-&-l - Zn”
= ||PC(yn+1 - )\nJrlAynJrl) - PC(yn - AnAyn)”

< ”(yn+1 - )\n+1Ayn+1) - (yn - )‘nAyn)”
= [¥Un+1 = Mt14Ynt1) = Un — Mt 1AYn) + (Ao — Ang1) Ay ||
< N Wnt1 = A1 AYnt1) = Un — Anr1AYn)|| + A = A ||| Ayn ||
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(35) < ynt1 = ynll + A = Anta || Aynll
| Po(Tni1 — A1 AZnt1) — Po(zn — M Azy) || + A — Anya || Ay |
(3:6)<  [[znt1 — znll + [An = Anga|([[Azn || + [[Aynl]).-

Since y,, = Po(xn — ApAzy,) and yni1 = Po(Tny1 — Ang1A2n41), we have

(3.7) (Ao — yo) + —

(Y = Ynoyn — ) 2 0,Vy € C.

and

(3.8) (ATpi1,Y = Yny1) + (Y = Ynt1,Ynt1 — Tng1) > 0,Vy € C.

)\n+1

Putting y = yp+1 in (3.7) and y = y,, in (3.8), we have

1
(39) <Ax7l’ Yn+1 — yn> + )\7<yn+1 —YnyYn — xn) > 0.
and
1
(3-1()) <A37n+17 Yn — yn+1> + At <yn —Ynt+1,Yn+1 — $n+1> > 0.

Combining (3.9) and (3.10) we have,

> 0.

Yn — Tn _ Yn+1 — $n+1>

<A'Tn+1 - Al’n, Yn — yn+1> + <yn+1 — Yn,
>\n )\n+1

And hence,

An
0 S <yn — Yn+1, )‘N(A‘T’ﬂ-i-l - Al‘n) + 7(yn+1 - xn-{-l) - (yn - xn)>

>\n+1

An
) Yn+1 + ($n+1 - AnA$n+1)>

Yn+1 — YnsYn — Yn+1 + (1 - 2
n+1

An
+ <yn+1 ynv )\ Axn ) — Tn+1 + /\xn+1>
n+1

An
Ynt1 = Yn,Un — Ynt1 + <1 3 > (Ynt1 — In+1)>
n+1
+ (Ynt1 — Yn, (@nt1 — AMATpq1) — (zn — AAzy)) .

It then follows that

A
s =0 < B =30l {[1= 52 s = ]+ i = 3l }.
n+1

and so we have

B -l < 1 — sl + fnss — 2l

n
/\n+1
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Using condition (ii), we have

1
[Yn+1 = Ynll < N@nt1 — znl + /\7|)‘n+1 = Aalllyn+1 = Tosal
n+1
1
(3.12) < lznsr —2all + ap‘n-&-l — An|M,
Hence, we have
1
(3-13> Hyn - yn71|| < ||$n - xn,1|| + El)‘n - )‘n71|M~

Consider

||Tn2n _ T”_lzn,l H

(3.14)

I T"zp — T zp—1|| + |1 T" 20—1 — T"_lzn,1||

<
S anZn - Zn—l” + ||Tnzn—1 - TnilZn—l”-
From (3.1),(3.5), (3.13) and (3.14), we have that

(B
= |lanf(zn) + (1 —an)T" 2, — an_1f(@p_1) — (1 — an,l)T"_lzn,lﬂ

< anpll@n — T +lan — O‘n—1|(||f($n—1” + ”Tnilzn—l”)
H(1 = an)[|T"20 = T 2|
< anpllzn — Tn_1||+lan — an 1| K + (1 — )| T" 20 — T 21|
< appllrn — znallFlan — an—1|K + (1 — an)knllzn — 201
+(1 = an)[|T"2p-1 — T"_12n71||
< anplln = Tn—1+lan = an—1|[K + (1 = an)(kn — 1|20 = 201
+(1 = an)[T"2p-1 — Tn_lzn—ln + (1 = an)llzn — zn—1|
< appllrn — Tpal[+lon — a1 | K

(3-15) +(1 = an)(kn = D l[yn = yn-1ll + [An1 = An|M]

H(1 =) [T 21 = T 2|

(1= an) [lyn = yn-1ll + [An—1 = An|M]

anpllen — Tp1|+lom — an_1|K + (kn = 1)z — 2n-1|

IN

1
HM—DLW—MHM+W1—MW}
+H|T" 21 —T"_lzn,1||
1
+(1 —ay) [Hxn — Tp_1|l + a\)\n — A1 M+ A1 — )\n|M}

€a,
(1 =an(l=p—e)llrn — zn1l+|an — an_1|K + Tp‘n — An—1|M

IN

+(ean, + 1 — )| A1 — M| M
1—
+||Tnzn—1 - Tn_lZn—lH + (aian)|An - An—l‘Ma
S (- =p=6)llen —znl +an(l = p—€)[An = An_1|M
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An — A
+(1+a+ay(e+ pa))%

+||Tnzn71 - Tn_lznfl ||a

M—F‘Otn — O{nfl‘K

where K = sup{||f(zn)| + ||[T"2,||} and where M = sg;;{llyn — x|, [|Aynl|}-
n

Put e, = a,(1 — p—¢€), Bn = [An — An—1|M and ’y_n = (1+a+ ayle+

|/\an |

pa)) UM + |an — an_1|K + |T"2p—1 — T" ‘2,1 ]|. Then,
a

||xn+1 - ‘rn” é (]- - 5n)||xn - xnfln + Enﬂn + Tn
Using Lemma 2.3, we have
(3.16) nli_)rr;OHan — x| = 0.

Further by (3.6) and (3.12) with the condition that li_>m (A — Apy1) =0,
we get

(3.17) nlir{:o\\z7l+1 — zp||= 0.
and
Jim f[yni1 = ynll= 0.
Since 2, = ap_1f(xn_1) + (1 — ap_1)T" 12, 1, we have

20 =T 20l < & = T ol + 1T oot = T 2|
< g =T Yol + 1T 2non = T 2n |
+ IT" 21 — T 2|
< anallf(@n-1) = T 2n|
+ T 2ner = T 20| + Enll2n—1 — za-

From (3.17) with a,, — 0 as n — oo and T is asymptotically regular on C.
It follows that

(3.18) lim |T"z, — x,||= 0.

n—0o0

Since z € F(T) N VI(C, A), from the convexity of |.||* and (3.3), we have

241 — 212

v f () + (1 = )T 2, — 2|
lan(f(2n) —2) + (1 — an)(T"2n — Z)HQ
anl| f(@n) = 2| + (1 = @) [Tz — 2|2
anllf(zn) = 2|1 + (1 = an)ki |1z, — 2|
an|| f(@a) = 2| + (1 = an)ky lyn — 217

IN N IA

(3.19)
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< anllf(zn) = 2|2+ (1= an)kn ([[(2n — AnAzn) — (2 = A A2)|?)
< apllf(zn) — 2”2
+(1 = an)ki([lzn — 2[1* + A (A — 20) Az, — A2)|?)
< | f(@n) — Z||2
+(1 = an)k |z, — 2|
+(1 — an)k2 N (A — 20a)|| Az, — A2)|)?
< anllfzn) — 2|
(1= an)(ky = Vllzn — 2l + (1 - an)||lzn — 2|
+(1 — an)k2 N (A — 20)|| Az, — A2)|)?
< anllf(zn) — 2

+(1 = an) (k) = Dlwn — 2* + [lzn — 2|
(3.20) +(1 — an)k2 N (A — 20)[| Az, — A2)|?,

which implies that

A (20 — X)) (1 — ) K2 || Az, — Az]?
< aallf(@n) = 2P + (1= an) (k2 = Dlfon — 2|
(3.21) Hln = 2l = honss = 21
Since oy, = 0, kyy = 1, ||Xpt1 — 2n]| = 0 as n — oo and both {f(x,)} and

{z,} are bounded, from (3.21), we obtain ||Ax, — Az|| — 0 as n — .
From (1.1) and the fact that I — A, A is nonexpansive, we have

lyn — [
= |[Po(zn — MAz,) — Po(z — A A2)|)?
< <yn -z (xn - )\nAxn) - (Z - )\nAZ)>
1
= 5[”(3771 - )‘nAxn) - (Z - /\nAZ)||2 + ||yn - 2”2
—(zn — AnAzy) = (2 = A\ Az) — (yn — Z)”Q]

IN

1
Sllzn — 212+ llyn = 21° = [[(@n — yn) — An(Az, — A2)|°]
1
= §[||mn - Z”2 +lyn — ZH2 — [|zn — ynH2 +2X (T — Y, Az — Az)
—\2 || Az, — Az,

and so, we obtain
(3.22)
1y — 2l <lzn — 21~ 20 = Yo+ 2M0 (@0 — yn, Azy — Az) = N3] Az, — A2|%.

Hence from (3.19) and (3.22), we have

lnr1 — 2|
2 2 2 2
< anllf(zn) = 217+ (1 = an)kplllen = 2117 = l[2n = ynl
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20 (T — Yy Axy, — Az) — N2 || Az, — Az|?)
= anllf(zn) = 2lI” + (1 — o)k lan — 2[° = (1 = an)kpllzn — yal®

+20,(1 — ap)k ( Tn — Yn, Axy — Az) — (1 — ozn)kQ)\2 |Az,, — AZ||2

< anllf(@n) = 212+ (1= an) (K = Dlzn — 2] + (1 = an) [z, — 2]
—(1 = an)kpllzn = yall? + 220 (1 = an)k2 |2 — yal|| Az, — Az]|
< onllf(@n) = 21 + (1= an) (k7 = Dllzn = 2l* + [|lzn — 2]

—(1 = an)kpllzn = yall® + 220 (1 — an)k2 |20 — yall| Az, — Az,
which implies that

(1- O‘n)k%”xn — Ynll
< anllf(mn) = 22 + (1= an) (k2 = Dlzn — 2] + [J2n — 2
(3.23) —llzns1 — 2H2 +2A (1 - O‘n)k?znxn — ynlll| Az, — Az].

Since o, — 0, ky, = 1, ||2p — Zpy1]| = 0 and ||Az, — Az|| — 0 as n — oo,
from (3.23), we have

(3.24) nl;rlgo||zn —yn|l = 0.
Since
1T 20 — zn|

< T2 = znll + 120 — Yull + lyn — 2l
= |T"2n — xp| + |20 — yull + | Po(zn — AAzn) — Po(yn — AnAyn)||

< Tz, — an + [|en — ynH + [[(zn = AnAzy) = (Yn — A Ayn) ||
< |T"2n — 2l + 2|20 — yall + AnllAzy — Ayn||

n 1
< T Zn_mn”"’@"’a/\n)”xn_ynll-

From (3.18) and (3.24), we have ||T"z,, — z,|| — 0 as n — co. Hence as n — oo,
we have

(3.25) 120 = ynll < 120 = T2l + | T" 20 — 2|l + |20 — ynl = 0.

Since A is Lipschitz continuous, we have Ay, — Az, — 0 as n — oco. By
combining (3.24) and (3.25), we have

[z = @nll < llzn = ynll + [lyn — znll = 0.
We have
[T2n — 2| < llon =T 20| + 1T 20 — 2nll + |20 — 2nll,
which implies ||Tx,, — x| — 0 as n — co. Further, we have

1Tyn = ynll < Tyn = Tanl + 1 T2n = 2nll + 20 = yall
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killyn = @nll + 1 T2n — 20l + [0 = yall
(k1 + Dllyn = @nll + [|T2n — znl|,

INIA

which implies that ||y, — yn| — 0 as n — oo, since Pp¢rynvic,a)f:C — C
is a p-contraction mapping. Therefore by the Banach contraction principle
there exists a unique zo € F(T)NVI(C, A) such that 20 = Ppir)nvi(c,a)f(20)-
We shall show that

(3.26) lim sup(f(z0) — 20, n, — 20) < 0.

n— oo

Since {y,} is bounded, we have that there exists a subsequence {y,,} of {y,}
such that

lim (f(z0) — z0,@n — 20) = limsup{f(z0) — 20, Yn — 20)
n—oo n—oo

(3.27) = ili{gloﬁ(zo) — 205 Yn; — 2p).

Without loss of generality, we may assume that y,, — x*. Since C is closed
and convex, C is weakly closed. So we have z* € C. Now we show that
z* € F(T). In fact, since y,, — «* and T'y,, — ¥y, — 0, by Lemma 2.2, we have
x* € F(T).

Next, we show that, 2* € VI(C, A). Since y,, — 2z, — 0, we have z,, — z*. Let

T — Av+ Ngv wveC,
Y710, v C.

Then T is maximal monotone. Let (v, w) € G(T') and z, € C this implies that
w € Tv = Av + Ngv and hence w — Av € Ngw.
Now we get

(3.28) (v — zp,w — Av) > 0.

On the other hand, from z, = Po(y, — AnAy,) and v € C, we have that
(Yn — AnAyn — 2, 20 —v) 20,

and hence

(Zn - yn)
An

Replacing n by n; in (3.28), we have

(v — zn, + Ay,) > 0.

(v = zp,,w)
> (v—zp,, Av)

(Zni — ym) >

> <’U — Zni,A’U> — <'U — Zny» Aym + A

i

(zni B ynb)
A, )

i

<’U - Zn,i,A’U - Ayni -



26

>

hence,

Santosh Kumar, Richard Osward, Mengistu Goa Sangago

(0 2 Av — Az 4 {0 = 2, A, — Ag) — (0 7, V)
Zn: — Unis
(v —zn,, Azn, — Ayn,) — (U — 2n,, M>

7

we get

(v—2*,w) > 0asi— oo. Since T is maximal monotone (see, Rockafellar,[13]),
we have z* € T710 and hence z* € VI(C, A).
Since z* € F(T)NVI(C, A), from (3.27) and the property of metric projection,

we have
limsup(f(20) — 20, ¥n — 20) = limsup(f(z0) — 20,Yn — 20)
n— oo n—oo
= lim (f(20) — 20, Yn; — 20)
71— 00
(3.29) = (f(20) — 20,2 — 2z9) < 0.
Finally, we prove that lim ||, — 29| = 0. From (3.1) and Lemma 2.4 we
n—o0

obtain

| Zn4+1 — 20]?

VA

IN

IN 4+ IA I

IN

IN

”O‘n(f(zn) - ZO) + (1 - an)(Tnzn - ZO)||2
(1- an)QHTnZn - ZOH2 + 2(an(f(2n) — 20), Tni1 — 20)
(1- an)QHTnzn - ZOH2 + 20, (f(Tn) — 20, Tnt1 — 20)
[(1 = an)kn?llzn — 20/ + 2000 (f (€n) = 20, 241 — 20)
[(1 - O‘n) ] ”Zn - 20”2 + 20‘n<f(33n) - f(ZO)a Tn4+1 — z0>
+2a,(f(20) — 20, Tnt1 — 20)
[(1 — Q) n] ”xn - ZOH2 + 20, (f(2n) — f(20), Tng1 — 20)
)
)

(1 - ay n] |zn — ZOH2 + 2anpl|Tn — 20l [|Tn+1 — 20|

+2a,(f(20) = 205 Tnt1 — 20)

(1—an kn] |zn — ZOH2 + anp(llzn — 20”2 + | Tnt1 — 20”2)

+2a,{f(20) — 20, Tns+1 — 20)

(1= ap)(kn —1) + (1 - O‘n)]ZHxn - 20”2 + anpllzn — ZO||2

Fanpl|ni1 — 20l + 200 (f(20) = 20, 1 — 20)

(1= (2= pan + 02 + (1 — )2 (1 kn)? +2(1 — )2 (0en — D)2 — 0
Fanpllzair = 20l* + 200 (f(20) — 20, 241 — 20)

[1— (2= plan +a + (1= kn)® +2(ky — D]llzn — 20/

FanpllTns1 — 20> + 200 (f(20) — 20, Tni1 — 20)-

(
k
20, (f(20) = 205 Tnt1 — 20)
k
(

Let P, = sup ||z, — 2o||%, so now we have

2041 = 20]1* <

neN

1-(2-pa, a%—i— kn,—12+2(k, —1

P,
1— pay 1—pay,
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2a
Tz pnan (f(20) = 20, Tp41 — 20)
2—pa, a? + (k, — D2 +2(k, — 1
— [1_ (1 p) L]Hxn_20”2+ n ( n ) ( n )Pn
— pay, 1= pay,
2«
Tz pnan (f(20) = 20, Tp41 — 20)
= (1 - an)”'rn - ZOH2 + anBn,
2 kn—1)2+2(k, — 1 1
where §, = 21 o _)pjan( p gt (F20) = 20,01~ 20) and
20 —plon . . = .
ay, = —————. Since lim a, = 0, Zan = oo and limsupf, < 0 by
1- POn n—00 n—0 n—oo
(3.29). Then by Lemma 2.5, we conclude that lim ||z, — 2| = 0. O
n—oo

4. Applications

Using our Theorem 3.1, we prove the following theorems:

Browder and Patryshyn [4] introduced k— strictly pseudocontractive map-
ping which is as follows:
A mapping S : C — C is called k- strictly pseudocontractive if there exists
k € [0,1) such that,

|Sa — Sy|2 < |l — y|I? + K|(I = S)x — (I - S)yl|. Yy € C.

Putting A =1 — S, we know that
1—k 9

Theorem 4.1. Let C be a non empty closed and convex subset of a real Hilbert
space H. Let f : C — C be p-contraction mapping, S be a k-strictly pseudo
contractive mapping of C into itself and let T : C'— C be asymptotically non-
expansive mapping. Assume that T is asymptotically regular on C such that
F(T)NF(S)#0, where A=1—S5. Let {x,} be a sequence generated by

xr1 € C,
(4.1) Yn = Ty — MAz,,n=1,2,3 ...
xn+l = anf(-rn) + (1 - an)Tn(yn - )\nAyn)vn = 17 2737 e

where {ayp} C [0,1] and {\,} C [0,1 — k] satisfy
(i) nl;rrgoan =0, Z:lan = 00,
(1)) 0<a<X, <b<l—k,

(iii) Tim (A = Ans1) =0,
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=0.

() lim P = 1

n—oo Qp

Then {xy,} converges strongly to z = Pr(rynp(s)f(2).

-inverse

1—
Proof. In Theorem 3.1, put A=1— 5 and Po = I. Then A is

strongly monotone mapping. We have that F(S) = VI(C, A) and Pco(x, —
AnAxy) = (I — Ap)xy + ApSx,. So by Theorem 3.1, we obtain the desired
result. O

Theorem 4.2. Let H be a real Hilbert space. Let f: H — H be p-contraction
mapping and T : H — H be asymptotically non-expansive mapping. Assume
that T is asymptotically reqular on H such that F(T)NA710# 0. Let {x,} be
a sequence generated by

X1 € C,
(4.2) Yn = Tp — ApAx,,n=1,2,3,...
Tnt1 = A f(@n) + (1 — an)T™(Yn — AnAyn),n=1,2,3,...

where {an,} C [0,1] and {\,} C [0,2q] satisfy

(i) nll_}ngcan =0, Zlan = 00,
(i) 0 <a<A, <b<2aq,
(iii) nli_)rr;O(A,L —Ant1) =0,

kn—1
(iv) lim =0.

n— 00 (0'7%%

Then {xn} converges strongly to z = Ppryna-10f(2).

Proof. Since A710 = VI(H,A) and Pc = I. So, by Theorem 3.1, we obtain
the desired result. O
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